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(ABSTRACT)



Distributed Transactional Memory (DTM) is an emerging, alternative concurrency control
model that aims to overcome the challenges of distributed-lock based synchronization. DTM
employs transactions in order to guarantee consistency in a concurrent execution. When two
or more transactions conflict, all but one need to be delayed or rolled back.

Transactional Memory supports code composability by nesting transactions. Nesting how-
ever can be used as a strategy to improve performance. The closed nesting model enables
partial rollback by allowing a sub-transaction to abort without aborting its parent, thus
reducing the amount of work that needs to be retried. In the open nesting model, sub-
transactions can commit to the shared state independently of their parents. This reduces
isolation and increases concurrency. Checkpointing is an alternative model to closed nesting.

In this thesis we propose three extensions to the existing Transactional Forwarding Algorithm
(TFA). Our extensions are N-TFA, TFA-ON and TFA-CP, and support closed nesting, open
nesting and checkpointing, respectively. We implement these algorithms in a Java DTM
framework and evaluate them. This represents the first study of transaction nesting in
the context of DTM, and contributes the first DTM implementation which supports closed
nesting, open nesting or checkpointing.

Closed nesting through our N-TFA implementation proved insufficient for any significant
throughput improvements. It ran on average 2% faster than flat nesting, while performance
for individual tests varied between 42% slowdown and 84% speedup. The workloads that
benefit most from closed nesting are characterized by short transactions, with between two
and five sub-transactions.

Open nesting, as exemplified by our TFA-ON implementation, showed promising results. We
determined performance improvement to be a trade-off between the overhead of additional
commits and the fundamental conflict rate. For write-intensive, high-conflict workloads,
open nesting may not be appropriate, and we observed a maximum speedup of 30%. On the
other hand, for lower fundamental-conflict workloads, open nesting enabled speedups of up
to 167% in our tests.

Transaction checkpoints, using our TFA-CP implementation, showed 1-10% benefit over
flat transactions when all the overheads are factored out. When also including the effects
of continuations, we obtained contradictory results, ranging from 2x slowdown up to 6x
speedup.

In addition to the three algorithms, we also develop Hyflow2, a high-performance DTM
framework for the Java Virtual Machine, written in Scala. It has a clean Scala API and
a compatibility Java API. Hyflow2 was on average two times faster than Hyflow on high-
contention workloads, and up to 16 times faster in low-contention workloads.

Our major proposed post-preliminary work is in the area of automatic data partitioning. An
existing technique generates partitioning schemes that maximize local, single-node transac-
tions which are fast and minimize distributed transactions. We plan to extend this technique
with support for independent transactions, a recently proposed, light-weight distributed
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transaction model. After that, we plan to develop a mechanism to automatically convert a
generic atomic-block into specialized code that is partition-aware and uses the most efficient
transaction model applicable. Finally, want to convert blocks that require using the two-
phase commit coordinated transaction model, into multiple separate transactions that use
more efficient models.

This work is supported in part by US National Science Foundation under grants CNS
0915895, CNS 1116190, CNS 1130180, and CNS 1217385.
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Chapter 1

Introduction

Until recently, CPU manufacturers were able to increase the performance of their devices by
running them at ever higher frequencies. However around 2004, this trend became unsus-
tainable, and adding multiple processing cores on the same chip became the new standard.
Software developers were forced to embrace concurrency as the means for their programs to
run faster, or perform more advanced processing in a short time.

Handling concurrency correctly is a difficult task. The simple strategy of using a single global
lock may be easy to implement, but it hardly brings any performance benefits, effectively ex-
ecuting all critical sections sequentially. Using fine-grained locks to protect individual pieces
of data enables the much desired scalability, but is inherently error prone. Any mistakes can
lead to hard to trace problems such as deadlocks and race-conditions. Moreover, due to the
randomness of concurrency, these problems may not manifest during testing, misleading the
programmer to ship a defective product.

Using locks also makes code composition difficult. Suppose a library uses locks to control
access to a hash-table and the programmer needs to apply two hash-table operations in an
atomic manner in order to hide the intermediary state from other threads. In this situation,
he or she may introduce extra locks protecting both data structures at the same time,
but this can lead to race conditions or loss of performance if not implemented carefully.
Alternatively, the programmer may try to expose the implementation of the library in order
to understand and then extend its locking mechanism, but again, this is error prone and
moreover it contradicts the encapsulation concept of object-oriented programming.

1.1 Software Transactional Memory

Transactional Memory (TM) was proposed to bring a successful abstraction from the database
community, the transaction, into regular multi-processor programming [28]. Transactions

1



Alexandru Turcu Chapter 1. Introduction 2

were originally developed to provide four important properties: atomicity, consistency, isola-
tion and durability (the ACID properties). In this context, atomicity (or failure atomicity)
means that the operations making up a transaction either all execute to completion, or they
appear as if they never started executing. This effectively prevents a transaction from ex-
ecuting partially and leaving the system in an inconsistent state. The isolation property
prevents a transaction from observing the intermediary states that another parallel transac-
tion may produce while running. Thus, ACID transactions are serializable: although they
may execute concurrently, the overall effect is the same as if they executed serially, one after
another, without any overlap. The A and I properties give the illusion that a transaction
either executes at a single instant in time (i.e. atomic execution), or not at all.

When a transaction executes successfully, it is said to commit. Otherwise, it aborts and
leaves no evidence that it ever started executing. If a transaction has to abort, it may retry
a fixed number of times.

Transactional Memory can be supported in hardware (Hardware Transactional Memory —
HTM) [36, 49], in software (Software Transactional Memory — STM) [58] or a combination
of the two (hybrid TM) [17]. STM has the unique advantage of being able to run on
commodity hardware. The drawback however is a degradation in performance, as reads and
writes aren’t simple memory operations anymore, but complex functions that implement the
TM protocols.

During a transaction’s execution conflicts may take place. A conflict is said to occur when
two transactions try to access the same memory location, and at least one of those accesses
is a write.

Conflict detection can take place at different times. Using pessimistic concurrency control
the conflicts are detected at the time the memory operations are performed, while under
optimistic concurrency control the detection is postponed and conflicting transactions are
allowed to keep running, but not to commit. The two approaches work best in different
situations: the optimistic strategy gives better results when conflicts are rare (low contention
workload) whereas the pessimistic one performs better under high contention workloads.

Once a conflict is detected, it has to be resolved. In order to resolve the conflicts, there are
two alternatives:

� Delay one of the transactions in order to allow the other one to complete, then continue
with its execution. (This only works for eager conflict detection.)

� Abort one of the transactions and retry it later.

In Transactional Memory, version management refers to the methods employed by the system
for managing writes to the memory. A TM system uses eager version management or direct
update when it writes directly to memory [36]. The previous memory content is recorded
in an undo-log, which is later used to roll back the transaction in the event of an abort.
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In such systems, the conflict detection scheme employed must be pessimistic, because write
operations that cause conflicts should not be executed.

The alternative is lazy version management or deferred update. Write operations do not
directly affect the main memory, but instead are recorded in a transaction’s private redo-log.
As a consequence, read operations must also check the redo-log in order to make sure they
observe the most recent value of the desired memory location. Upon commit, the changes
recorded in the redo-log are saved to the shared memory.

To solve the code composability problem, TM uses the concept of nesting. A transaction
is nested when it is enclosed within another transaction. The outer transaction is called
parent and the inner transaction is the child. Child transactions can also have their own
children, resulting in a tree-like structure. Transactions may have multiple children, leading
to inner transactions that can execute concurrently [63]. However, in this work we will only
consider linear nesting [41], where each transaction can only have at most one child, and the
bottom-most transaction in the chain is the only active transaction.

Three types of nesting models have been previously studied [26, 40]: flat, closed and open.
They differ based on whether the parent and children transactions can independently abort:

Flat nesting
is the simplest type of nesting, and simply ignores the existence of transactions in
inner code. All operations are executed in the context of the outermost enclosing
transaction, leading to large monolithic transactions. Aborting the inner transaction
causes the parent to abort as well (i.e., partial rollback is not possible), and in case of
an abort, potentially a lot of work needs to be rerun.

Closed nesting
In closed nesting, each transaction attempts to commit individually, but inner trans-
actions do not publicize their writes to the globally committed memory. Inner trans-
actions can abort independently of their parent (i.e., partial rollback), thus reducing
the work that needs to be retried, increasing performance.

Open nesting
In open nesting, operations are considered at a higher level of abstraction. Open-nested
transactions are allowed to commit to the globally committed memory independently
of their parent transactions, optimistically assuming that the parent will commit. If
however the parent aborts, the open-nested transaction needs to run compensating
actions to undo its effect. The compensating action does not simply revert the memory
to its original state, but runs at the higher level of abstraction. For example, to
compensate for adding a value to a set, the system would remove that value from the
set. Open-nested transactions breach the isolation property, thus potentially enabling
significant increases in concurrency and performance. However, to be used correctly,
logical isolation is still generally required, and the burden for ensuring it now falls on
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T1

T2

Flat subtx accessing shared data structure T1 successfully commits

T2 must abort while T1 is still executing
T2 may proceed after T1 commits

(a) Flat nesting

T1

T2

Closed subtx accessing shared data structure T1 successfully commits

T2's subtx must abort while T1 is still executing
T2's subtx may proceed after T1 commits

(b) Closed nesting

T1

T2

Open subtx accessing shared data structure

T1 successfully commits

T1 subtx commits and releases isolation

T2 subtx only has to abort 
while T1 subtx is executing 

T2 subtx may proceed as 
soon as T1 subtx commits

T2 successfully
commits

(c) Open nesting

Figure 1.1: Simple example showing the execution time-line for two transactions under flat,
closed and open nesting.

the programmers. Therefore, open nesting must be used with extreme caution, and is
generally only recommended for experts.

We illustrate the differences between the three nesting models in Figure 1.1. Here we consider
two transactions, which access some shared data-structure using a sub-transaction. The
data-structure accesses conflict at the memory level, but the conflict is not fundamental (we
will explain fundamental conflicts later, in Section 3.1.2), and there are no further conflicts
in either T1 or T2. With flat nesting, transaction T2 can not execute until transaction
T1 commits. T2 incurs full aborts, and thus has to restart from the beginning. Under
closed nesting, only T2’s sub-transaction needs to abort and be restarted while T1 is still
executing. The portion of work T2 executes before the data-structure access does not need to
be retried, and T2 can thus finish earlier. Under open nesting, T1’s sub-transaction commits
independently of its parent, releasing memory isolation over the shared data-structure. T2’s
sub-transaction can proceed immediately after that, thus enabling T2 to commit earlier than
in both closed and flat nesting. This example assumes the TM implementation aborts the
minimum amount of work required to resolve the conflict, thus leading to the maximum
performance for each nesting model (in practice, this is accomplished by validating the read
operations and determining the minimal set of transactions that should be aborted).

Besides providing support for code composability, nested transactions are attractive when
transaction aborts are actively used for implementing specific behaviors. For example, con-
ditional synchronization can be supported by aborting the current transaction if a pre-
condition is not met, and only scheduling the transaction to be retried when the pre-condition
is met (for example, a dequeue operation would wait until there is at least one element in
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the queue). Aborts can also be used for fault management: a program may try to perform
an action, and in the case of failure, change to a different strategy (try...orElse). In both
these scenarios, performance can be improved with nesting by aborting and retrying only
the inner-most sub-transaction.

1.2 Distributed Transactional Memory

Lock-based concurrency is even more challenging in the distributed setting. To address that,
STM has been extended to distributed systems. Distributed Transactional Memory (DTM)
provides the same easy-to-use abstraction of transactions. DTM works can be classified into
cache-coherent DTM and cluster-DTM. Cache-coherent DTM [29, 52] maintains copies of
the data at the nodes that requires it. A directory protocol is usually employed to locate
the primary copy. When a transaction that modifies a data object commits, it invalidates
all previous copies of the data and effectively migrates the object to its own node. This
approach was proposed by Herlihy and Sun and is called the data-flow execution model [29].

Alternatively, Cluster DTM [13, 7] replicates the data on a set of closely coupled machines.
The cluster usually employs a group communication protocol [50], a consensus protocol (i.e.,
Paxos), or a lease mechanism [34] for ensuring consistency across replicas.

1.3 Performance in DTM

Performance in DTM is paramount. As a new abstraction trying to replace its predecessor,
DTM must at least match the performance characteristic of distributed locking. As such,
a majority of the research focused on DTM is aiming for increasing its performance. This
quest can be observed in research on directory protocols [66, 4], Multi-Version Concurrency
Control [35], scheduling transactions [5, 31], transaction protocols [56, 6, 55] and DTM
implementations [54, 11, 13].

While transaction nesting was studied extensively in non-distributed TM ([41, 42, 2, 37,
39, 40, 63]), this topic was never touched upon in the DTM literature. Nesting can poten-
tially help improve DTM performance (as it does for non-distributed TM), and we consider
important to evaluate any such improvements.

Closed nesting, as a generic partial rollback mechanism, reduces the amount of work that
needs to be retried in case of transaction aborts. In the distributed context, such work usually
involves opening remote objects — an inherently slow operation due to network latency. For
these reasons, we expect to see closed nesting improving DTM performance. We also seek
to identify what factors and workload characteristics have an influence on performance.

Open nesting reduces isolation by releasing memory locks early, and thus allows more trans-
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actions to execute concurrently without aborting. We expect this will directly translate
into greater system throughput (as measured in transactions per second). We again seek to
identify influencing factors.

Transaction checkpointing [33] is another partial rollback mechanism, and an alternative to
closed nesting. It allows greater flexibility in choosing the rollback target, which should
have a positive influence on transaction throughput. On the downside, continuations, the
mechanism used to implement checkpoints, have greater overheads. We thus seek to quantify
the benefits and overheads of transaction checkpointing, and determine its net effect on
throughput.

Finally, irrespective of which algorithms are being used, DTM performance also depends on
the efficiency of the system’s implementation. Being dissatisfied with our current frame-
work, Hyflow, we develop a new framework from scratch, which we named Hyflow2. In
implementing Hyflow2, we focus on performance, ease of use, and rapid prototyping.

1.4 Summary of Current Research Contributions

We design N-TFA, an extension to the existing Transactional Forwarding Algorithm (TFA)
with support for closed nesting. We show that N-TFA maintains TFA’s properties, in par-
ticular opacity and strong-progressiveness. We implement N-TFA in Hyflow, a Java DTM
framework and evaluate it on a set of five micro-benchmarks. We find an average per-
formance improvement of only 2% compared to flat nesting. Two of the benchmarks saw
average performance downgrade (worst slowdown of 42%), while the maximum speedup was
84%. We observe that closed nesting applies best when transactions do not access many
objects, and when the number of sub-transactions is between 2 and 5. To the best of our
knowledge, this work contributes the first closed nesting implementation for DTM.

We then extend N-TFA to include support for open nesting. We named the resulting algo-
rithm TFA-ON. We implement TFA-ON in Hyflow and evaluate it on a set of four micro-
benchmarks. Our implementation enabled up to 30% speedup when compared to flat trans-
actions, for write-dominated workloads and increased fundamental conflicts. Under reduced
fundamental conflicts workloads, speedup was as high as 167%. We identified that the best
speedups occur when transactions are composed of a high number of sub-transactions, and
when fundamental conflict rates are low. We also confirm the expectation that high con-
tention after open-nested sub-transactions leads to lower open nesting performance. To the
best of our knowledge, this work contributes the first open nesting implementation for DTM.

Next we design TFA-CP, a variant of the TFA algorithm with support for partial rollback
via transaction checkpoints. We implement TFA-CP in Hyflow2, using a non-standard JVM
which supports continuations. We evaluate TFA-CP using three micro-benchmarks, while
also taking measurements designed to evaluate the overheads of continuations. We find that
partial rollback gives 1-10% performance improvement once all the overheads are factored
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out. We however get contradictory results when including these overheads: on two bench-
marks we obtain a significant net slowdown, while on the third benchmark we obtain 3-6x
improvements that are unrelated to partial rollback. To the best of our knowledge, this is the
first implementation of transaction checkpoints for DTM, and also for a Java TM system.

Finally we design and implement Hyflow2, a novel high-performance DTM framework for
the JVM. Hyflow2 is written in Scala and provides a clean, easy-to-use API. Hyflow2 also
provides an additional Java compatibility API. Hyflow2 is the first DTM implementation
in Scala, with a Java compatibility API, and with support for features such as transaction
nesting, checkpointing and conditional synchronization. Internally, Hyflow2 uses the actor
model, an alternative concurrency model that employs state separation and message passing.
At high contention, Hyflow2 proved on average 2x faster than Hyflow, with a peak of up to
7x at low node counts. At low contention however, Hyflow2 is consistently 8-15x faster.

1.5 Summary of Proposed Post-Prelim Work

After the Preliminary Examination, we propose to seek further DTM performance improve-
ments by employing automatic data partitioning and replication. This technique was pre-
viously proposed for an SQL database [15], and uses the fact that distributed transactions
are slower than local transactions. The technique proposes data partitioning schemes that
maximize the percentage of local, single-node transactions, and was shown to be competitive
with the best known manual partitioning schemes.

We aim to develop a partitioning method is aware of the newly proposed independent trans-
action model [14] (briefly described in Section 2.3). Thus, our partitioning scheme will have
two goals. Firstly, it will favor local, single-node transactions over distributed transactions,
and secondly, when distributed transactions are required, it will favor the independent trans-
action model over the more general two-phase commit (2PC) coordinated model. This effort
will have a wide applicability to other areas such as traditional databases, transactional
storage and new-generation SQL databases, and will not limited to DTM.

We further seek to investigate how to automatically translate a DTM transaction given in the
form of an atomic block that ignores any data partitioning concerns, into a set of distributed
sub-transactions based on the actual data partitioning scheme in use. This mechanism will
help support automatic data migration, and will increase ease-of-use, as the programmer
will not need to be aware of the underlying data partitioning.

As our final goal, we want to investigate whether a general, 2PC coordinated transaction
could be broken down into several shorter transactions that run under the faster, single-node
or independent models. If this transformation is possible, we want to evaluate its effects on
consistency, and provide an implementation for doing it automatically.
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1.6 Thesis Organization

This thesis proposal is organized as follows. In Chapter 2 we summarize relevant and related
previous work. In Chapter 3 we describe our basic system model, our nesting model, and
TFA, base algorithm for all our contributions. Chapter 4 introduces and evaluates N-TFA,
our closed-nested extension to TFA. Open nesting and TFA-ON are discussed in Chapter 5.
In Chapter 6 we present TFA-CP and we evaluate checkpointing as an alternative partial roll-
back mechanism. In Chapter 7 we introduce Hyflow2, our new-generation DTM framework.
Chapter 8 concludes the thesis and further discusses proposed post-preliminary work.



Chapter 2

Previous and Related Work

2.1 Distributed Transactional Memory

DTM was first proposed by Herlihy and Sun [29] as an alternative to standard distributed
transactions using Two-Phase Locking and Two-Phase Commit Protocols (2PC) as is stan-
dard in database environments. They use a dataflow -based approach where transactions
execute on a fixed node while the data migrates to the transactions that requires it. One
claimed advantage of this approach is that it does not require a distributed commit proto-
col, making successful commits fast. In order to manage the location of data, the authors
propose a distributed cache-coherence protocol called Ballistic. This protocol, alongside a
contention manager, manage data conflicts and ensure its consistency. On the downside,
it relies on an existing distributed queuing protocol, Arrow [18], that does not take con-
tention into account, and due to its hierarchical structure, scalability is limited — the entire
structure needs rebuilding every time a node joins or leaves the network.

Zhang and Ravindran [66] developed the Relay protocol which takes transactional conflicts
into account and scales better due its use of peer-to-peer data structures. The authors also
introduce Location Aware Cache-coherence protocols (LAC, [65]), where nodes closer to the
data (in terms of communication cost) are guaranteed to locate the object earlier. They show
that LOC protocols, in conjunction with the optimal Greedy contention manager, improve
the makespan competitive ratio, a measure of the efficiency of a transaction execution.

Unlike previous proposals, which do not tolerate unreliable links, Attiya et al. present
Combine [4], a directory protocol that works even in the presence of partial link failures and
non-FIFO message delivery. Combine is however still not network partition tolerant.

Bocchino et al. took an implementation based approach and developed Cluster-STM [7].
They observe that remote communication overheads are the main impediment for scalability,
and thus try to make an appropriate set of design choices, sometimes different than other

9
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cache-coherent STMs. Examples of such choice are aggregating the remote communication
with data communication, and using a single access-set rather than separate read and write-
sets.

Kotselidis et al. developed DiSTM [34], an DTM system optimized for clusters. DiSTM
can be configured with three cache coherence protocols. TCC [24], an existing decentralized
protocol, suffers from large traffic overheads at commit time, as transactions broadcast their
read and write-sets. These overheads are avoided using two newly proposed lease-based
protocols, at the expense of introducing lease bottlenecks and an additional validation step.
In benchmarks, no one protocol achieved greater performance, but rather the best protocol
choice depended was dependent on the amounts of contention and network congestion.

In contrast to cache-coherent DTM, replicated DTM stores multiple writable copies of the
data, and this is a promising approach for achieving fault-tolerance. D2STM is the first
replicated DTM system. Introduced by Couceiro et al [13], it provides strong consistency
even in the presence of failures by using a non-blocking distributed certification scheme.
This scheme is inspired by recent database replication research [43, 45], but employs Bloom
filters in order to reduce the overheads of replica coordination, at the expense of an increased
probability of false aborts.

Carvalho et al. introduce Asynchronous Lease Certification (ALC, [10]), a low-overhead
mechanism for replica coordination, that enables up to ten times lower commit latencies.
ALC relies on a group communication service providing Atomic Broadcast and Uniform
Reliable Broadcast primitives [23], in order to acquire leases for the subset of replicated data
that a transaction will modify.

Romano et al. report in [50] on implementing a web application using Distributed Transac-
tional Memory, and the experience of its first two years in production. The authors make
several important observations, such as the workload being comprised of only 2% write
transactions, and the average write-set being orders of magnitude smaller than the average
read-set. In [51], they show how DTM would be an appropriate programming model for
applications running in cloud environments (i.e., clusters of hundreds of nodes or more), and
point to several research directions that would help reach this goal.

A number of researchers focused on consistency criteria weaker than serializability in in order
to improve DTM performance. In particular, Multi-Version Concurrency Control (MVCC)
and its associated consistency criterion, Snapshot Isolation (SI) have the advantage of not
generally having to abort read-only transactions. MVCC has been extensively studied in the
database environments and multi-processor STMs [9, 48, 47].

Several DTM systems also use MVCC. ALC [10] relies on MVCC to enable only acquiring
leases for writes. Peluso et al. introduce the GMU protocol [46], which is the first protocol
to provide Snapshot Isolation and Genuine Partial Replication (i.e., only nodes replicating
used data are involved in the transaction protocol). GMU relies upon several mechanisms. It
employs a new scheme based on Vector Clocks (VC) to determine which version of an object
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to be returned by a read operation, and to achieve agreement upon next object version and
the VC value attached to committed transactions. Additionally, prepared transactions wait
in a commit queue (sorted by a particular VC entry) before they are allowed to commit.
The commit operation is effectuated in a standard Two Phase Commit (2PC) fashion. By
disseminating the VC of the oldest transaction still running, old object versions can be safely
garbage collected.

2.2 Nesting in Transactional Memory

Nested transactions (using closed nesting) originated in the database community and were
thoroughly described by Moss in [38]. His work focused on the popular two-phase locking
protocol and extended it to support nesting. In addition to that, he also proposed algorithms
for distributed transaction management, object state restoration, and distributed deadlock
detection.

Open nesting also originates in the database community [21], and was extensively analyzed
in the context of undo-log transactions and the two-phase locking protocol [64]. In these
works, open nesting is used to decompose transactions into multiple levels of abstraction,
and maintain serializability on a level-by-level basis.

One of the early works introducing nesting to Transactional Memory was done by Moss
and Hosking in [40]. They describe the semantics of transactional operations in terms of
system states, which are tuples that group together a transaction ID, a memory location, a
read/write flag, and the value read or written. They also provide sketches for several possible
HTM implementations, which work by extending existing cache coherence protocols. Moss
further focuses on open-nested transactions in [39], explaining how using multiple levels of
abstractions can help differentiate between fundamental and false conflicts and thus improve
concurrency. Ni et al. also discuss the implications of open nesting in [42], and additionally
provide the first open nesting implementation for STM.

Moravan et al. [37] implement closed and open nesting in their previously proposed LogTM
HTM. They implement the nesting models by maintaining a stack of log frames, similar to
the run-time activation stack, with one frame for each nesting level. Hardware support is
limited to four nesting levels, with any excess nested transactions flattened into the inner-
most sub-transaction. In this work, open nesting was only applicable to a few benchmarks,
but it enabled speedups of up to 100%.

Agrawal et al. combine closed and open nesting by introducing the concept of transaction
ownership [2]. They propose the separation of TM systems into transactional modules (or
Xmodules), which own data. Thus, a sub-transaction would commit data owned by its own
Xmodule directly to memory using an open-nested model. However, for data owned by
foreign Xmodules, it would employ the closed-nesting model and would not directly write to
the memory.
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From a different perspective, Herlihy and Koskinen propose transactional boosting [27] as
a methodology for implementing highly concurrent transactional data structures. Boosted
transactions act as an abstraction above the physical memory layer, internally employing
open nesting (or a suspension mechanism) and abstract locks. Boosting works with an
existing concurrent data structure (which it treats as a black box), captures a different
(possibly better) performance-complexity balance than pure open nesting, and is easier to
use and reason about.

2.3 Other Unconventional Database Systems

While not considered Distributed Transactional Memory, a recent line of research is proposing
a complete rewrite of conventional database systems. Stonebraker et al. argue [60] that
conventional DBMS systems, while trying to be provide a solution applicable to a wide
range of problems such as on-line transactional processing (OLTP), data-warehousing, and
stream processing, in reality they do a bad job at all such problems. In [25] the authors
analyze how is the CPU time spent in a conventional DBMS and find out that only a
fraction of time is used to do useful work, while the vast majority of time is spend in
tasks such as resource management, locking and synchronization. Thus, they propose a new
architecture that specifically targets OLTP workloads, and they implement H-Store [30] to
demonstrate its superiority. H-Store stores all the data in the main-memory. Durability is
achieved using network-based replication instead of disk-backed logs. Data is horizontally
partitioned across multiple sites, and each such repository is backed up by a number of
replicas. At each repository, transactions are processed in a single thread. A majority of
transactions in common OLTP workloads only require data from a single site. Such single-
repository transactions are run by H-Store without any concurrency control. H-Store is able
to outperform a leading commercial DBMS by almost two orders of magnitude, while still
guaranteeing strong consistency (serializability).

Cowling and Liskov improve upon H-Store by introducing independent transactions in Gra-
nola [14]. Under this model, single-shot distributed transactions can execute without coordi-
nation between nodes on the critical path as long as the same commit/abort decision can be
individually taken by each repository without an agreement protocol. Read-only and non-
aborting single-shot transactions are good candidates for this model. Repositories vote on a
proposed time-stamp for each transaction and then execute all transactions in time-stamp
order. Voting can be handled asynchronously in a thread separate to the thread executing
transactions.

Aguilera et al. tackle a similar problem and propose minitransactions [3] as a way to achieve
good performance and scalability. Minitransactions are the result of applying a number of
optimizations to the standard two-phase commit protocol. They significantly reduce the
number of round-trips required to commit a transaction, at the expense of having a severely
constrained transaction primitive (essentially a multi-object compare-and-set) that requires
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all its accessed data to be specified in advance. Using this primitive, the authors quickly
implemented a cluster file-system and a group communication service.

Corbett et al. present Spanner, a scalable, multi-version, globally distributed and syn-
chronously replicated database in use at Google [12]. Spanner manages to guarantee exter-
nal consistency while distributing data at data-centers around the world by exposing time
uncertainty and including it in the transaction protocol. Spanner however requires dedicated
timekeeping hardware such as GPS devices and atomic clocks.

We summarize relevant related DTM work in Table 2.1, along with some representative STM
works.

STM DTM Other

M
cR

T
-S

T
M

[5
7]

D
eu

ce
S
T

M
[3

2]

S
ca

la
S
T

M
[8

]

S
w

is
sT

M
[2

0]

R
in

gS
T

M
[5

9]

N
O

re
c

[1
6]

C
lu

st
er

-S
T

M
[7

]

D
iS

T
M

[3
4]

D
2S

T
M

[1
3]

A
L

C
/

D
2S

T
M

[1
0]

G
M

U
/

In
fi
n
is

p
an

[4
6]

T
F
A

/
H

y
fl
ow

[5
2]

S
in

fo
n
ia

H
-S

to
re

G
ra

n
ol

a

C
u
rr

en
t

W
or

k

Language C
+

+

J
av

a

S
ca

la

C
+

+

C C C J
av

a

J
av

a

J
av

a

J
av

a

J
av

a

C
+

+

C
+

+

J
av

a

J
av

a/
S
ca

la

Serializable Y Y Y Y Y Y Y Y Y Y Y Y Y
MVCC Y Y Y
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Table 2.1: Summary of related work



Chapter 3

Preliminaries and System Model

3.1 System Model

As in [29], we consider a distributed system with a set of nodes {N1, N2, · · · } that commu-
nicate via message-passing links.

Let O = {O1, O2, ...} be the set of objects accessed using transactions. Each object Oj has
an unique identifier, idj. For simplicity, we treat them as shared registers which are accessed
solely through read and write methods, but such treatment does not preclude generality.
Each object has an owner node, denoted by owner(Oj). Additionally, they may have cached
copies at other nodes and they can change owners. A change in ownership occurs upon the
successful commit of a transaction which modified the object.

Let T = {T1, T2, ...} be the set of all transactions. Each transaction has an unique identifier.
A transaction contains a sequence of operations, each of which is a read or write operation
on an object. An execution of a transaction ends by either a commit (success) or an abort
(failure). Thus, transactions have three possible states: active, committed, and aborted.
Any aborted transaction is later retried using a new identifier.

Let O = {O1, O2, ...} be the set of objects accessed using transactions. Every such object
Oj has an unique identifier, idj. For simplicity, we treat them as shared registers which
are accessed solely through read and write methods, but such treatment does not preclude
generality. Each object has an owner node, denoted by owner(Oj). Additionally, they may
have cached copies at other nodes and they can change owners. A change in ownership
occurs upon the successful commit of a transaction which modified the object.

Our implementation executes transactions using the redo-log approach. During the trans-
action’s execution, all object accesses are stored in two temporary buffer called the read-set
and the write-set. At commit-time, if the transaction is still valid, changes are propagated
to the shared state.

14
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When an object is read from the globally committed memory (i.e., the shared state), its
value is stored in the read-set. Similarly, when an object is written, the value is temporarily
buffered in the write-set and does not affect the shared state. Subsequent reads and writes
are serviced by these sets in order to maintain consistency: inside a transaction, two reads of
the same object (not separated by a write) must return the same value. On abort, the sets
are discarded and the transaction is retried from the beginning. On commit, the changes
buffered in the write-set are saved to the globally committed memory.

A detailed description of the basic protocol (TFA) will be given in Section 3.2.

3.1.1 Nesting Model

Our nesting model is based on Moss and Hosking [40]. While their description uses the
abstract notion of system states, we describe our model in terms of concrete read and write-
sets, as used in our implementation.

With transactional nestings, let parent(Tk) denote the parent (enclosing) transaction of a
transaction Tk. A root transaction has parent(Tk) = ∅. Each transaction may only have one
active child, i.e. parallel nested transactions are outside the scope of this work. A parent
transaction may execute sub-transactions using any of the three nesting models: flat, closed,
or open. We denote this by defining the nesting model of any sub-transaction Tk:

nestingModel(Tk) ∈ {FLAT,CLOSED,OPEN}

Furthermore, root transactions can be considered as a special case of the OPEN nesting
model.

Let’s briefly examine how the four important transactional operations behave in the context
of transaction nesting. As mentioned above, each transaction maintains a redo-log of the
operations it performs in the form of a read-set and a write-set. Reading an object Ok

first looks at the current transaction’s (Tk) read and write-sets. If a value is found, it
is immediately returned. Otherwise, depending on the transaction’s nesting model, two
possibilities arise:

� For nestingModel(Tk) = OPEN , the object is fetched from the globally committed
memory. This case includes the root transaction.

� For nestingModel(Tk) = CLOSED, the read is attempted again from the context of
parent(Tk).

Read operations are thus recursive, going up Tk’s ancestor chain until either a value is found
or an open-nested ancestor is encountered. Write operations simply store the newly written
value to the current transaction’s write-set.
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The commit of a closed-nested transaction Tk merges readset(Tk) into readset(parent(Tk))
and writeset(Tk) into writeset(parent(Tk)). Open-nested transactions commit to the glob-
ally committed memory just like root transactions do. They optionally register abort and
commit handlers to be executed when the innermost open ancestor transaction aborts or
respectively, commits. These handlers are described in Section 5.1.2.

3.1.2 Multi-Level Transactions

We now introduce the concept of multi-level transactions, which is the theoretical model of
open-nesting. Consider a data-structure, such as a set implemented using a skip-list. Each
node in the list contains several pointers to other nodes, and is in turn referenced by multiple
other nodes. When a (successful) transaction removes a value from the skip-list, a number
of nodes will be modified: the node containing the value itself, and all the nodes that hold
a reference to the deleted value. As a result, other transactions that access any of these
nodes will have to abort. This is correct and acceptable if the transactions exist for the sole
purpose, and only for the duration of the data-structure access operations. If however, the
transactions only access the skip-list incidentally while performing other operations, aborting
one of them just because they accessed neighboring nodes in the skip-list would be in vain.
Such conflicts are called false-conflicts : transactions do conflict at the memory level, as one
of them accesses data that was written by the other. However, looking at the same sequence
of events from a higher level of abstraction (the remove operation on a set, etc.), there is no
conflict because the transactions accessed different items.

It is therefore desirable to separate transactions into multiple levels of abstraction. By
making the operations shorter at the lower memory level, isolation at that level is released
earlier, thus enabling increased concurrency. This breaches serializability and must be used
with care. In practice, it is sufficient in most cases to ensure serializability at each abstraction
level with respect to other operations at the same level, while preserving conflicts at higher
levels (i.e., level-by-level serializability [64]). Level-by-level serializability can be achieved
by reasoning about the commutativity of operations at the higher level of abstraction. Two
such operations are conceptually allowed to commute if the final state of the abstract data-
structure does not depend on the relative execution order of the two operations [27]. For
example, in deleting two different elements from a set, the final state is the same regardless
of which of the deletes executes first. In contrast, inserting and deleting the same item from
a set can not commute: which of the two operations executes last will determine the state
of the set.

In order to achieve level-by-level serialization, non-commutative higher-level operations,
when executed by two concurrent transactions, must conflict. Such a conflict is called fun-
damental, as it is essential for a correct execution. One such mechanism for detecting fun-
damental conflicts is by using abstract locks (locks that protect an abstract state as opposed
to a concrete memory location). Two non-commutative operations would try to acquire the
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same abstract lock. The first one to execute succeeds at acquiring the abstract lock. The
second operation would be forced to wait (or abort) until the lock is released. Abstract
locks are acquired by open-nested sub-transactions at some point during their execution.
When their parent transaction commits, the lock can be released. In case the parent aborts,
however, before the lock can be released, the data-structure must be reverted to its original
semantic state, by performing compensating actions that undo the effect of the open-nested
sub-transaction. Referring back to the set example, to undo the effect of an insertion, the
parent would have to execute a deletion in case it has to abort.

Abstract locks can be used to implement read/write locking, mutual exclusion, or even more
complex scenarios, such as compatibility matrices (for encapsulating higher-level reasoning
about commutativity of abstract operations, e.g., in [27])

3.1.3 Open Nesting Safety

Multi-level transactions become ambiguous when open sub-transactions update data that
was also accessed by an ancestor. As described by Moss [39], TM implementations have
multiple alternatives for dealing with that situation (such as leaving the parent data-set
unchanged, updating it in-place, dropping it altogether, and others), which may be confusing
for the programmers using those implementations. We thus decide to disallow this behavior
in TFA-ON: open sub-transactions may not update memory which was also accessed by any
of their ancestors. We thus impose a clear separation between the memory locations accessed
by transactions at the multiple abstraction levels. This separation should make the usage
of open nesting less confusing for programmers. Failure to comply to this rule can easily be
caught by the run-time system and the programmer notified.

Furthermore, the open nesting model’s correctness depends on the correct usage of abstract
locking. Should the programmers misuse this mechanism, race conditions and other hard
to trace concurrency problems will arise. For these reasons, previous works have suggested
that open nesting be used only by library developers [42] – regular programmers can then
use those libraries to take advantage of open nesting benefits.

3.2 Transactional Forwarding Algorithm

TFA [53, 56] was proposed as an extension of the Transactional Locking 2 (TL2) algo-
rithm [19] for DTM. It is a data-flow based, distributed transaction management algorithm
that provides atomicity, consistency, and isolation properties for distributed transactions.
TFA replaces the central clock of TL2 with independent clocks for each node and provides
a means to reliably establish the “happens before” relationships between significant events.
TFA uses optimistic concurrency control, buffering all operations in per-transaction read
and write sets, and acquiring the object-level locks lazily at commit time. Objects are up-
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N1

N2

N3

x
Tk starts at LC=19

Tk requests O1 at LC=24

O1 is updated at LC=14
ver(O1)=14

RC=24 > LC=16
LC updated to 24

RC=14 < LC=24, OK

O2 is updated at LC=21
ver(O2)=21

RC=29 < LC=39

Tk requests O2 at LC = 29 RC=39 > LC=29; LC:= 39, must fwd txn
First validate ver(O1) < start(Tk)

OK, now start(Tk):=39

ver(O1)=14, still
LC updated to 39

other txn upd O1
ver(O1):=40

T1 tries to commit
T1 locks writeset
and validates readset

O1 is invalid because
ver(O1)=40, was 14

Tk aborts

ver(O1)=40

ver(O2)=21

...

Figure 3.1: Transactional Forwarding Algorithm Example, from [62]

dated once all locks have been successfully acquired. Failure to acquire a lock aborts the
transaction, releasing previously acquired locks and thus avoiding deadlocks.

Each node maintains a local clock, which is incremented upon local transactions’ successful
commits. An object’s lock also contains the object’s version, which is based on the value of
the local clock at the time of the last modification of that object. When a local object is
accessed as part of a transaction, the object’s version is compared to the starting time of the
current transaction. If the object’s version is newer, the transaction must be aborted.

Transactional Forwarding is used to validate remote objects and to guarantee that a trans-
action observes a consistent view of the memory. This is achieved by attaching the local
clock value to all messages sent by a node. If a remote node’s clock value is less than the
received value, the remote node would advance its clock to the received value. Upon receiv-
ing the remote node’s reply, the transaction’s starting time is compared to the remote clock
value. If the remote clock is newer, the transaction must undergo a transactional forwarding
operation: first, we must ensure that none of the objects in the transaction’s read-set have
been updated to a version newer than the transaction’s starting time (early-validation). If
this has occurred, the transaction must be aborted. Otherwise, the transactional forwarding
operation may proceed and advance the transaction’s starting time.

We illustrate TFA with an example. In Figure 3.1, a transaction Tk on node N1 starts at a
local clock value LC1 = 19. It requests object O1 from node N2 at LC1 = 24, and updates
N2’s clock in the process (from LC2 = 16 to LC2 = 24). Later, at time LC1 = 29, Tk requests
object O2 from node N3. Upon receiving N3’s reply, since RC3 = 39 is greater than LC1 = 29,
N1’s local clock is updated to LC1 = 39 and Tk is forwarded to start(Tk) = 39 (but not before
validating object O1 at node N2). We next assume that object O1 gets updated on node N2

at some later time (ver(O1) = 40), while transaction Tk keeps executing. When Tk is ready to
commit, it first attempts to lock the objects in its write-set. If that is successful, Tk proceeds
to validate its read-set one last time. This validation fails, because ver(O1) > start(Tk), and
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the transaction is aborted (but it will retry later).

3.3 Hyflow DTM Framework

Two of our proposed algorithms were implemented and evaluated in Hyflow [52, 53], a DTM
framework for Java. Hyflow’s design attempts to be modular by allowing for pluggable
support for lookup protocols, transactional synchronization and recovery mechanisms, con-
tention management policies, cache coherence protocols, and network communication proto-
cols. Hyflow extends upon Deuce STM [32] and relies on automatic byte-code rewriting to
provide an API based on annotations, without requiring compiler or JVM support. Hyflow
along with its programming interface and its shortcomings will be described in Section 7.1.



Chapter 4

Closed Nesting

We extend TFA to support Closed Nesting and partial aborts. The resulting algorithm,
Nested Transactional Forwarding Algorithm (N-TFA) was implemented in Hyflow and eval-
uated.

4.1 N-TFA Algorithm Description

In TFA, transactions are immobile. Furthermore, we also consider that all sub-transactions
of a transaction Tk are created and executed on the same node as Tk.

Starting from these assumptions, it is straightforward to implement the rules described in
Section 3.1.1. Note that there are two types of commit. The original, top-level commit
model is used when a top-level transaction commits the changes from its replay-log to the
globally committed memory. This commit is only performed after the successful validation
of all objects in the transaction’s read-set, as defined by the TFA algorithm [56]. If the
validation fails, i.e. at least one of the objects’ version is newer than the current transaction’s
starting time, the transaction is aborted. The new merge commit model is used when a sub-
transaction commits the changes from its replay-log to the replay-log of its parent.

A number of questions about how to apply TFA in the context of nested transactions arise.
In TFA, every transaction commit increments the node-local clock and updates the affected
objects’ lock version. Should these operations also be performed upon the commit of a
sub-transaction? Which objects should be processed during the early-validation procedure?
What is the meaning of transaction forwarding inside a sub-transaction?

By answering these questions, we design a protocol which we will call Nested Transactional
Forwarding Algorithm (N-TFA). We must note that two variations of N-TFA could be
obtained based on whether merge commits are conditioned by a read-set validation or occur
unconditionally. In what follows we will only refer to unconditional merge-commits, because

20
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any extraneous validations proved in our experiments to have high overheads that decreased
performance while bringing no benefits.

Assume that transaction Tk opened and read an object O1. Let Tk2 be a sub-transaction of
Tk. Assume that Tk2 also reads object O1, and moreover, Tk2 can successfully commit (O1

was not modified by any other transaction). Intuitively, Tk2 should not update the object’s
lock version when it commits, because, the object as seen by other transactions did not
change. If the version was updated at this point, other unrelated transactions would be
forced to unnecessarily abort due to invalid read-set even if Tk eventually aborts (due to
other objects) without changing O1 in the globally committed memory.

In order to maintain similarity with the original TFA, all objects will be validated against
the outer-most transaction’s starting time. While we could imagine an algorithm where sub-
transaction’s start times were used to validate objects, doing so would only add unnecessary
complexity and would again provide no real benefit. Therefore, all transaction forwarding
operations must be operated upon the starting time of the root transaction.

Summarizing the previous two observations, the starting time of sub-transactions is not
used for object validity verification and the object versions are not updated upon a sub-
transaction’s commit. Consequently, merge-commits and the start of new sub-transactions
are not globally important events and should not be recorded by incrementing node-local
clocks. If the clocks were incremented on such events, remote nodes would need to perform
the transaction forwarding operation unnecessarily, only to find that no objects were changed.
This is undesirable as the forwarding operation bears the overhead of validating all objects
in the transaction’s read-set. Additionally, since no global objects are changed at merge-
commits, no locks need to be acquired for such commits.

Early validation is the process that checks for the consistency of all objects in a transaction’s
read-set before advancing the transaction’s starting time. If early validation was performed
on only the objects in the current sub-transaction (say, Tk2), a situation may arise when
an object in a previous sub-transaction (say, Tk1) becomes inconsistent. In such a case, the
parent transaction’s clock would be advanced, thereby erasing any evidence that Tk1’s object
is inconsistent. Thus, early validation must process all objects encountered to date by the
outer-most enclosing transaction and all of its children.

In case one or more objects are detected as invalid, the upper-most transaction that contains
an invalid object and all of its children should be aborted. In TFA, it was sufficient to stop
the validation procedure when the first invalid object is observed. However, with N-TFA,
all objects within the root transaction must be validated (ideally in parallel) in order to
determine the best point to roll back to.

Let’s now look at an example of N-TFA (Figure 4.1). The top-level transaction Tk is exe-
cuting on node N1. A sub-transaction Tk1 executes and commits successfully. Next, another
sub-transaction Tk2 opens an object O1, which is located on node N2. Tk2 spawns a further
sub-transaction, Tk3 which operates on O1. Assume that at this point sub-transaction Tk3
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Figure 4.1: Nested Transactional Forwarding Algorithm Example

performs an operation that attempts to validate O1 (such as an early validation or a merge-
commit) and this validation fails. Under TFA, this would abort the root transaction Tk,
including the work done by sub-transaction Tk1. N-TFA on the other hand only aborts as
many sub-transactions are needed to resolve the conflict. In this case, only Tk2 and Tk3 need
to abort. The transaction will be rolled back to the beginning of Tk2, such that the next
operation performed is retrieving a new copy of the previously invalid object, O1.

4.2 Properties

We show that N-TFA maintains the properties of the original TFA, in particular, opacity
and strong progressiveness.

Opacity [22] is a correctness criterion proposed for memory transactions. A transactional
memory system is opaque if the following conditions are met:

� Committed transactions appear to execute sequentially, in their real-time order.

� Any modifications done by aborted or live transactions to the shared state are never
observed by any other transaction.

� All transactions observe a consistent view of the system at all times.
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Theorem 4.2.1. N-TFA ensures opacity.

Proof. The proof for opacity in TFA can be trivially extended to cover N-TFA. The real-
time ordering condition is satisfied as shown in [56], because changes made to objects by a
transaction are not exposed to other unrelated transactions until the outermost transaction’s
commit phase, when the ordering is ensured through the usage of locks. Within a transaction,
sub-transactions execute serially. There is no need to discuss the ordering of sub-transactions
of different top-level transactions: they are effectively invisible to each other.

Uncommitted changes within a transaction are isolated from outside transactions through
the use of a write-buffer, just as in TFA. Sub-transactions are executed serially and therefore
always observe the correct values. The second condition for opacity is thus satisfied.

Transactions always observe a consistent system state. When N-TFA loads a new object
with a version newer than the outermost transaction’s starting time, it validates all ob-
jects observed by any child sub-transaction. This behavior is identical to the original TFA,
satisfying the third condition for opacity.

Strong Progressiveness is TFA’s progress property. On a transactional memory system,
strong progressiveness implies the following:

� A transaction without any conflicts must commit.

� Among a set of transactions conflicting on a single shared object, at least one of them
must commit.

Theorem 4.2.2. N-TFA ensures strong progressiveness.

Proof. This follows immediately from the proof that TFA is strongly progressive [56], because
the behavior of top-level transactions is identical for both TFA and N-TFA. This is because,
sub-transactions as implemented by N-TFA do not introduce any operations that can disturb
progress:

� External transactions are not affected because no objects are changed and the node-
local clocks are not incremented upon merge model commits.

� Sub-transactions are aborted and retried such that any invalid objects will be re-opened
on retry.

� After a validation procedure, no invalid objects will remain in a transaction that does
not abort.
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4.3 Evaluation

We implemented N-TFA in order to quantify the performance impact of closed nesting in
the distributed STM environment. We also seek to identify the kinds of workloads that are
most appropriate for using closed nesting instead of flat transaction.

4.3.1 Implementation Details

In order to support nesting, we inserted an additional layer of logic between the code of a
parent transaction and the code of its sub-transactions. This extra logic handles the partial
rollback mechanism and the merge-commits. It was designed to be flexible and to provide
support for all three types of nesting: flat, closed and open. While it supports flat nesting
and could, in theory, be automatically inserted for every function call within a transaction,
doing so would unnecessarily degrade performance.

Instead, we chose to manually insert this logic only in those locations where spawning sub-
transactions is desirable. The downside of this approach, at least for now, is that the pro-
grammer must acknowledge the difference between regular function calls and closed-nested
sub-transactions and write his or her code accordingly. Regular function calls must pass a
transactional context variable as an additional parameter (compared to non-transactional
code). Methods that spawn sub-transactions do not need any extra parameters, but must
include the code implementing the extra logic mentioned above. (Modifying the automatic
instrumentation present in both Deuce STM and HyFlow to support this behavior was
deemed unnecessary for our research purposes.)

4.3.2 Experimental Settings

The performance of N-TFA was experimentally evaluated using a set of distributed bench-
marks consisting of two monetary applications (bank and loan) and three micro-benchmarks
(linked list, skip list, and hash table). We record the throughputs obtained when running
the benchmarks with the same set of parameters under both closed and flat nesting, and we
report on the relative difference between them. Most of our figures relay two values: the
average and the maximum. The average value represents multiple runs of the experiment
under increasing number of nodes, while the maximum settles on the number of nodes that
gives the best results in favor of closed nesting. Unfortunately, we cannot compare our re-
sults with any competitor D-STM, as none of the two competitor D-STM frameworks that
we are aware of support closed nesting or partial aborts [6, 11].

We targeted the effect of several parameters:

� Ratio of read-only transactions to total transactions (denoted in figure legends with
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%).

� Length of transaction in milliseconds (L) is used in some tests to simulate transactions
that perform additional expensive processing and therefore take longer time.

� Number of objects (o) is used to control the amount of contention in the system. The
meaning of this number is benchmark-dependent.

� Number of calls (c) controls the number of operations performed per test. In closed-
nested tests, this directly controls the number of sub-transactions.

Our experiments were conducted using up to 48 nodes. Each node is an AMD Opteron
processor clocked at 1.9GHz. We used the Ubuntu Linux 10.04 server operating system and
a network with 1ms end-to-end link delay. Each node spawns transactions using up to 16
parallel threads, resulting in a maximum of 768 concurrent transactions. While this number
may not seem high, we focused on high-contention scenarios by only allowing a low number
of objects in the system.

4.3.3 Experimental Results

20

0

20

40

60

80

%
 s

pe
ed

up
 c

lo
se

d 
vs

 fl
at

Skip-list

Linked-list

Hash-table

Loan

Bank

Results: summary

Average
Maximum

Figure 4.2: Performance change by bench-
mark.

0

20

40

60

80

%
 s

pe
ed

up
 c

lo
se

d 
vs

 fl
at

% 50 L 10

% 50 L 80

% 50 L 160

L 10 % 20

L 10 % 50

L 10 % 80

Results: bank

Average
Maximum

Figure 4.3: Bank monetary application.
First group varies transaction length while
keeping read-ratio constant. Second group
varies the read-ratio for short transactions.

The results of our experiments are shown in Figures 4.2-4.10. Figure 4.2 shows a summary
view of the improvement for each of our benchmarks. Figures 4.3-4.9 provide details on each
of the benchmarks. Finally, Figure 4.10 looks at the scalability of N-TFA.
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Figure 4.5: Linked-list micro-benchmark.
First group varies read-ratio for short trans-
actions. In the second group, transaction
length is varied.

The performance of closed nesting varies significantly compared to flat nesting (see Fig-
ure 4.2). The single worst slowdown recorded was 42%, while the best speedup was 84%.
Across all experiments, closed nesting proved to be on average 2% faster than flat nest-
ing. However, the performance improvements depend strongly on the workload. Within our
benchmarks, closed nesting performed worst for Skip-list (10.4% average slowdown) and best
for Bank (15.3% average speedup).

These results lead us to believe that in workloads where each transaction accesses many
different objects (like in Linked-list and Skip-list), closed nesting will be slower than flat
transactions. On the other hand, in workloads where transactions access few objects (like
Bank, Loan and Hash-table), greater benefit can be obtained from closed nesting.

The most reliable parameter to influence the behavior of closed nesting appears to be the
number of calls. In both Hash-table (Figure 4.6 groups 1 and 3) and Skip-List (Figure 4.8
between groups), we observe that the best performance is achieved with around 2-5 calls per
transaction (workload dependent), after which it declines.

The other parameters that we observed (read ratio and transaction length) did not lead
to any consistent trends. In some cases, increased read-ratio lead to better performance
(e.g. Loan in Figure 4.4 group 2 and Hash-table with c = 5, o = 7 in Figure 4.7 group 3).
Other cases showed a sweet spot in the middle of the range (Hash-table with c = 3, o = 7 in
Figure 4.7 groups 2 and 3). Yet other cases show the opposite effects: performance negatively
correlated with read-ratio on Skip-list (see Figure 4.9 groups 1 and 3), or worst performance
in the middle of the range (Skip-list in Figure 4.9 group 2, Bank in Figure 4.3 group 2
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and, most obviously, Linked-list in Figure 4.5 group 1). Transaction length has a similar
unpredictable influence: negative correlation on Bank (Figure 4.3 group 1) and Hash-table
(Figure 4.6 group 2), middle range peak on Loan (Figure 4.4 group 1) and middle range dip
on Skip-list (Figure 4.9 group 1).

The number of objects parameter was only varied in one benchmark (Hash-table), so we
cannot formulate any trends. This parameter did not apply in other benchmarks such as
as Linked-list and Skip-list. In our particular case we observe that closed nesting seems to
benefit somewhat from the reduced contention enabled by more hash buckets (Figure 4.6
between groups 1 and 3).

From the experiment to evaluate closed nesting’s scalability (Figure 4.10), we observe that
the performance drops with increasing nodes until about 19 concurrent transactions per
object (as seen on Bank in group 1: 12 nodes × 16 threads / 10 objects). After that
threshold, closed nesting performance increases relative to flat nesting.

4.4 Conclusion

We presented N-TFA, an extension of the Transactional Forwarding Algorithm that im-
plements closed nesting in a Distributed Software Transactional Memory system. N-TFA
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guarantees opacity and strong progressiveness. We implemented N-TFA in the HyFlow DTM
framework, thus providing, to the best of our knowledge, the first DTM implementation to
support closed nesting. Our N-TFA implementation, although is on average only 2% faster
than flat transactions, enables up to 84% speedup in limited cases.

We determined that closed nesting applies better for simple transactions that access few
objects. The number of simple sub-transactions is important for the performance of closed-
nesting, and we found that N-TFA performs best with 2-5 sub-transactions. N-TFA scales
somewhat better than TFA, although the performance dips at around 19 concurrent trans-
actions per object.

Closed nesting however fails as a simple, general purpose method for increasing DTM per-
formance. This is because in two out of five benchmarks, closed nesting is on average slower
than flat transactions. In another two benchmarks the average speedup was less than 5%.
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Chapter 5

Open Nesting

We first describe the Transactional Forwarding Algorithm with Open Nesting (TFA-ON),
TFA’s extension to support open nesting. We then describe key details of its implementation
in the HyFlow DTM framework. We proceed to evaluate it experimentally and analyze the
results.

5.1 TFA with Open Nesting (TFA-ON)

We describe TFA-ON with respect to the TFA algorithm and N-TFA (Section 4.1), its closed-
nesting extension. The low-level details of TFA were summarized in Section 3.2, and we omit
them here. In TFA-ON, just as in TFA, transactions are immobile. They are started and
executed to completion on the same node. Furthermore, all children of a given transaction
Tk are created and executed on the same node as Tk.

Open-nested sub-transactions in TFA-ON are similar to top-level, root transactions, in the
sense that they commit their changes directly to the globally committed memory. This
affects the behavior of their closed-nested descendants. Under TFA and N-TFA, only the
start and commit of root transactions were globally important events. As a result, the node-
local clocks were recorded when root transactions started, and the clocks were incremented
when root transactions committed. Also, transactional forwarding was performed upon the
root transaction itself.

Under TFA-ON, open-nested sub-transactions are important as well: their starting time
must be recorded and the node-local clock incremented upon their commit. Closed-nested
descendants treat open-nested sub-transactions as a local root : they validate read-sets and
perform transactional forwarding with respect to the closest open-nested ancestor. Simplified
source code of the important TFA-ON procedures is given in Figure 5.1.

When transactional forwarding is performed, all the read-sets up to the innermost open-

30
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class Txn {

// TFA−ON read−s e t v a l i d a t i o n rou t ine
va l i d a t e ( ) {
// v a l i d a t e r ead s e t s from s e l f u n t i l
// innermost open ances tor
Txn t = this ;
do {
i f ( ! t . ReadSet . v a l i d a t e (

innerOpenAncestor . s tart ingTime ) )
abort ( ) ; // v a l i d a t i o n f a i l e d

t = t . parent ;
} while ( t != innerOpenAncestor ) ;
// v a l i d a t i o n s u c c e s s f u l
}

forward ( int remoteClk ) {
i f ( remoteClk>innerOpenAncestor . s tart ingTime ) )
{ va l i d a t e ( ) ; // abor t s txn on f a i l u r e
innerOpenAncestor . s tart ingTime = remoteClk ;
}
}

// TFA−ON commit procedure
commit ( ) {
i f ( nest ingModel == OPEN) {
i f ( checkCommit ( ) ) {
wr i t eSe t . commitAndPublish ( ) ;
hand le r s . onCommit ( ) ;

parent . hand le r s += myCommitAbortHandlers ;
} else hand le r s . onAbort ( ) ;
} else i f ( nest ingModel == CLOSED) {
// merge readSet , wr i teSe t , l o c kSe t and
// hand lers in to parent ’ s
}
}

// Cal l ed when abor t ing a t ransac t i on due to
// ear ly−v a l i d a t i o n /commit f a i l u r e , e t c
abort ( ) {
i f ( ! committing )
hand le r s . onAbort ( ) ;

throw TxnException ;
}

// acqu i r e s locks , v a l i d a t e s read−s e t
checkCommit ( ) {
try {

wr i t eSe t . acqLocks ( ) ;
l o ckSe t . acqAbsLocks ( ) ;
v a l i d a t e ( ) ;
return true ;

} catch ( TxnException ) {
l o ckSe t . r e l e a s e ( ) ;
wr i t eSe t . r e l e a s e ( ) ;
return fa l se ;

}
}

Figure 5.1: Simplified source code for supporting Open Nesting in TFA’s main procedures.
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nested boundary must be early-validated. Validating read-sets beyond this boundary is
unnecessary, because the transactional forwarding operation that is currently underway poses
no risk of erasing information about the validity of such read-sets.

5.1.1 Abstract Locks

Additionally, TFA-ON has to deal with abstract lock management and the execution of
commit and compensating actions (as explained in Section 3.1.2). Abstract locks are acquired
only at commit time, once the open-nested sub-transaction is verified to be free of conflicts
at the lower level. Since abstract locks are acquired in no particular order and held for
indefinite amounts of time, deadlocks are possible. Thus, we choose not to wait for a lock
to become free, and instead abort all transactions until the innermost open ancestor. This
releases all locks held at the current abstraction level.

We implemented two variants of abstract locking: read/write locks and mutual exclusion
locks. Locks are associated with objects, and each object can have multiple locks. Our data-
structure designs typically delegate one object as the higher level object, which services all
locks for the data-structure, and its value is never updated (thus never causing any low-level
conflicts).

5.1.2 Defining Transactions and Compensating Actions

Commit and compensating actions are registered when an open-nested sub-transaction com-
mits. They are to be executed as open-nested transactions by the innermost open-nested
ancestor, when it commits, or respectively, aborts. Closed-nested ancestors simply pass these
handlers to their own parents when they commit, but they have to execute the compensating
actions in case they abort.

We chose to use anonymous inner classes for defining transactions and their optional com-
mit and compensating actions. Compared to automatic or manual instrumentation, our
approach enables rapid prototyping as the code for driving transactions is simple and re-
sides in a single file. Thus, for using open-nested transactions, one only needs to subclass
our Atomic<T> helper class and override up to three methods (atomically, onCommit,
onAbort). The desired nesting model can be passed to the constructor of the derived class;
otherwise a default model will be used. The performance impact of instantiating an object
for each executed transaction is insignificant in the distributed environment, where the main
factor influencing performance is network latency.

Figure 5.2 shows how a transaction would look within our system. Notice how the onAbort
and onCommit handlers must request (open) the objects they operate on. They cannot rely
on the copy opened by the original transaction, as this copy may be out-of-date by the time
the handler executes (automatic re-open may be a way to address this issue).
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new Atomic<Boolean>(NestingModel .OPEN) {
private boolean i n s e r t e d = fa l se ;
@Override boolean a tomica l l y (Txn t ) {
BST bst = (BST) t . open ( ” tree−1” ) ;
i n s e r t e d = bst . i n s e r t (7 , t ) ;
t . acquireAbsLock ( bst , 7 ) ;
return i n s e r t e d ;
}
@Override onAbort (Txn t ) {
BST bst = (BST) t . open ( ” tree−1” ) ;
i f ( i n s e r t e d ) bst . d e l e t e (7 , t ) ;
t . re leaseAbsLock ( bst , 7 ) ;
}
@Override onCommit (Txn t ) {
BST bst = (BST) t . open ( ” tree−1” ) ;
t . re leaseAbsLock ( bst , 7 ) ;
}
} . execute ( ) ;

Figure 5.2: Simplified transaction example for a BST insert operation. Code performing the
actual insertion is not shown.

5.1.3 Transaction Context Stack

Meta-data for each transaction (such as read and write-sets, starting time, etc.) is stored in
Transaction Context objects. While originally in HyFlow each thread had its own context
object, in order to support nesting, we arrange the context objects in thread-local stacks.
Each sub-transaction (closed or open) has a context object on the stack. For convenience,
we additionally support flat-nested sub-transactions, which reuse an existing object from the
stack instead of creating a new one for the current sub-transaction.

5.2 Evaluation

The goals of our experimental study are finding the important parameters that affect the
behavior of open nesting, and based on those, identifying which workloads open nesting
performs best in. We evaluate and profile open nesting in our implementation. We quantify
any improvements in transactional throughput relative to flat transactions and compare
these with the improvements enabled by closed nesting alone. We focus in our study on
micro-benchmarks with configurable parameters.

5.2.1 Experimental Settings

The performance of TFA-ON was experimentally evaluated using four distributed micro-
benchmarks including three distributed data structures (skip-list, hash-table, binary search
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(b) Hash-table

Figure 5.3: Performance relative to flat transactions, with c = 3 calls per transaction and varying
read-only ratio. Both closed nesting and open nesting are included.

tree), and an enhanced counter application.

We ran the benchmarks under flat, closed, and open nesting for a set of parameters. We
measured transactional throughput relative to TFA’s flat transactions. Each measurement
is the average of nine repetitions. Additionally, we quantify how much time is spent under
each nesting model executing the various components of a transaction execution:

� Committed/aborted transactions.

� Committed/aborted sub-transactions (closed and open nesting).

� Committed/aborted compensating/commit actions (open nesting only).

� Waiting time after aborted (sub-)transactions (for exponential back-off).

Other data that we recorded includes:

� Number of objects committed per (sub-)transaction.

� Which sub-transaction caused the parent transaction to abort.

Unfortunately, we cannot compare our results with any competitor DTM, as none of the two
competitor DTM frameworks that we are aware of support open nesting [6, 11].

The skip-list, hash-table, and BST benchmarks instantiate three objects each, then perform
a fixed number of random set operations on them using increasing number of nodes. Three
important parameters characterize these benchmarks:
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(a) Hash-table 20% reads
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(b) Hash-table 50% reads
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(c) Skip-list 20% reads
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(d) Skip-list 50% reads

Figure 5.4: Performance relative to flat transactions at a fixed read-ratio with varying number of
calls. Closed-nesting is depicted, but the individual curves are not identified to reduce clutter.
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� Read-only ratio (r) is the percentage of the total transactions which are read-only. We
used r ∈ {20, 50, 80}.

� Number of calls (c) controls the number of data-structure operations performed per
test. Each operation is executed in its own sub-transaction. We used c ∈ {2, 3, 4, 8}.

� Key domain size (k) is the maximum number of objects in the set. Lower k values lead
to increased fundamental conflicts. Unless otherwise stated, we used k = 100.

The fourth benchmark (enhanced counter) was designed as a targeted experiment where the
access patterns of a transaction are completely configurable. Transactions access counter
objects which they read or increment. Transactions are partitioned into three stages: the
preliminary stage, the sub-transaction stage, and the final stage. The first and last stages
are executed as part of the root transaction, while the middle runs as a sub-transaction.
Each stage accesses objects from a separate pool of objects. The number of objects in the
pool, the number of accesses, and the read-only ratio are configurable for each stage. We
also enable operation without acquiring abstract locks, thus emulating fully commutative
objects.

Our experiments were conducted on a 48-node testbed. Each node is an AMD Opteron
processor clocked at 1.9GHz. We used the Ubuntu Linux 10.04 server OS and a network
with 1ms end-to-end link delay.

5.2.2 Experimental Results

For all the data-structure micro-benchmarks, we observed that open nesting’s best perfor-
mance improvements occur at low read-only ratio workloads. Figure 5.3 shows how open
nesting throughput climbs up to a maximum and then falls off faster than either flat or
closed nesting as contention increases due to more nodes accessing the same objects. Fig-
ure 5.3 also shows the effect that read-only ratio has on the throughput. It is noticeable that
on read-dominated workloads, open nesting actually degraded performance. Closed-nesting
constantly stayed in the 0-10% improvement range throughout our experiments (closed nest-
ing behavior is uninteresting and will henceforth be either omitted from the plots or shown
without identification markers to reduce clutter).

Focusing on write-dominated workloads (r = 20 and r = 50), Figure 5.4 shows how the
maximum performance benefit of open nesting generally increases as the number of sub-
transactions increases. For more sub-transactions however, the benefit of open nesting occurs
at fewer nodes and falls off much faster with increasing number of nodes. The maximum
improvements we have observed (with reduced key-domain, k = 100) are 30% on skip-list
with r = 20 and c = 4, 31% on hash-table with r = 20 and c = 8, and 29% on BST with
r = 20 and c = 8 [61]. On skip-list it is noticeable that at high contention (c = 8) the region
of maximum benefit disappears and the performance decreases monotonously.
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Figure 5.5: Time spent in committed vs. aborted transactions, on hash-table with r = 20 and
c = 4. Lower lines (circle markers) represent time spent in committed transactions, while the upper
lines (square markers) represent the total execution time. The difference between these lines is time
spent in aborted transactions.
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Figure 5.6: Overhead of successful open-nested transactions. Plotted is the relative ratio of
the average time taken by successful open-nested transactions to the average time taken by
successful flat transactions. Closed-nested transactions are also shown, with dotted markers
and without identification.
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(a) Committed transactions (b) Aborted transactions due to abstract lock acquisi-
tion failure

Figure 5.7: Breakdown of the duration of various components of a transaction under open nesting,
on hash-table with r = 20 and c = 4.

(a) Hash-table
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Figure 5.8: Number of aborted transactions under open nesting, with various parameters. The
figure shows the effect of read-only ratio, number of calls, and key domain size. Note that all
aborts depicted in this plot are full aborts due to abstract lock acquisition failure. The number of
committed transactions is fixed for each experiment.
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(b) Hash-table for r=20

Figure 5.9: Throughput relative to flat nesting with increased key space k = 1000 and write-
dominated workloads r = 20.

These observations can be explained by examining how is the time spent when using open
nesting. Figure 5.5 shows how the time taken by successfully committed transactions under
open nesting and closed nesting increases at a similar rate. However, open nesting has a sig-
nificant overhead, caused by the increased rate of commits. This effect is more pronounced
in read-dominated workloads, where object updates are rare, and as a result, read-set early-
validations under flat-nesting are also rare (early-validations are performed when a commit
is detected at another node). In open nesting however, the read-set must be validated for
every sub-transaction commit, thus adding multiple network accesses to the cost of success-
ful transactions. Figure 5.6 shows that the average overheads of open nesting relative to
flat transactions (50-80% on hash-table and 40-50% on skip-list) are significant and higher
than that of closed nesting (3-7% on hash-table and 5-16% on skip-list). We observe the
overheads are benchmark dependent, and are lower for workloads which access more objects
in every sub-transaction. This is apparent when comparing Figures 5.6(b) and 5.6(a), and
further experiments we have performed with higher nodal levels on skip-list [61] confirm our
observation.

On the other hand, the time taken by aborted transactions in open nesting (Figure 5.5) is
much lower at low node-counts, but increases rapidly for higher node-counts. Examining
the average time taken by the various stages of a transaction (Figures 5.7(a) and 5.7(b)), we
see that the duration of transactions (committed or aborted) does increase with increasing
number of nodes, but this increase is relatively small. Moreover, individual failed transactions
consistently take less time than committed ones. Thus, the rapid increase in total time
taken by aborted transactions (and therefore a decrease in overall throughput) can only be
explained if there is a significant increase in the number of aborts. The data upholds this
hypothesis, as shown in Figure 5.8. Note that in our data-structure benchmarks under open
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nesting, all transaction (full) aborts are caused by abstract lock acquisition failure. With
respect to the top-level transactions, abstract locks are acquired eagerly – when the sub-
transaction which performed the access commits. When fundamental conflicts are frequent,
this strategy will cause more aborts and lower performance compared to TFA’s strategy,
which defers all lock acquisitions to the end of each top-level transaction.

Intuitively, the number of aborts is lower when there are fewer sub-transactions competing
for the same number of locks, or when the number of available abstract locks is increased.
These effects are also illustrated in Figure 5.8. Increasing the number of calls leads to a rapid
increase in the number of aborts. However, the key space k has a more pronounced effect.
Setting k = 1000 reduced the frequency of fundamental conflicts and abstract lock con-
tention. As a result, the number of aborts as compared to other configurations in Figure 5.8
became negligible, and thus the performance increase of open nesting is more stable and
more significant than for the cases we previously discussed. In Figure 5.9, we show through-
put increase up to 51% on Skip-list (at c = 4 and r = 20) and up to 167% on Hash-table (at
c = 8 and r = 20). Benefits for open nesting become possible even in non-write-dominated
workloads: with c = 3 on skip-list, we have found 12% improvement at r = 80 and 21%
improvement at r = 50 [61].

In our enhanced counter micro-benchmark we observed improvements consistent with our
previous findings (plot in [61]). However, these improvements only manifested if the root
transaction does not experience significant contention after the open-nested sub-transaction
commits. Any increase in contention at this stage quickly leads to performance degrada-
tion. This result is in agreement with the theory, as open nesting releases isolation early,
optimistically assuming the parent will commit. Increased contention after the open-nested
sub-transaction contradicts this assumption.

In the context of this benchmark we also briefly experimented with fully commutative objects,
by not acquiring abstract locks at all. For our particular case, this resulted in a further 20-
30% performance benefit for open nesting. Better improvements are however entirely possible
if the post-sub-transaction contention is even lower (in our test, a majority of aborts were
caused by post-sub-transaction contention).

5.3 Conclusion

We presented TFA-ON, an extension of the Transactional Forwarding Algorithm that sup-
ports open nesting in a Distributed Transactional Memory system. We implemented TFA-
ON in the HyFlow DTM framework, thus providing, to the best of our knowledge, the first
DTM implementation to support open nesting. Our TFA-ON implementation enabled up
to 30% speedup when compared to flat transactions, for write-dominated workloads and
increased fundamental conflicts. Under reduced fundamental conflicts workloads, speedup
was as high as 167%.
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We determined that open nesting performance is limited by two factors: commit overheads
and fundamental conflict rate. Fundamental conflicts limit the scalability of open nesting
at higher node-counts, and depend on the available key space for abstract locking. Commit
overheads determine the baseline performance of open nesting, at lower node counts, under
reduced contention. Commit overheads are significant under read-dominated workloads, and
are also influenced by the number of objects accessed in sub-transactions. Furthermore, we
confirm that open nesting does not apply well to workloads which incur significant contention
after the open-nested sub-transaction commits.



Chapter 6

Checkpoints

In this chapter we discuss transactional checkpoints in the context of Distributed Transac-
tional Memory. We start by introducing checkpoints and discussing their motivation. We
then examine continuations, the control-flow mechanism required for implementing check-
points. Next we introduce TFA-CP, the TFA extension with support for checkpoints, and
implement it in Hyflow2. Finally, we evaluate it experimentally.

6.1 Transaction Checkpointing Background

Using checkpoints as an alternative to nested transactions was proposed in the Transactional
Memory community by Koskinen and Herlihy [33], and since then has largely been ignored.

Using nesting (in particular the closed nesting model), transactions may rollback to any of
their ancestors’ boundaries in order to resolve conflicts. However, once a sub-transaction
commits, it becomes unavailable as a rollback destination, and instead its parent has to
be restarted (unless the parent has also committed). This model is disadvantageous for
workloads that have many sub-transactions nested at the same level, because this increases
the amount of potentially valid work that needs to be aborted and uselessly re-executed in
case of a conflict.

Checkpointing addresses this issue by allowing execution to return to any previously saved
state (checkpoint) within the current transaction, regardless of whether the sub-transaction
encompassing that checkpoint is still active or not. This allows developing a very fine grained
rollback mechanism, which can identify the exact operation execution needs to rollback to
in order to resolve the current conflict.

42
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6.2 Continuations

In order to restart execution from arbitrary points in a program’s control-flow graph, spe-
cialized mechanisms are needed. Nested transactions usually employ exceptions as a method
to pass control up, but this restricts the potential destinations to boundaries of ancestor
caller methods. Continuations are a more general mechanism that allow reverting the pro-
gram execution to any previously saved state. Continuations work by saving and restoring
the execution context of the current thread, i.e., processor registers and stack contents. By
themselves, continuations do not affect program data (i.e., the heap).

Unfortunately, standard JVMs do not provide any support for continuations. To enjoy
continuations in Java, one would have to either use a non-standard JVM (e.g., Avian JVM,
DaVinci JVM with the continuation patch) or employ a byte-code rewriting library (e.g.,
JavaFlow, LightWolf).

We experimented with the DaVinci JVM and with the JavaFlow library. The former is
faster, because continuations are implemented in native code. It requires the users to run a
non-standard JVM, which is not easily available, and needs to be compiled from older source
code.

The latter choice, JavaFlow, is able to run on stock JVM, but is slower because it implements
the continuation mechanism in Java code. JavaFlow stores all local variables in a per-thread
stack structure which replaces and emulates the regular call stack. This replacement stack
is under the control of the library: it is backed-up when suspending a continuation and later
restored when resuming it.

Both JavaFlow and DaVinci support resuming the same continuation multiple times – a
feature that is essential for implementing transaction checkpoints. DaVinci however required
a small modification to enable this feature, while JavaFlow proved unstable and difficult to
use, especially in conjunction with Scala.

6.2.1 TFA with Checkpoints (TFA-CP)

TFA-CP is an extension of the TFA algorithm which supports checkpoints instead of nested
transactions. Figures 6.1 and 6.2 show several key operations of TFA-CP. Of interest is the
startCheckpointedExec routine which acts as an event-loop: it repeatedly passes execution to
a user-supplied block of code, which is to be executed transactionally. The user-code, during
its execution, calls DTM library functions, which are potential checkpoint locations. The
system may use any of these calls to trigger recording a checkpoint. When it does, execution
is passed back to the event-loop thus creating a new continuation. This continuation is
stored alongside the current read and write-sets as the new checkpoint within the context of
the current transaction. Finally, the execution is passed back to the user-code by resuming
the previously created continuation.
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class HaiTxnLevel ( va l parLeve l : HaiTxnLevel , cont : Continuat ion ) {
// . . .

}
class HaiInTxn extends InTxn {

// Wrapper f o r the t ransac t i on . Needs to be a Runnable to be s t a r t e d as
// a cont inua t ion .
class HaiRunCkpt [ Z ] ( b lock : InTxn => Z) extends Runnable {

de f run ( ) {
// Execute b l o c k
va l r e s = block (HaiInTxn . this )
// Transaction f i n i s h ed , re turn from cont inuat ion to commit .
CheckpointStatus . s e t ( CheckpointSuccess ( r e s ) )
Continuat ion . suspend ( )

}
}

// Main entry po in t f o r t ransac t i on . Takes a func t i on ( b l o c k )
// as an argument . Returns the va lue returned by a s u c c e s s f u l
// t r an sa c t i ona l execu t ion o f the g iven func t ion .
de f startCheckpointedExec [ Z ] ( b lock : InTxn => Z ) : Z = {

// This var s t o r e s the l i s t o f checkpo in t s .
var l e v e l = new HaiTxnLevel (null , null )

// S ta r t execu t ing the t ransac t i on
var cont = Continuat ion . startWith (new HaiRunCkpt ( block ) )
// Here we returned from the f i r s t cont inua t ion

while ( true ) {
// Why did the cont inuat ion re turn ?
CheckpointStatus . get match {

case r e s : CheckpointInter im =>
// Transaction r e que s t s a new checkpoint , s t o r e i t .
l e v e l = new HaiTxnLevel ( l e v e l , cont )
l e v e l . mergeFrom( l e v e l . parLeve l )
// Continue
cont = Continuat ion . continueWith ( cont )

case r e s : CheckpointFai lure =>
// Con f l i c t d e t e c t ed . Transaction r e que s t s r o l l b a c k .
va l r e s t a r tRe s = r e s t a r tAt Inva l i dLev e l ( b lock )
l e v e l = r e s t a r tRe s . 1
cont = re s t a r tRe s . 2

case r e s : CheckpointSuccess =>
// This t ransac t i on i s over , at tempt commit .
i f ( tryCommit ( ) ) {

// Success
return r e s . r e s u l t . as InstanceOf [ Z ]

} else {
// Commit f a i l e d , r o l l b a c k to appropr ia te checkpo in t .
va l r e s t a r tRe s = r e s t a r tAt Inva l i dLev e l ( b lock )
l e v e l = r e s t a r tRe s . 1
cont = re s t a r tRe s . 2

}
}

}
}

Figure 6.1: Simplified code for TFA-CP.
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// Ro l l s back t ransac t i on
de f r e s t a r tA t Inva l i dLev e l [ Z ] ( b lock : InTxn => Z ) :

Tuple2 [ HaiTxnLevel , Continuat ion ] = {
// Find out how fa r back we need to abor t
var l e v e l = cu r r en tLeve l . root
while ( l e v e l . s t a tu s == Txn . Active && l e v e l . a c t i v eCh i ld != null ) {

l e v e l = l e v e l . a c t i v eCh i ld
}
// Resume execu t ion at t ha t checkpo in t
var cont = l e v e l . cont
l e v e l = new HaiTxnLevel ( l e v e l . parLevel , cont )
i f ( l e v e l . parLeve l != null ) {

l e v e l . mergeFrom( l e v e l . parLeve l )
}
i f ( cont != null ) {

// I f we have a cont inuat ion , resume there
cont = Continuat ion . continueWith ( cont )

} else {
// Otherwise , re−s t a r t at the beg inning
cont = Continuat ion . startWith (new HaiRunCkpt ( block ) )

}
return ( l e v e l , cont )

}

// Performs t r an sa c t i ona l forwarding
de f forward ( r c l k : Long ) {

i f ( r c l k > cu r r en tLeve l . root . startTime ) {
// Check fo r read−s e t v a l i d i t y
i f ( r sVa l i da t e ) {

// Valid read−se t , update Txn s t a r t time
cu r r en tLeve l . root . startTime = r c l k

} else {
// In va l i d read−se t , abor t
// Since we abor t to the l a s t v a l i d l e v e l , i t i s OK to update s t a r t i n g time
cu r r en tLeve l . root . startTime = r c l k

CheckpointStatus . s e t ( CheckpointFai lure ( ) )
Continuat ion . suspend ( )

}
}

}
}
// Checkpointing−enab led d i r e c t o r y manager
class CpDirectory extends Direc to ry {

ove r r i d e de f open [T] ( id : S t r ing ) : T = {
// Record checkpo in t checkpo in t
CheckpointStatus . s e t ( CheckpointInter im ( ) )
Continuat ion . suspend ( )
// Continuation returned , open as usua l
return super . open ( id )

}
}

Figure 6.2: Simplified code for TFA-CP. (continued)
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Except for recording a checkpoint as described above, there are two other occasions when
execution is passed from the user-code to the event-loop: on transaction completion and
on the detection of a conflict. In the first case, the event-loop is tasked to commence the
commit operation, and upon success, the loop is terminated. In the second case, and also if
the commit fails, the system determines which checkpoint should the transaction be reverted
to, in order to resolve the conflict while aborting a minimal amount of work. The appropriate
continuation is then resumed, passing control back to the user-code.

TFA-CP currently stores checkpoints before object retrieval operations. The amount of
checkpointing can be configured by specifying the probability P that each object retrieval
would record a checkpoint. P = 100 is the finest-grained strategy that does not store
superfluous checkpoints, and always allows resuming execution at the exact operation that
would resolve the current conflict. P < 100% can be used to reduce the total number of
checkpoints recorded and thus, any overhead associated with capturing continuations.

Checkpoints are presently stored in a doubly-linked list, with new checkpoints inserted at
the head of the list. Each checkpoint stores the complete read and write-sets of the current
transaction at the time the checkpoint is taken. This makes read operations fast, at the cost
of increased memory consumption.

6.3 Evaluation

TFA-CP was implemented in Hyflow2, and evaluated on three micro-benchmarks and up to
16 nodes. We only present results for the continuations implemented using the DaVinci JVM.
We summarily dismiss results using the JavaFlow library, due to the library’s significantly
inferior performance, incompatibility with certain Scala constructs, and extreme instability
in tests.

The results are presented in Figures 6.3 through 6.6. The X-axis represents the number
of nodes, while the Y-axis shows the total throughput in transactions per second. Certain
plots are missing data-points, or appear to have off-the-chart values. We believe these
occurrences are caused by bugs either in our implementation or in the continuations back-
end implementation. We will thus summarily dismiss such anomalous data-points.

The several data series in the plot reflect the following measurements:

� Flat nesting - Regular TFA transactions without partial rollback. Marked in the legend
as flat.

� Closed nesting - N-TFA transaction with partial rollback enabled by closed nesting.
Marked in the legend as closed.

� Checkpointing - TFA-CP transactions with partial rollback enabled by transaction
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(a) 3 ops

(b) 5 ops

(c) 7 ops

Figure 6.3: Results on the Linked-List benchmark.
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(a) 3 ops

(b) 5 ops

(c) 7 ops

Figure 6.4: Results on the Hash-table benchmark.
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(a) 9 ops

(b) 15 ops

Figure 6.5: Results on the Hash-table benchmark (continued).
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(a) 2 ops (b) 3 ops

Figure 6.6: Results on the Enhanced Counter synthetic benchmark.

checkpoints. Marked in the legend as cpX, where X is the percentage of object opens
that trigger a checkpoint to be captured.

� Flat Checkpointing - This measurement includes the overhead of capturing checkpoints,
but disables partial rollback in order to factor out its performance effects. Marked in
the legend as cpX-flat.

Figure 6.3 shows performance on the Linked-list benchmark. This benchmark is character-
ized by long sub-transactions that access many objects. Each transaction is comprised of
3-7 sub-transactions. The plots show the high overheads of continuations for this kind of
workload (25-50%). It can be observed how the performance decreases when taking more
checkpoints (i.e., 5% of object opens compared to 30%). The plots also show a 0-10% per-
formance benefit due to partial rollback after factoring out the overheads, but this benefit is
insufficient to offset the overheads.

Figures 6.4 and 6.5 show transaction throughput on the Hash-table benchmark. This bench-
mark has short sub-transactions that access only two objects, the hash-table meta-object
and the inner bucket object, and is highly concurrent. Transactions are comprised of 3
to 15 sub-transactions. The results on this benchmark were unexpected. Simply enabling
the continuations mechanism gives a significant 3-6x performance increase compared to flat
transactions. We can not yet explain this behavior. Additionally enabling partial rollback
gives a further 1-10% improvement, consistent with the previous benchmark. We further
notice that the benefit due to partial rollback increases with the length of the transaction:
for transactions comprised of 3 operations the benefit is negligible, while transactions with
15 operations see up to 10% performance increase.

Figure 6.6 shows the results on our final benchmark, an Enhanced Counter application. This
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benchmark is comprised of a configurable number of stages. Each stage accesses a config-
urable subset of objects, from a dedicated pool of counters. After each stage, a checkpoint
is manually triggered. The plots again show significant checkpointing overheads. It is un-
expected however that enabling partial rollback does not improve performance, but rather
degrades it.

6.4 Conclusions

Our experiments with TFA-CP determined that partial rollback with checkpointing generally
shows a 1-10% improvement compared to flat transactions, if all the overheads are factored
out. In two of our benchmarks the overheads were however too great and the net effect was
a performance degradation. The third benchmark however experienced 3-6x performance
improvement by solely enabling checkpoints (i.e., without partial rollback). We can not
currently explain this behavior, but we suspect it is related to the amount of data stored in
each checkpoint (i.e., the size of the stack backup). We leave a more in-depth analysis for
future work.



Chapter 7

Hyflow2: A High-Performance DTM
Framework in Scala

In this chapter we introduce Hyflow2, our high-performance DTM framework for the JVM,
written in Scala. We start by looking at Hyflow and describing our reasons for choosing to
rewrite it from scratch. We then present Hyflow2’s programming interface, and finally, we
evaluate its performance relative to its predecessor.

7.1 The Hyflow DTM framework. Motivation

Hyflow is a DTM framework written in Java. Its main purpose is to enable research and
experimentation in the Distributed Transactional Memory area. Hyflow is built on top of the
Deuce STM library and the Aleph communication framework, two research projects that are
not actively maintained. Hyflow’s design attempts to be modular by allowing for pluggable
network transports, transactional algorithms, directory protocols and contention managers.
The interfaces to the various components are however not flexible enough, and hard-coded
links exist between some of the modules’ implementations. Additionally, changes were made
to the two underlying libraries in order to work around their limitations. All these reasons
make Hyflow a difficult code base to work with and extend.

Hyflow (just like the underlying Deuce STM) relies on automatic byte-code rewriting to
provide an API based on annotations. As seen in Figure 7.1, the user marks the methods
to be executed transactionally as @Atomic. A Java Agent rewrites such methods into two
polymorphic copies: the first copy has the same signature as the original method, and it
initiates a new transaction (or reuses an already running transaction, if available) and then
calls the second copy within the context of this transaction. The second copy is a transacted
version of the original method’s byte-code. It takes an additional argument (a transaction
context), and replaces all field reads and writes with transactional read and write operations.

52
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@Atomic
void t r a n s f e r ( Account a1 , Account a2 , int amount )
{ withdraw ( a1 , amount ) ;

d epo s i t ( a2 , amount ) ;
}
@Atomic
void withdraw (Account a , int amount ) {

a . va lue −= amount ;
}
@Atomic
void depos i t ( Account a , int amount ) {

a . va lue += amount ;
}

Figure 7.1: Example of the Hyflow API. Transactions are marked using the @Atomic anno-
tation.

Any method calls within transacted code are modified to also pass the transaction context
argument.

The automatic instrumentation also touches on methods not marked as @Atomic, by creating
an additional transacted copy of the method as described above. When such method is called
outside any transaction, the original byte-code is executed. When methods are called within
a transaction (by transacted code), the addition of the transaction context argument leads
to executing the transacted versions of the methods.

This approach works particularly well for a simple multiprocessor transactional memory
system because the instrumented byte-code can be made very fast: no extra objects need to
be instantiated (the transactional context object can be reused), method calls can be kept to
a minimum (the transactional read and write operations can be inlined), and only one thread-
local variable lookup needs to be performed at the beginning of the transaction. However,
this model is particularly poor for rapid prototyping, essential for researchers, because of
the low-level nature of byte-code instrumentation. Moreover, the potential speed benefits of
this model become negligible when dealing with distributed systems, where network accesses
are the most costly operations. Modern JVMs with state-of-the-art Just-in-Time (JIT)
compilation and garbage collection further minimize the benefits of the byte-code rewriting
approach.

Being dissatisfied with Hyflow, we decided to design and implement a better DTM frame-
work, Hyflow2. Our aims for Hyflow2 are as follows:

� High-performance. In order for DTM to have any traction, it needs to be at least
similar in speed with the existing systems it aims to replace. Thus, performance is
paramount.

� Rapid prototyping. We want our framework to be accessible for DTM researchers, in
order to encourage progress in this exciting field. As a side-note, our chosen language
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val c t r = Ref (0 )
atomic { implicit txn =>

c t r ( ) = c t r ( ) + 1
}

Figure 7.2: An example transaction in ScalaSTM (common usage).

va l c t r : Ref [ Int ] = Ref [ Int ] ( 0 )
atomic . apply (new Function1 [ InTxn , Unit ] {

de f apply ( imp l i c i t txn : InTxn ) : Unit = {
c t r . update ( c t r . apply ( txn ) + 1) ( txn )

}
})

Figure 7.3: A more verbose version of the code in Figure 7.2, with several Scala syntactic
shortcuts written explicitly.

for implementing Hyflow2, Scala, is excellent for the purpose of rapid-prototyping.

� Easy to use. Besides being a vehicle for DTM research, we also want Hyflow2 to be
used by regular programmers. Thus, an easy, clean and familiar API is desirable.

7.2 Hyflow2 API

Hyflow2 API is based on the excellent ScalaSTM API. In fact, Hyflow2 tries to reuse
ScalaSTM’s interfaces wherever possible, and partially implements a back-end for the ScalaSTM
API.

7.2.1 ScalaSTM

ScalaSTM is an STM API for Scala under consideration to be included in the Scala standard
library in an upcoming release. The API allows for pluggable back-end implementations, and
it ships with a reference implementation, CCSTM[8]. Hyflow2 inherits all features described
in this section.

Transactions in ScalaSTM are defined using atomic blocks, as shown in Figure 7.2. To enable
programming using this syntax, atomic is a TxnExecutor object whose apply method takes
a function as its only argument and executes this function as a transaction. The “implicit
txn =>” construct denotes that the function passed to apply takes one implicit argument,
the transaction context object.

ScalaSTM uses transactional references (Ref s) as a container for the values that are to be
accessed using transactional semantics. The Ref containers mediate all access to the data
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de f t ak eF i r s t ( ) : T = atomic {
imp l i c i t txn =>

va l o ld head = this . head ( )
i f ( o ld head == null )

r e t r y // do not proceed i f empty
this . head ( ) = old head . next
return o ld head . va lue

}

Figure 7.4: Conditional synchronization using retry. Transaction can only proceed once
there is at least one item in the list.

within. To access a value of a Ref ref1 within a transaction, one would use ref1() – i.e.,
call ref1.apply() – or ref1.get() as an alternative syntax. To change the value of the Ref
inside a transaction, one should use ref1() = v – i.e., call ref1.update(v) – or alternatively,
ref1.set(v).

All of these methods (apply, get, update and set in class Ref) take a transaction context
object (i.e., an instance of the class InTxn) as an additional, implicit argument. Implicit
arguments in Scala code may be omitted, as long as the compiler can find in scope a variable
of the appropriate type marked with the implicit keyword. In Figure 7.2, the txn object
is automatically passed to the apply() and update() methods. Figure 7.3 shows how Scala
interprets the code in Figure 7.2.

This mechanism using implicit arguments and Refs leads to a clean syntax with relatively
little redundant code (only the “implicit txn =>” construct and the function call “()” char-
acters are superfluous). Another benefit of this mechanism is strong atomicity for all Refs.
Strong atomicity is the desirable property of a TM system which protects against concurrent
access of a memory location from both transactional code and non-transactional code (for
contrast, a weakly atomic TM system would have an undefined behavior in this situation).
Accesses to a Ref’s contents via the apply or update methods require an implicit transaction
context object to be in scope, otherwise compilation fails. This requirement is satisfied inside
an atomic block as explained in the previous paragraph. Outside atomic blocks however, no
transaction context value is implicitly available, so calls to apply or update would lead to
compilation errors. Single-operation transactions are used to allow accessing Refs outside
atomic blocks. ref1.single.get() would, for example, spawn a transaction for the sole purpose
of retrieving ref1’s value.

ScalaSTM allows temporarily aborting a transaction using the retry() method. This is usu-
ally used for enforcing preconditions. Suppose for example the takeFirst operation on a queue
(Figure 7.4). When the queue is empty, this operation may invoke retry, effectively blocking
until at least one element is available. This behavior is called conditional synchronization.
After calling retry, the transaction should only execute again once any of the values it has
read is updated, otherwise it will follow the same execution path and call retry again. A
simplistic implementation may, however, blindly restart the transaction after an exponential
back-off.



Alexandru Turcu Chapter 7. Hyflow2 56

class Account ( va l i d : S t r ing ) extends AObj {
va l type = f i e l d ( ”” ) // a s t r i n g f i e l d
va l va lue = f i e l d (0 ) // an in t e g e r f i e l d
Hyflow2 . d i r . r e g i s t e r ( this ) // Reg i s t e r with the d i r e c t o r y manager

}

Figure 7.5: Hyflow2 Object example for a bank account.

de f depo s i t ( accId : Str ing , amount : Int ) = atomic {
imp l i c i t txn =>

va l acc = Hyflow2 . d i r . open [ Account ] ( accId )
va l newVal = acc . va lue ( ) + amount
acc . va lue ( ) = newVal
returm newVal

}

Figure 7.6: Hyflow2 transaction example. Transaction must open an object before operating
on it.

7.2.2 Hyflow2 Objects

While in ScalaSTM transactions operate on Refs directly, Hyflow2 introduces an additional
layer – the Hyflow2 Object – as a container for Refs (see Figure 7.5). This layer is needed
in order to solve the data distribution problem. On a single node objects can be referred
to using a JVM reference, but for multiple nodes, this extra mechanism is required for
identifying objects.

An Hyflow2 Object mixes in the AObj Scala trait 1 and is Hyflow2’s basic unit of data. Each
Hyflow2 Object (henceforth referred to as AObj) has a unique identifier, which Hyflow2 uses
to locate the object. This key is usually specified by the user at the object’s creation, by
passing it as an argument to the constructor.

Each AObj is composed from one or more fields. Fields are specialized Refs that maintain
their association with the enclosing AObj and their order number within that object. Fields
are created by calling the AObj.field method inside the object’s constructor, and passing it
an initial value.

7.2.3 Hyflow2 Directory Manager

The Directory Manager (DM) is Hyflow2’s module that keeps track of the objects’ location.
When an AObj instance is created, it registers itself with the DM (Figure 7.5). If the object
later migrates to a different node, it updates its registration with the DM.

The Directory Manager also handles retrieving objects from their owner nodes over the

1A Scala trait is similar to a Java interface. A class can therefore mix in (i.e., implement) multiple traits.
However unlike interfaces, Scala traits may contain implementation.
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// Simple open−nested t ransac t i on wi thout a b s t r a c t l o c k s or commit or abor t hand lers
atomic . open { imp l i c i t txn =>

va l c t r = Hyflow2 . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) += 1

}
// Open−nested t ransac t i on tha t acqu i r e s a s i n g l e a b s t r a c t l o c k
atomic . open ( ” abs lock0 ” ) { imp l i c i t txn =>

va l c t r = Hyflow2 . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) += 1

}
// More complex usage case , with abor t and commit hand lers . Lock i s he ld a f t e r commit .
atomic . open { imp l i c i t txn =>

acquireAbsLock ( ”absLock0” )
va l c t r = Hyflow2 . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) += 1

} onAbort { imp l i c i t txn =>
va l c t r = Hyflow2 . d i r . open [ Counter ] ( ” id ” )
c t r . va lue ( ) −= 1

} onCommit { imp l i c i t txn =>
holdAbsLock ( ”absLock0” )

}

Figure 7.7: Open nesting in Hyflow2

network. This operation is called opening (see Figure 7.6). It requires the identifier of the
requested object and it generally caches a copy of the requested object on the local node.

7.3 Transaction Nesting

Hyflow2 includes support for nested atomic blocks. In this section we first briefly describe
the three nesting models previously studied in TM [26, 40]: flat, closed and open. Next we
introduce the API support for nesting in Hyflow2, and explain how it works.

7.3.1 Nesting API

Flat and closed nesting are semantically equivalent and can be used interchangeably. Unlike
Hyflow, we decided not to expose the decision of which of the two models to use in the
regular user-facing API. Hyflow2 may use any of these models to handle nested atomic
blocks. Currently, the decision is fixed based on a configuration value, but in the future it
could be made adaptively at runtime.

Open nesting on the other hand requires API support. Following the style of ScalaSTM, in
Hyflow2 we propose the following syntax (see Figure 7.7):

� An open nested transaction should be started with atomic.open . The body of the
transaction follows in braces, just like for regular transactions.
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new OpenNestingBlock (
atomic . open { imp l i c i t txn =>

// Atomic b l o c i s wrapped in an OpenNestingBlock
}

) . onCommit ( { imp l i c i t txn =>
// handler i s passed to onCommit method . Af ter
// r e g i s t e r i n g the ca l l b a c k , onCommit execu te s the b l o c k wrapped above .

}
)

Figure 7.8: Expanded code showing mechanism for defining commit/abort handlers.

� Following the transaction’s body two optional blocks may be specified. These blocks
are introduced by onCommit and onAbort, and represent the transaction’s commit
and abort handlers, respectively. The handlers themselves are executed as open-nested
transactions, so they must accept the implicit transaction context argument. If both
handlers are present, their order is not important.

� If an open-nested transaction requires the acquisition of an single abstract lock which
is known in advance, the lock’s identifier can be passed as a string argument to
atomic.open . The lock will be acquired before the open-nested transaction can com-
mit, and will be released automatically as part of the transaction’s abort and commit
handlers. These handlers do not need to be present in the code, the lock will be released
anyway (see Figure 7.7).

� For any other abstract lock scenarios, the locks must be acquired within the sub-
transaction’s body using acquireAbsLock. These locks too will be automatically released
as part of the sub-transaction’s abort and commit handlers.

� If for any reasons an abstract lock should be kept beyond the sub-transaction’s commit
or abort, holdAbsLock must be called in the commit and/or abort handler. Any such
lock will be propagated to the innermost open-nested ancestor transaction and will be
released upon its commit or abort.

7.3.2 Discussion and Language Mechanisms

We consider atomic.open a semantically cleaner way of denoting open-nesting transactions
than the previously suggested openatomic keyword [42]. Our syntax logically breaks down
into two terms. The first term, atomic is the same as the marker for regular atomic blocks.
The second term, open, appears as a property of the resulting transaction. By contrast,
openatomic as a separate keyword, gives the impression the effect is totally unrelated with
that of the atomic keyword.

When evaluating an atomic.open block, the open method is called on the atomic object of
type TxnExecutor, and it receives the function to be executed transactionally as a parameter.
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STM. atomic (new Runnable {
public void run ( ) {

Counter c t r = Hyflow2 . d i r ().<Counter>open ( ” c t r ” )
c t r . s e t ( c t r . get ( ) + 1 ) ;

} } ) ;

Figure 7.9: ScalaSTM Java compatibility API.

new Atomic<Boolean> {
public Boolean atomica l l y ( InTxn txn ) {

Counter c t r = Hyflow2 . d i r ().<Counter>open ( ” c t r ” ) ;
c t r . va lue . s e t ( c t r . va lue . get ( ) + 1 ) ;
return true ;

}
public void onCommit ( InTxn txn ) {

// Commit handler , omit i f not needed
}
public void onAbort ( InTxn txn ) {

// Abort handler , omit i f not needed
}

} . execute ( ) ;

Figure 7.10: Hyflow2 Java compatibility API using the Atomic class.

Declaring the onCommit and onAbort handlers is more complex: blocks are evaluated last
to first, wrapping what is above in a special OpenNestingBlock container object, and calling
onCommit/onAbort on this object. The object is saved in a thread-local variable. When
finally, atomic.open is invoked, it checks if there is any OpenNesingBlock object registered
for the current thread and uses it, if any. See Figure 7.8 for an expanded example. This
mechanism is also used in ScalaSTM to implement the orElse keyword (orElse provides the
means to execute alternative atomic blocks if the original ones fail).

7.4 Java Compatibility API

Scala provides excellent interoperability with Java. As a result, many of the operations
described above will just work when invoked from Java code either directly, or in a slightly
different form (for example, methods ref1.get, ref1.set, Hyflow2.dir.open, retry becomes
Txn.retry, etc.). Several of the more advanced Scala features that we use in the Hyflow2 API
are however not supported from Java code, so we need to provide additional mechanisms to
obtain the same results.

7.4.1 Defining Transactions

ScalaSTM already provides a way for starting transactions from Java which uses the Callable
and Runnable interfaces for defining the transaction’s body (Figure 7.9). The transaction
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public class Counter extends jAObj {
Ref<Integer> value = f i e l d ( 0 ) ;
public Counter ( ) {

Hyflow2 . d i r ( ) . r e g i s t e r ( this ) ;
}

// This method i s an example t ransac t i on . I t i s not par t o f the Hyflow2 Object d e f i n i t i o n .
public stat ic void increment ( f ina l St r ing id ) {

new Atomic {
public void a tomica l l y ( InTxn txn ) {

Counter c t r = Hyflow2 . d i r ().<Counter>open ( id ) ;
// The f i r s t way o f acce s s ing Refs works only from an Atomic c l a s s
// due to the txn parameter
c t r . s e t ( c t r . get ( txn ) + 1 , txn ) ;
// The second way o f acce s s ing Refs a l s o works us ing a Runnable
c t r . s i n g l e . s e t ( c t r . s i n g l e . get ( ) + 1 ) ;

}
} . execute ( ) ;

} }

Figure 7.11: Scala-style Hyflow2 Object definition in Java. Notice how accessing Refs in this
style is more verbose.

context argument isn’t used anymore – instead, all transactional operations need to dynam-
ically determine the context object at run-time. If no transaction exists for the current
thread, a single-operation transaction is created automatically. This mechanism, however,
does not define the abort and commit handlers required for open-nesting.

To support open-nesting, Hyflow2 provides an Atomic abstract class with three methods:
atomically, onCommit and onAbort. User code must subclass it and provide at least the
implementation for atomically (see Figure 7.10). If implementations are provided for the
other two methods, they will be used as commit and abort handlers. Unlike ScalaSTM’s
Java API, a transactional context object is passed to the transaction as an argument. Our
reasons for doing so will become clear in Section 7.4.2.

7.4.2 Defining Hyflow2 Objects

Inheriting from a Scala trait in Java code is non-trivial. To allow a simpler way of defining
Hyflow2 Objects in the Java API, we provide an abstract class called jAObj, which users
must subclass.

Fields may be declared in two ways, which we named the Scala and the Java styles. This
decision influences how the fields are later accessed from both Scala and Java code. The
Scala way of declaring fields was already described in Section 7.2.2, and only differs cosmet-
ically (see Figure 7.11). However, choosing to declare fields the Scala way makes Java code
accessing that field more verbose: either the transaction context object needs to be passed
explicitly to each Ref.get / Ref.set call (this object is available by sub-classing the Atomic
abstract class as mentioned in Section 7.4.1), or Ref Views must be used to determine the
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public class Counter extends jAObj {
Ref . View<Integer> value = j f i e l d ( 0 ) ;
public Counter ( ) {

Hyflow2 . d i r ( ) . r e g i s t e r ( this ) ;
}
// Example t ransac t i on
public stat ic void increment ( f ina l St r ing id ) {

STM. atomic (new Runnable {
public void run ( ) {

Counter c t r = Hyflow2 . d i r ().<Counter>open ( id ) ;
c t r . s e t ( c t r . get ( ) + 1 ) ;

} } ) ;
} }

Figure 7.12: Java-style Hyflow2 Object definition in Java. Compact Ref access.

context at run-time by calling Ref.single.get or Ref.single.set instead of simply Ref.get or
Ref.set. The Scala style of declaring Refs is thus recommended when the application mostly
in Scala.

For applications written mostly in Java (or even Java-only), the Java style of declaring fields
makes Java code more compact. Fields are declared using jfield instead of field and their
type becomes Ref.View instead of Ref (see Figure 7.12). Java code can now access the fields
using the shorter ref1.get(), etc. Note that the actual method invoked is now Ref.View.get()
and determines the transaction context object dynamically at run-time. When using the
Java style, the Scala compiler will not complain if a Ref.View is accessed outside an atomic
block. Instead, it would fire a single-operation transaction.

7.5 Mechanisms and Implementation

Our implementation uses the actor model using Akka.

7.5.1 Actors and Futures

Akka is a very efficient actor model implementation for the JVM. The actor model can
lead to very fast implementations because it reduces the need for thread context switching.
Actor libraries generally do their own user-space scheduling, as opposed to relying on the
OS scheduler, and prohibit blocking function calls (such as disk access. etc). Instead, actors
send messages to each other and respond to the messages they receive – it is an event-based
programming model.

An important part of Akka’s interface are Futures. Futures represent the result of a compu-
tation that is expected to complete at some later time. Futures can be used when a thread
sends a request to an actor and expects a response. Instead of waiting for the response to
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arrive, the method sending the request immediately returns a Future object. The thread
can register a callback to be executed when the response is received, query the Future pe-
riodically, or even block for the result. Computations can also be composed by chaining or
aggregating Futures, thus reducing the number of times a thread needs to block and improv-
ing performance. Futures, as well as actors, receive and process messages and events using
a configurable thread-pool.

7.5.2 Network Layer

Akka actors provide network transparency. They can seamlessly communicate across JVM
and machine boundaries. Actor instances are identified using ActorRef objects. ActorRef s
can be sent across the network while still maintaining their association with the correct actor.
ActorRef s can then be used on the remote machine to communicate to the original actor.
In conjunction with Futures, this makes it easy for developers to handle communication in
an efficient manner.

Internally, Akka uses Netty for communicating over the network. Netty is a fast, asyn-
chronous event-driven network application framework. It uses the non-blocking, high perfor-
mance Java New I/O API. Netty also uses a configurable thread-pool for servicing received
messages.

7.5.3 Serialization

Serialization is the process of converting an object to a format that can be sent through
the network, and back. Traditionally, Java objects must implement a Serializable interface
in order to enable this functionality. The standard Java serializer however is notorious
for its poor performance. Fortunately, Akka provides an API for custom serializers, so we
implemented an adapter for the Kryo library2. Kryo is one of the fastest JVM serialization
frameworks, and is compatible with Scala.

7.5.4 Hyflow2 Architecture

Hyflow2 has a modular architecture. Depending on their function, module implementations
need to comply to certain interfaces. Hyflow2 currently provides the following interfaces:
lock service, object store, object directory, barrier service and cluster manager. A module
implementation consists of a singleton object that complies to one of these interfaces and is
used for sending requests to the module and an actor which services such requests. Modules
communicate between each other and with the transactions’ threads using message passing
and Futures.

2http://code.google.com/p/kryo/
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Figure 7.13: Hyflow2 system diagram

The lock service module handles acquiring, releasing and verifying the status of object and/or
field locks. The object store module holds the objects themselves and handles queries, up-
dates and validations (version checks). Due to their tight coupling, the lock service and
object store can be combined in a single module. The object directory tracks object loca-
tions: it handles queries, updates, and it can also send notifications to interested transactions
when an object is updated. The cluster manager tracks which nodes participate in Hyflow2
transactions, and is currently implemented by delegating a coordinator node (in the future,
gossip protocols could be implemented). The barrier service lets multiple nodes coordinate
their execution and is used mostly for benchmarking. An additional module is tasked with
gathering statistics from all participating nodes. Figure 7.13 shows a system diagram in-
cluding Hyflow2 modules and their interactions with the user-code and underlying libraries.

Each node has a router actor which serves as a gateway for all request messages (response
messages do not pass through the gateway). The router actor dispatches messages to the
appropriate module based on the message’s type (Java class). This design allows every
message to contain additional payload data, which can be processed in a consistent way. For
example, the Transactional Forwarding Algorithm (TFA) which Hyflow2 implements needs
to attach an integer (the node-local clock value) to each message sent over the network [56].
Instead of requiring every module to attach payloads to all the messages they send and
receive, payloads are handled automatically in the message’s base class constructor on the
sender node, and is processed on the receiver node by the router actor.

7.5.5 Conditional Synchronization

Hyflow2 is the first DTM implementation to support distributed conditional synchroniza-
tion. This feature was implemented by maintaining a waiting list of transactions which are
blocked on each object. When they execute, transactions record all objects they access in
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the transaction’s read-set. When a transaction calls retry, it adds itself to the waiting lists
of all objects which it has previously read, then blocks. Waiting lists are maintained by the
Object Directory. When an object is updated, the Directory is notified, and in turn notifies
all transactions on that object’s waiting list. Because the message adding a transaction to
an object’s waiting list may arrive after the object is updated, the object version is checked
as well: if the transaction is waiting on an old version of the object, the notification is sent
right away. Otherwise, a transaction could be waiting unnecessarily for a condition that is
already satisfied.

7.5.6 Parallel Object Open

This is another feature provided by Hyflow2 that can speed up certain transactions. Since
objects are usually retrieved from remote nodes, the open operation is time-consuming.
When a transaction needs multiple objects and knows their identity in advance, it can use
the parallel object open operation to reduce the number of network round-trips required for
acquiring a copy for each required object.

7.5.7 Performance

Thread context switches and network round-trip time are important bottlenecks. The choice
of libraries we used in Hyflow2 was made with the purpose of addressing these issues. Akka
and Netty are event-driven libraries and attempt to minimize thread context switches. We
configured their internal thread pools to a minimum size that produces the greatest perfor-
mance. Also, we specifically targeted serialization in our quest for performance because it
lays on the critical path of sending a message over the network.

7.6 Experimental Evaluation

Hyflow2 was evaluated experimentally using a suite of one pseudo-macro-benchmark (bank
monetary application) and four micro-benchmarks (counter and the skip-list, linked-list and
hash-table data structures). Since we do not seek to evaluate the TFA algorithm but rather
the framework’s performance, we compare against Hyflow which also implements TFA. Com-
parisons between Hyflow and other distributed transactional memory libraries implementing
different algorithms are available elsewhere [56], and have shown that Hyflow outperforms
competitors under most circumstances. Experiments only targeted flat nesting.

Experiments were ran on a testbed consisting of one 48-core and three 24-cores AMD Opteron
machines. The operating system used is Ubuntu Linux 10.04 Server. Every node commu-
nicates with every other node via TCP links above a Gigabit Ethernet connection. The
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Figure 7.14: Summary of relative performance across benchmarks.
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network is not saturated.

The JVM used is the 64-bit HotSpot(TM) Server VM. Benchmarks were run with Just-in-
Time (JIT) compilation enabled. Each test was allowed a warm-up period to compensate
for compilation and class loading overheads before measurement was started.

We evaluated Hyflow2 under two different scenarios. The first is a high-contention scenario.
Up to 32 virtual nodes were spawned on a single 48-core machine. Each node is a JVM
process whose execution is restricted to a single core, and transactions are spawned using a
single thread for each node. Communication takes place via the loopback network interface.
Each benchmark is configured with a minimal number of objects, such that contention is
maximized. The ratio of read-only transactions was also varied between 10%, 50% and 90%
reads. While this is not a genuinely distributed environment, it allows emphasizing the
efficiency of the implementation.

The low-contention scenario is more realistic, with a large number of objects and many
simultaneous transactions. Five nodes were spawned, with each node being allocated 24
cores, for a total of 120 cores. Each node spawns transaction using 96 threads, or 4 threads
per each core.

Figure 7.15 provides details on one of the benchmarks, bank. The figure follows the through-
put as the number of nodes is increased from two to 32 nodes in the high-contention scenario.
Hyflow2 is very fast at a low number of nodes – up to 7 times faster than Hyflow. When
the number of nodes is in middle of the range, the performance becomes comparable. Then,
as more nodes are added, Hyflow2’s performance benefit keeps increasing up to about 30%.
Other benchmarks observed slightly different trends. For example, in hashtable, Hyflow2 is
60% faster or more compared to Hyflow throughout all our tests.

In the low-contention scenario, the results are completely different. Hyflow is barely able
to maintain a reasonable throughput. After running transactions for about a minute, large
pauses cause the throughput to drop significantly (we did not verify but believe this is due to
the garbage collector). We therefore limited the experiment’s duration such as this penalty
is not incurred. Even so, Hyflow2 is about one order of magnitude faster. For example, on
bank configured with 10,000 accounts and 50% read-only transactions, Hyflow managed to
run 3,324 tps whereas Hyflow2 reached 24,623 tps. Results are summarized in Figure 7.14.



Chapter 8

Conclusions

In this thesis proposal we made several contributions aimed at improving the performance
of Distributed Transactional Memory. We focused on the previously proposed Transactional
Forwarding Algorithm, and extended it with support for closed nesting, open nesting and
transaction checkpoints. We also presented Hyflow2, our new-generation DTM framework
for the Java Virtual Machine.

Closed nesting through our TFA extension, N-TFA, proved insufficient for any significant
throughput improvements. It ran on average 2% faster than flat nesting, while performance
for individual test varied between 42% slowdown and 84% speedup. The observed behavior
was highly workload dependent. Two of our benchmarks saw average slowdown. The work-
loads that benefit most from closed nesting are characterized by short transactions, with
between two and five sub-transactions.

Open nesting, as exemplified by our TFA-ON implementation, showed promising results. We
determined performance improvement to be a trade-off of the overhead of additional commits
and the fundamental conflict rate. For write-intensive, high-conflict workloads, open nesting
may not be appropriate, and we observed a maximum speedup of 30%. On the other hand,
for lower fundamental-conflict workloads, open nesting enabled speedups of up to 167% in
our tests. We identified that open nesting has a performance sweet spot in the middle of
contention range: if contention is too low, the overheads of open nesting do not justify using
it over flat nesting. If on the other hand contention is too high, the aborts caused by open
nesting and the compensating actions they require cause throughput degradation.

Transaction checkpoints, using our TFA-CP implementation, showed 1-10% benefit over flat
nesting when all the overheads are factored out. These overheads are in the 40-50% range
for two out of three benchmarks, making them impossible to be matched by the benefits
of partial rollback. The final benchmark, however, behaved unusually. On hash-table, a
benchmark characterized by many short sub-transactions, simply using continuations and
without regard to partial rollback, caused throughput to increase by 3-6x. We plan to
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investigate the cause of this anomaly in the future.

Finally, we introduced Hyflow2, a new, high-performance DTM framework for the JVM.
Hyflow2 is written in Scala and has a clean Scala API and a compatibility Java API. Hyflow2
is internally implemented using the actor model, and was on average two times faster than
Hyflow on high-contention workloads, and up to 16 times faster, and more stable, on high-
throughput, low-contention workloads.

8.1 Proposed Post-Prelim Work

A natural post-preliminary goal is to clean up the research already presented in this proposal
into a more complete dissertation. To this purpose, we plan to test our algorithms (N-
TFA, TFA-ON and TFA-CP) on industrial-strength benchmarks such as TPC-C, TPC-E,
AuctionMark, TATP and others, where applicable. These tests will be ran on Hyflow2, to
take advantage of the new, high-performance architecture and to contribute to the thesis’
cohesiveness. We additionally want to figure out the cause behind our contradictory results
when using checkpoints.

We next plan to move away from the cache-coherent, data-flow architecture and the TFA
protocol. We want to provide fault-tolerance through network-based replication, similar to
the Granola [14] and H-Store [30] projects described in Section 2.3. Also from Granola we
adopt the independent transaction model, a lighter weight alternative to two-phase commit
(2PC) coordinated transactions. Independent transactions, while distributed, do not incur
the high cost of 2PC coordination on the critical transaction execution path, and are thus
faster.

Based upon these assumptions, we propose to focus on increasing DTM performance via
automatic data partitioning and replication. Previous work touched upon this topic in
an SQL database environment. Schism [15] employs k-way graph cut heuristics in order to
determine partitioning schemes which minimize 2PC coordinated transactions and maximize
local, single-node transactions due to their relative performance difference. Their technique
was shown to be competitive with the best known manual partitioning schemes on the
benchmarks the authors used.

Our plan for future research is as follows.

8.1.1 Independent-Transaction Aware Automatic Partitioning

Our first goal is to extend the above-mentioned technique to also support independent trans-
action. Our technique would promote single-node transactions first and independent trans-
actions next, while leaving 2PC coordinated transactions only as a last resort.
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This can be done by analyzing a workload trace after encoding it as a graph. Data objects
are represented in this graph as nodes. A transaction is encoded in this graph as clique: if
objects O1, O2, ... ON are accessed together in a transaction, then edges exist in the graph
that connect every pair of objects out of O1, O2, ... ON . Once the sample workload is encoded
in this form, the graph can be partitioned into k subgraphs, such that a minimal number
of edges are severed. The resulting partitioning scheme promotes single-node transactions,
and the edges that were severed represent distributed transactions.

All independent transactions must meet the following criteria:

� The same abort decision can be reached at every repository independently. This can
occur in two cases:

– Transactions that never abort, for example, read-only transactions.

– The abort decision is taken based on data replicated at all nodes.

� There are no data dependencies between branches executed at different nodes.

In the second step of this process, all atomic blocks will be analyzed to detect the applicability
of the above mentioned criteria. This analysis can be performed statically either at compile
time (by writing a Scala compiler plug-in) or post-compilation by using the byte-code output.
Alternatively, the analysis could be performed dynamically at run-time by constructing a
Markov model of all possible execution states, as in [44].

Based on this analysis, potential independent transactions can be identified and the parti-
tioning scheme refined to reflect this knowledge.

8.1.2 Automatic Atomic-Block Refactoring

Our second goal is to automatically convert all atomic blocks in a program into the appro-
priate transaction model. Atomic blocks will be programmed by users without any regard
for the partitioning scheme. An analysis step similar to the one described in the previous
section will be applied to identify the most appropriate transaction model (i.e., single-node,
independent and coordinated) for each atomic block.

Once the transaction model is identified, the atomic block must be split into several sub-
transactions, one for each partition the atomic block executes at. This could be done at
byte-code level, grouping data dependency relationships based on the partition the data
belongs to. The multiple groups would then be reconstructed into specialized byte-code for
each partition. Alternatively, thanks to Scala’s nature as a functional programming language,
it may be feasible and possibly simpler to implement this transformation as a compiler pass.
For simplicity, the transformation may also restrict certain language features in the input
code, for instance, loops, closures, and others.
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If data dependencies cross partition borders, two alternatives are possible:

� Disallow this behavior. Encountering this condition means the partitioning scheme is
wrong.

� Automatically pass the data between the two partitions as part of a coordinated trans-
action.

Such an automatic conversion would make the DTM system easy to use, as the user does
not need to be aware of neither the underlying partitioning scheme, nor of the three dif-
ferent transaction models available. Automatic conversion also enables partitioning scheme
evolution and automatic data migration, to keep up with dynamic workload demands.

8.1.3 Conversion of Coordinated Transactions

Our third goal is to determine whether the remaining coordinated transactions could possibly
be broken down into two or more stages of single-node and/or independent transactions.
Consider for example a bank transfer from account A to account B, where the accounts reside
in different repositories. Withdrawing from account A first needs to check whether the funds
are available, and if not, abort the transaction. The transfer must thus be implemented
as a coordinated transaction, because the second repository has no way of independently
determining whether the transaction would abort.

This transaction can however be converted into a two non-coordinated transactions:

� First a single-node transaction checks the available balance on A and somehow reserves
the amount to be transferred (e.g., using an escrow account or locking account A
altogether).

� Then an independent transaction that unconditionally withdraws the amount from A
and deposits it on B.

We would like to devise a technique which would be able to analyze a coordinated transaction
like the one described above, and propose a refactoring into a sequence of more efficient
transactions (i.e., single-node and independent). This would most probably be achieved
by employing compile-time or post-compilation byte-code analysis, in order to extract the
sequence of execution states that leads to the decision of whether to abort the transaction.
This sequence would then be removed from the body of the original transaction, and executed
separately as a single-node transaction (let us call it the guard transaction). The guard
transaction will be able to determine whether the second phase may proceed. If so, the
guard transaction would acquire locks on the data it used to make its decision, and signal
the second phase transaction to proceed.
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This simple approach may not be possible in more complex transactions, e.g., if there are
multiple execution paths that lead to aborts, or if the transaction logically breaks down in
more than two phases. In these cases, we want to investigate whether we can relax the
consistency properties of such a transaction, in order to allow a conversion as previously
described.
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