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Extracting Parallelism from Legacy Sequential Code Using
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Mohamed M. Saad

(ABSTRACT)



Increasing the number of processors has become the mainstream for the modern chip design
approaches. On the other hand, most applications are designed or written for single core
processors; so they do not benefit from the underlying computation resources. Moreover,
there exists a large base of legacy software which requires an immense effort and cost of
rewriting and re-engineering.

Transactional memory (TM) has emerged as a powerful concurrency control abstraction. TM
simplifies parallel programming to the level of coarse-grained locking while achieving fine-
grained locking performance. In this dissertation, we exploit TM as an optimistic execution
approach for transforming a sequential application into parallel. We design and implement
two frameworks that support automatic parallelization: Lerna and HydraVM.

HydraVM is a virtual machine that automatically extracts parallelism from legacy sequential
code (at the bytecode level) through a set of techniques including code profiling, data depen-
dency analysis, and execution analysis. HydraVM is built by extending the Jikes RVM and
modifying its baseline compiler. Correctness of the program is preserved through exploit-
ing software transactional memory (STM) to manage concurrent and out-of-order memory
accesses.

Lerna is a compiler framework that automatically and transparently detects and extracts
parallelism from sequential code through a set of techniques including code profiling, in-
strumentation, and adaptive execution. Lerna is cross-platform and independent of the
programming language. The parallel execution exploits memory transactions to manage
concurrent and out-of-order memory accesses. This scheme makes Lerna very effective for
sequential applications with data sharing. Additionally, we introduce the general conditions
for embedding any transactional memory algorithm into our system.

While prior research shows that transactions must commit in order to preserve program se-
mantics, placing the ordering enforces scalability constraints at large number of cores. Our
first major post-preliminary research goal is to eliminate the need for ordering transactions
without affecting program consistency. We propose building a cooperation mechanism in
which transactions can forward some changes safely. This approach eliminates false conflicts
and increases concurrency opportunities. As our second contribution, we propose transac-
tional checkpointing as a technique for reducing the wasted processing time in abort and
code retrial. With checkpointing, a transaction can be partially aborted and only re-execute
the invalid portion.
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Chapter 1

Introduction

In the last decade, parallelism has gained a lot of attention due to the physical constraints
which prevent increasing processor operating frequency. The runtime of a program is mea-
sured by the time required to execute its instructions. Decreasing the runtime requires
reducing the execution time of a single instruction, which implies increasing the operating
frequency. From the mid of 1980s until the mid of 2000s1 this approach, namely frequency
scaling, was the dominant force in commodity processor performance to improve programs
runtime. However, operating frequency is proportional to the power consumptions and con-
sequently heat generation. This obstacles put an end to the era of frequency scaling and force
the chip designers to find an alternative approach for maintain the growth of applications
performance.

Gordon E. Moore put an empirical observation that the number of transistors in a dense
integrated circuit has doubled approximately every two years. With the power consumption
issues, these additional transistors are moved to add extra hardware that made multicore
processors become the norm for microarchitecture chip design. Wulf et. al. [132] report that
the rate of improvement in microprocessor speed exceeds the rate of improvement in memory
speed, which constraints the performance of any program running on a single processing unit.

These combined factors (i.e., power consumption, memory wall and the availability of extra
hardware resources) made parallelism, which primarily was employed for long time in high-
performance computing, appears as an appealing alternative.

Parallelism is the execution of a sequential application simultaneously on multiple compu-
tation resources. The application is divided into multiple sub-tasks that can run in parallel.
The communication between sub-tasks defines the parallelism granularity. An application
is embarrassingly parallel when the communications between its sub-tasks are rare while an
application with a lot of sub-tasks communications exhibits fine-grained parallelism. The

1At year 2004, because of the increase in processor power consumption Intel announced the cancellation
of its Tejas and Jayhawk processors, the successors processors families for Pentium 4 and Xeon respectively.

1
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maximum possible speedup of a single program as a result of parallelization is known as
Amdahl’s law. This law defines the relation between speedup and the time needed for the
sequential fraction of the program. On the other hand, the vast majority of the applica-
tions and algorithms are designed or written for single core processors (often intentionally
designed to be sequential to reduce development costs, while exploiting Moore’s law of single-
core chips).

1.1 Motivation

Many organizations with enterprise-class legacy software are increasingly faced with a hard-
ware technology refresh challenge due to the ubiquity of chip multiprocessor (CMP) hard-
ware. This problem is apparent when legacy codebases run into several million LOC and are
not concurrent. Manual exposition of concurrency is largely non-scalable for such codebases
due to the significant difficulty in exposing concurrency and ensuring the correctness of the
converted code. In some instances, sources are not available due to proprietary reasons, intel-
lectual property issues (of integrated third-party software), and organizational boundaries.
Additionally, adapting these programs to exploit hardware parallelism requires a (possibly)
massive amount of software rewriting operated by skilled programmers with knowledge and
experience of parallel programming. They must take care of both high-level aspects, such
as data sharing, race conditions, and parallel sections detection; and low-level hardware
features, such as thread communication, locality, caching, and scheduling. This motivates
techniques and tools for automated concurrency refactoring, or automatic parallelization.

Automatic parallelization simplifies the life of programmers, especially those not extensively
exposed to the nightmare of developing efficient concurrent applications, and to allow a grow-
ing number of (even legacy) systems to benefit from the nowadays available cheap hardware
parallelism. Automatic parallelization is targeting the programming transparency; The ap-
plication is coded as sequential and the specific methodology used for handling concurrency
is hidden to the programmer.

1.2 Current Research Contributions

In this thesis, we bridge the gap between the parallelism of existing multicore architectures
and the sequential design of most (including existing) applications by presenting

• HydraVM, a virtual machine, built by extending the Jikes RVM and modifying its base-
line compiler. It reconstructs programs at the bytecode level to enable more threads
to execute in parallel. HydraVM is equipped with ByteTM, which is a Software Trans-
action Memory (STM) implementation at the virtual machine level.
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• Lerna, a completely automated compiler framework that extracts parallelism from
existing code, at the intermediate representation level, and executes it adaptively and
efficiently on commodity multi-processor chips without any programmer intervention.
Lerna is based on LLVM, which covers a wide set of programming languages with
supports the generation of native executable as output.

Both implementations require no programmer intervention, they are completely automated,
and do not need to expose source code; unlike previous approaches for parallelization that
require programmer to identify parallel sections or additional information to help the paral-
lelization process.

The common technique used in our two implementations is the use of Transactional Memory
(TM) as an optimistic execution approach for transforming a sequential application into
parallel “blindly”, meaning without external interventions.

Transactional Memory (TM) introduces a simple parallel programming model while achiev-
ing performance close to fine-grained locking. With HydraVM, user benefits from TM seam-
lessly by running sequential programs and enjoys a safe parallel execution. Under-the-hood,
HydraVM handles the problems of detecting parallel code snippets, concurrent memory ac-
cess, synchronizations and resources utilization are handled.

From the experience with HydraVM, we learnt about parallel patterns and bottlenecks in
the programs. Firstly, relying only on dynamic analysis introduces an overhead that can be
easily avoided through pre-execution static analysis phase. Second, adaptive design should
not be limited to the architecture (e.g., runtime recompilation), but it could be extended
to: selecting best number of workers, assignment of parallel code to threads, and the depth
of speculative execution. Last, except recursive calls, most of the detected parallel traces
at HydraVM was primarily loops. Keeping these goals in sight, we designed Lerna as a
compiler framework. With Lerna, the sequential code is transformed into parallel with best-
efforts TM support to guarantee safety and to preserve ordering. Lerna produces a native
executable, yet adaptive; thanks to Lerna runtime library that orchestrates and monitor the
parallel execution. The programmer can interact with Lerna to aid the static analysis for
the sake of producing a less overhead program.

1.2.1 Transactional Parallelization

Transactions were originally proposed by database management systems (DBMS) to guaran-
tee atomicity, consistency, data integrity, and durability of operations manipulating shared
data. This synchronization primitive has been recently ported from DBMS to concurrent
applications (by relaxing durability), providing a concrete alternative to the manual imple-
mentation of synchronization using basic primitives such as locks. This new multi-threading
programming model has been named Transactional Memory (TM) [67].
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Transactional memory (TM) has emerged as a powerful concurrency control abstraction [59,
79] that permits developers to define critical sections as simple atomic blocks, which are
internally managed by the TM itself. It allows the programmer to access shared memory
objects without providing the mutual exclusion by hand, which inherently overcomes the
drawbacks of locks. As a result, with TM the programmer still writes concurrent code using
threads, but the code is now organized so that reads and writes to shared memory objects
are encapsulated into atomic sections. Each atomic section is a transaction, in which the
enclosed reads and writes appear to take effect instantaneously. Transactions speculatively
execute, while logging changes made to objects–e.g., using an undo-log or a write-buffer.
When two transactions conflict (e.g., read/write, write/write), one of them is aborted and the
other is committed, yielding (the illusion of) atomicity. Aborted transactions are re-started,
after rolling-back the changes–e.g., undoing object changes using the undo-log (eager), or
discarding the write buffers (lazy).

Besides a simple programming model, TM provides performance comparable to highly con-
current, fine-grained locking implementations [43, 22], and allows composability [60], which
enables multiples nested atomic blocks to be executed as a single all-or-nothing transaction.
Multiprocessor TM has been proposed in hardware (HTM), in software (STM), and in hard-
ware/software combination. TM’s adoption is growing in the last years, specially after the
integration with the popular GCC compiler (from the release 4.7), and due to the integration
into the embedded cache-coherence protocol of commodity processors, such as Intel [72] and
IBM [24], which naively allows transactions to execute directly on the hardware.

Given its easy-to-use abstraction, TM would seem the missing building block enabling the
(transparent) parallelization of sequential code by automatically injecting atomic blocks
around parallel sections. Unfortunately, such high-level abstraction comes with a price in
terms of performance cost, which easily leads to a parallel code slower than its sequential
version (e.g., in [26, 116] a performance degradation of between 3 to 7 times has been shown).

Motivated by TM’s advantages, we designed and implemented: 1) a java virtual machine,
named HydraVM, that detects eligible parallel hot-spot portion of the code at runtime, and
reconstruct the program producing a parallel version of the code, and 2) Lerna, a language-
independent compiler that transform the sequential application into an adaptive parallel
version that utilities underlying computation resources based on the execution profiles. Each
of these implementations is aided by novel techniques to overcome TM overhead, and to
support efficient parallel execution. Additionally, we introduce the general conditions for
preserving chronological ordering of the sequential program and embedding any transactional
memory algorithm into our system.
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1.2.2 HydraVM

This is a java virtual machine based on Jikes RVM. The user runs its sequential program (java
classes) using the virtual machine, and internally we instrument the bytecode at runtime to
profile the execution paths. The profiling detects which places of the code are suitable for
parallelization and does not have data dependency. Next, we reconstruct the bytecode by
extracting portions of the code to run as separate threads. Each thread runs as a transaction,
which means it operates on its private copy of memory. Conflicting transactions are aborted
and retried while successful transactions commit its changes at the chronological time of the
code it executes.

HydraVM inherits the adaptive design of Jikes RVM. The profiling and code reconstruction
continue while the program is running. We monitor the performance and abort rate of
transformed code and use this information to repeatedly reconstruct new versions of the
code. For example, assume a loop is parallelized and each iteration runs in a separate
transaction. When every three consecutive iterations of loop conflict with each other, then
a better reconstruction is to combine them and makes the transaction runs three iterations
instead one. It worth noting that the reconstruction process occurs at runtime by reloading
the classes definition.

Finally, we developed ByteSTM a software transactional memory implementation at the
bytecode level. With ByteSTM we have access to low-level memory (e.g., registers, thread
stack), so we can create a memory signature for memory accessed by the current transac-
tion. Comparing concurrent transaction signatures allows us to quickly detect conflicting
transaction.

1.2.3 Lerna

Leran is a compiler that runs on the intermediate representation level, which makes it in-
dependent of the source code and programming language used. The generated code is a
task-based multi-threaded version of the input code.

Unlink HydraVM, Lerna employs static analysis techniques, such as alias analysis and mem-
ory dependency analysis, to reduce the overhead of transactional execution, and here we
focus on parallelizing loops. Lerna is not limited to a specific TM implementation, and the
integration of any TM algorithm can be done through a well-defined APIs. Additionally, in
Lerna the mapping between extracted tasks and transactions is not one-to-one. A transaction
can run multiple tasks (tiling), or task can have multiple transactions (partitioning).

Lerna and HydraVM share the idea of exploiting transactional memory, profiling and pro-
ducing adaptive code. However, as Lerna supports the generation of native executable as
output we can’t rely on an underlying layer (the virtual machine in HydraVM) to support
the adaptive execution. Instead, we link the program with Lerna runtime library that is able
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to monitor and modify the key performance parameters of the our executor module such as:
number of workers threads, the mapping between transactions and tasks, and executing in
transaction mode or go sequentially.

1.3 Proposed Post-Prelim Work

With our experience with HydraVM and Lerna, we learnt that preserving program order
hampers scalability. A thread that completes its execution must either stalls waiting its
correct chronological order in the program or proceeds executing more transactions, and
consequently increases the lifetime of these pending transactions and makes them subject to
conflict with other transactions. Additionally, transactional reads and stores are sandboxed.
This prevents any possible cooperation between transactions that could still produce a correct
program results. For example, in DOACROSS loops [36] iterations are data or control
dependent, however, they can run in parallel with exchanging some data between them.
We propose a novel technique for cooperation between concurrent transactions and execute
them out-of-order. With this technique, transactions can expose their changes to other
transactions without waiting for their chronological commit times. Nevertheless, transactions
with the earlier chronological order can abort completed transactions (and cascade abort to
any other affected transactions) whenever a conflict exists.

Aborting a transaction is a costly operation, not only because the rollback cost, but retrying
the code execution doubles the cost and wastes precious processing cycles. Additionally,
transactions may do a lot of local processing work that does not use any protected shared
variables. We propose transaction checkpointing as a technique that creates multiple check-
points at some execution points. Using checkpoints, a transaction saves the state of the work
done at certain times after doing a considerable amount of work. Later, if the transaction
experienced a conflict due to an inconsistent read or because writing a value that should be
read by another transaction executing an earlier chronological order code, then it can re-
turn to the last state wherein the execution was valid (i.e., before doing the invalid memory
operation). Checkpointing introduces an overhead for creating the checkpoints (e.g., saving
the current state), and for restoring the state (upon abort). Unless the work done by the
transaction is large enough to outweigh this overhead, this technique is not recommended.
Also, checkpointing should be employed when the abort rate exceeds a predefined thresh-
old. A good example that would get use of this technique is when a transaction finishes its
processing by updating a shared data structure with a single point of insertion (e.g., linked
list, queue, stack); Two concurrent transactions will conflict when trying to use this shared
data structure. With checkpointing, the aborted transaction can jump back till before the
last valid step and retry the shared access step.
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1.4 Outline

This thesis is organized as follows. In Chapter 2 we survey the techniques for solving the
parallelization problem. We overview past and related efforts in Chapter 3. In Chapter 4
and 5, we detail our the architecture, transformation, optimization techniques, and the
experimental evaluation for our two implementations: HydraVM and Lerna. Finally, we
conclude and present post-preliminary work in Chapter 6.



Chapter 2

Background

Parallel computations can be done on multiple levels such as instructions, branch targets,
loops, execution traces, and subroutines. Loops have gained a lot of interest as it is by nature
a major source of parallelism, and usually contains most of processing.

Instruction Level Parallelization (ILP) is a measure of how many instructions that can run
in parallel. ILP is application specific as it involves reordering the execution of instruc-
tions to run in parallel and utilize the underlying hardware. ILP can be implemented using
software (compiler), or hardware (pipelining). Common techniques for supporting ILP are:
out-of-order execution; where instructions execute in any order that does not violate data
dependencies, register renaming ; which is renaming instructions operands to avoid unneces-
sary reuse of registers, and speculative execution; where an instruction is executed before it
should take place according to the serial control flow.

Since on average 20% of instructions are branches, branch prediction was extensively studied
to optimize branch execution and run targets in parallel with the evaluation of branching
condition. Branch predictor is usually implemented in hardware with different variants:
Early implementations of SPARC and MIPS used a static prediction by always predicting
that a conditional jump would not be taken, and execute the next instruction in parallel to
evaluating the condition. Dynamic prediction is implemented through a state-machine that
keeps the history of branches (per each branch, or globally). For example, Intel Pentium
processor uses a four state-machine to predict branches. The state-machine can be locally
(per branch instruction) as in Intel Pentium MMX, Pentium II, and Pentium III; or globally
(shared history of all conditional jumps) as in AMD, Intel Pentium M, Core and Core 2.

Loops can be classified as sequential loops, parallel loops (DOALL), and loops of intermediate
parallelism (DOACROSS) [36], see Figure 2.1. In DOALL loops, iterations are independent
and can run in parallel as no data dependency exists between loops. DOACROSS loops
exhibits inter-iterations data dependency. When data from lower index iterations used by
iterations with higher index, lexically-backward, the processors executing higher index iter-

8
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For i = 1 to n {
Sum = Sum + A[ i ] ;

}

(a) Sequential Loop

For i = 1 to n {
D[ i ] = A[ i ] ∗ B[ i ] + c

}

(b) DOALL Loop

For i = 1 to n−1 {
D[ i ] = A[ i ] + B[ i ]
C[ i ] = D[ i +1] ∗ B[ i ]

}

(c) Lexically-forward DOACROSS Loop

For i = 2 to n {
D[ i ] = A[ i ] + B[ i ]
C[ i ] = D[ i −1] ∗ B[ i ]

}

(d) Lexically-backward DOACROSS Loop

Figure 2.1: Loops classification according to inter-iterations dependency

ations must wait for the required calculations from lower index iterations to be evaluated
(See Figure 2.1d). In contrast, with lexically-forward loops, lower index iteration access data
used at higher index. Loops can run in parallel without delay if both iterations loaded their
data at the beginning of the iteration.

Traces are defined as the hot paths in program execution. Traces can be parts of loops, or
spans multiple iterations, can be parts of individual methods, or spans multiple methods.
Traces are detected dynamically at runtime and is defined as a set of basic blocks (set of
instructions ended with a branch). Similarly, traces can run in parallel on multiple threads,
then are linked together according to their entries and exits points. Figure 2.2 shows an
example of traces that run in parallel on three processors.

In contrast to data parallelism (e.g., a loop operating on the same data as in Figure 2.1),
Task parallelism is a form of parallelization wherein tasks or subroutines are distributed
over multiple processors. Each task has a different control flow and processing a different
set of data, however, they can communicate with each other through passing data between
threads. Running different tasks in parallel reduces the overall runtime of the program.

Another classification of parallel techniques is according to user intervention. In manual
parallelization, the programmer uses a programming language constructs to define paral-
lel portions of the code and protects shared data through synchronization primitives. An
alternative approach is that programmer designs and develops the program to run sequen-
tially, and uses interactive tools that analyze the program (statically or dynamically), and
provide the programmer with hints about data dependency and eligible portions for par-
allelization. Iteratively, the programmer modifies the code and compares the performance
scaling of different threading designs to get the best possible speedup. A clear examples
of this semi-automated technique are Intel Parallel Advisor [1], and Paralax compiler [129].
Lastly, automatic parallelization aims to parallelize program without any user intervention.
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Figure 2.2: Running traces over three processors

2.1 Manual Parallelization

Designing a parallel program that run efficiently in a multi-processor environment is not triv-
ial procedure as it involves multiple factors and requires a skilled programmer. Maintenance
and debugging of a parallel program is a nightmare and incredibly difficult, as it involves
racing, invalid shared data access, live and deadlock situations, and non-deterministic sce-
narios.

Firstly, the programmer must understand the problem that he tries to solve, and the nature
of input data. A problem can be partitioned according to the domain (i.e., input data
decomposition), or through functional decomposition (cooperative parallel sub-tasks).

After partitioning the problem, usually there is some kind of communications and shared data
access between different tasks. Both communications and shared access presents a challenge
(and usually delay) to the parallel program. An application is embarrassingly parallel when
the communications between its sub-tasks are rare and does not require a lot of data sharing.
The following factors needs to be considered for the inter-task communications

1. Frequency; An application exhibits fine-grained parallelism if its sub-tasks communi-
cate frequently while in coarse-grained parallelism, application experience less commu-
nication. As communication take place through a communication media (e.g., bus),
the contention over the communication media directly affect the overall performance,
especially if the media is being used for other purposes (e.g., transferring data from
and to processors).
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#pragma omp f o r p r i v a t e (n) shared ( t o t a l ) ordered schedu le ( dynamic )
f o r ( i n t n=0; n<100; ++n)
{

f i l e s [ n ] . compress ( ) ;

t o t a l += g e t s i z e ( f i l e s [ n ] ) ;

#pragma omp ordered
send ( f i l e s [ n ] ) ;

}

Figure 2.3: OpenMP code snippet

2. Cost; the communication cost is determined by; the delay in sending and receiving the
information and the amount of transferred data.

3. Blocking; communication can either synchronous or asynchronous. Synchronous com-
munications present a blocking at the receiver (and sender as well when an acknowl-
edgment is required). On the other hand, asynchronous communications allow both
sides to proceed processing but introduces more complexity to the application design.

Protecting shared data from concurrent access requires a synchronization mechanism such
as barriers and locks. Synchronization primitives usually introduce a bottleneck and a sig-
nificant overhead to the processing time. Besides, a misuse of locks can lead the application
to deadlock (i.e, two or more tasks are each waiting for the other to finish), livelock (i.e,
tasks are not blocked, but busy responding to each other to resume work), or starvation (i.e.,
greedy set of tasks keep holding the locks for long time).

Resolving data and control dependencies between tasks is the responsibility of the program-
mer. A good understanding of the inputs and underlying algorithm helps in determining
independent tasks, however, there are tools that could help in this step [1].

Finally, the programmer should maintain a load-balance between the computation resources.
For example, static assignment of tasks to processors (e.g., round-robin) is a light technique,
but may lead to low utilization; while dynamic assignment of tasks requires monitoring the
state of tasks (i.e., start and end times) and handling a shared queue of ready to execute
tasks.

As an example of parallel programming languages, OpenMP is a compiler extension for
C, C++ and Fortran languages that support adding parallelism to existing code without
significant changes. OpenMP primarily focuses on parallelizing loops and running iterations
in parallel with optional ordering capabilities. Figure 2.3 shows an example of OpenMP
parallel code that compress a hundred files, but sending them in order, and calculate the
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total size after compression. Programmer can define shared variables (e.g., total variable),
and local thread variables (e.g., the loop counter n). Shared variables are transparently
protected from concurrent access. A private copy is created for variables that are defined as
thread local (i.e using private primitive).

2.2 Automatic Parallelization

Past efforts on parallelizing sequential programs can be broadly classified into speculative and
non-speculative techniques. Non-speculative techniques, which are usually compiler-based,
exploit loop-level parallelism, and differ on the type of data dependency that they handle
(e.g., static arrays, dynamically allocated arrays, pointers) [17, 55, 113, 40].

In speculative techniques, parallel sections of the code run speculatively, guarded by a com-
pensating mechanism for handling operations violating the application consistency. The key
idea is to provide more concurrency where extra computing resources are available. Specu-
lative techniques can be broadly classified based on

1. what program constructs they use to extract threads (e.g., loops, subroutines, traces,
branch targets),

2. whether they are implemented in hardware or software,

3. whether they require source codes, and

4. whether they are done online, offline or both.

Of course, this classification is not mutually exclusive. The execution of speculative code is
either eager or predictive. In eager speculative execution, every path of the code is executed
(with the assumption of unlimited resources), however, only the correct value is committed.
With predictive execution, selected paths are executed according to a prediction heuristics.
If there is a misprediction, the execution is unrolled and re-executed.

Among speculative techniques, two appealing primary approaches: thread-level speculation
(TLS), and transactional memory (TM).

2.3 Thread Level Speculation

Thread-Level Speculation (TLS) refers to the execution of out-of-order (unsafe) operations
and caching the results to a thread-local storage or buffer (usually using the processor cache).
TLS assigns an age to each thread according to how early the code it executes. The thread
with the earliest age is marked as safe.
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Figure 2.4: Example of thread-level speculation over four processors

The speculative thread is subject to overflow for its buffer. When a thread buffer is full the
thread either stall (till it became the lowest age) or is squashed and restarted. An exception
from this is the safe thread (the one executing the earliest code). TLS monitors dependency
violations (e.g., through checking cache lines requests). For example, write-after-read (WAR)
dependency violation occurs when a higher age speculative thread modifies a value before
another lower age thread needs to read it. Similarly, when a higher age speculative thread
reads an address, then a lower age thread changes the value of this thread, then this is
another dependency violation named Read-after-write (RAW). A different type of violations
is the control dependency when a speculative thread executing an unreachable code due to
a change in the program control flow. Any dependency violations (data or control) causes
the higher age thread to be squashed and restarted. Figure 2.4 shows an example of TLS
using four processors.

To summarize, TLS runs code speculatively, and eventually the correct order is determined.
The evaluated operations are detected to be correct or not. Incorrect results are discarded
and the thread is restarted.

TLS is usually implemented through hardware. Speculative threads use processor cache as a
buffer for thread memory changes. Cache coherence protocols are overloaded with the TLS
monitoring algorithm. Squashing thread is done by aborting the thread and discard the
cache content while committing thread changes is done by flushing the cache to the main
memory. The same concept can be applied using software [78, 113, 40] (with performance
issues) especially when low-level operations is not feasible [34, 29] (e.g., with Java based
frameworks). TLS software implementations use a data access signature (or summaries) to
detects conflicts between speculative threads. An access signature represents all accessed
addresses using the current thread. Conflict is detected by intersecting signatures for partial
matches.
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2.4 Transactional Memory

Lock-based synchronization is inherently error-prone. Coarse-grained locking, in which a
large data structure is protected using a single lock is simple and easy to use but permits
little concurrency. In contrast, with fine-grained locking [89, 69], in which each component
of a data structure (e.g., a bucket of a hash table) is protected by a lock, programmers must
acquire necessary and sufficient locks to obtain maximum concurrency without compromis-
ing safety. Both these situations are highly prone to programmer errors. In addition, a
lock-based code is non-composable. For example, atomically moving an element from one
hash table to another using those tables’ (lock-based) atomic methods is difficult: if the
methods internally use locks, a thread cannot simultaneously acquire and hold the locks of
the two tables’ methods; if the methods were to export their locks, that will compromise
safety. Furthermore, lock-inherent problems such as deadlocks, livelocks, lock convoying,
and priority inversion haven’t gone away. For these reasons, the lock-based concurrent code
is difficult to reason about, program, and maintain [64].

Transactional memory (TM) [59] is a promising alternative to lock-based concurrency con-
trol. It was proposed as an alternative model for accessing shared memory addresses, without
exposing locks in the programming interface, to avoid the drawbacks of locks. With TM,
programmers write concurrent code using threads but organize code that read/write shared
memory addresses as atomic sections. Atomic sections are defined as transactions in which
reads and writes to shared addresses appear to take effect instantaneously. A transaction
maintains its read-set and write-set, and at commit time, checks for conflicts on shared ad-
dresses. Two transactions conflict if they access the same address and one access is a write.
When that happens, a contention manager [118] resolves the conflict by aborting one and
allowing the other to proceed to commit, yielding (the illusion of) atomicity. Aborted trans-
actions are re-started, often immediately. Thus, a transaction ends by either committing (i.e.,
its operations take effect) or by aborting (i.e., its operations have no effect). In addition to
a simple programming model, TM provides performance comparable to highly concurrent,
fine-grained locking implementations [43, 22] and is composable [60]. Multiprocessor TM
has been proposed in hardware (HTM), in software (STM), and in hardware/software com-
bination (HyTM).

Transactional Memory algorithms differ according to their design choices. An algorithm can
apply its changes directly to the memory and maintain an undo-log for restoring the memory
to a consistent state upon failure. Such an optimistic approach fits the situation with rare
conflicts. In contrast, an algorithm can use a private thread-local buffer to keep its changes
invisible from other transactions. At commit, the local changes are merged with the main
memory. Another orthogonal design choice is the time of conflict detection. Transactions
may acquire access (lock) on its write-set at encounter time or during the commit phase.

Figure 2.5 shows an example transactional code. Atomic sections are executed as transac-
tions. Thus, the possible values of A and B are either 42 and 42, or 22 and 11, respectively.



Mohamed M. Saad Chapter 2. Background 15

A = 10, B = 20;

THREAD A

atomic{
B = B + 1 ;
A = B ∗ 2 ;

}
. . . .

THREAD B

atomic{
B = A;

}
. . . .
. . . .

Figure 2.5: An example of transactional code using atomic TM constructs

An inconsistent view of a member (e.g., A=20 and B=10), due to atomicity violation or
interleaved execution, causes one of the transactions to abort, rollback, and then re-execute.

Motivated by TM’s advantages, several recent efforts have exploited TM for automatic par-
allelization. In particular, trace-based automatic/semi-automatic parallelization is explored
in [20, 21, 27, 42], which use HTM to handle dependencies. [104] parallelizes loops with
dependencies using thread pipelines, wherein multiple parallel thread pipelines run concur-
rently. [87] parallelizes loops by running them as transactions, with STM preserving the
program order. [122] parallelizes loops by running a non-speculative “lead” thread, while
other threads run other iterations speculatively, with STM managing dependencies.

2.4.1 NOrec

No Ownership Records Algorithm [38], or NOrec, is a lazy software transactional memory
algorithm that uses a minimal amount of meta-data for accessed memory addresses. Unlike
other STM algorithms, NOrec does not not associate ownership records (orecs) for maintain-
ing its write-set. Instead, it uses a value based validation during commit time, to make sure
the read values still have the same values the transaction already used during its execution.

Transactions use a write-buffer to store their updates, the implementation of the write-
buffer is a linear-probed hash table with versioned buckets to support O(1) clearing (when
transaction descriptor is reused). NOrec uses a lazy locking mechanism, which means written
addresses are not locked until the commit time. This approach reduces the locking time for
the accessed memory location which allows readers to proceed without writers interference.

NOrec employs a single global sequence lock. Whenever a transaction commits, the global
lock is acquired and is incremented. This assumption limits the system to have a single
committer transaction at a time. The commit procedure starts by incrementing the sequence
lock atomically. Failing to increment the lock means another writer transaction are trying
to commit, so the current transaction needs to validate its read-set and wait for the other
transaction to finish the commit. Upon successful increment, the transaction acquires locks
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on its write-set, expose the changes to the memory, and release the locks.

Another drawback of the algorithm is that before each read, it is required to validate the
whole read-set. This is required to maintain opacity [53] – a TM feature which mandates
that invalid transactions to always read consistent view of memory. NOrec tries to avoid
unneeded validation by doing it whenever the global sequence got changed (i.e., a transaction
commit take place).

NOrec is the default TM algorithm for Lerna. In Chapter 5 we describe our variant of the
algorithm that preserve ordering between concurrent transactions.

2.4.2 TinySTM

TinySTM [50] is a lock-based lightweight STM algorithm. It uses a single-version word-based
variant of LSA [108] algorithm. Similar to other word-based locking algorithms [38, 43],
TinySTM relies upon a shared array of locks that cover all memory addresses. Multiple
addresses are covered by the same lock, and each lock uses a single bit as a state (i.e., locked
or not), and the remaining bits as a version number. This version number indicates the
timestamp of the last transaction the wrote to any of the addresses covered by this lock.
As a lock covers a portion of the address space, false conflicts could occur when concurrent
transactions access adjacent addresses.

Unlike NOrec, TinySTM uses encounter time locking (ETL); transaction acquires locks dur-
ing the execution. The use of ETL is twofold: conflicts are discovered at an early time which
avoids wasting processing time executing a doomed transaction; and simplifies the handling
of read-after-write situations. The algorithm uses a time-based design [43, 108] by employ-
ing a shared counter as a clock. Update transactions acquire a new timestamp on commit,
validate its read-set, then store the timestamp to the versioned locks of its write-set.

TinySTM is proposed with two strategies for memory access: write-through and write-back;
each has its advantages and limitations. Using write-back strategy, updates are kept at a local
transaction write-buffer until commit time, while in write-through updates go to the main
memory and the old values are stored in an undo log. With write-through, transaction has
lower commit-time overhead and faster read-after-write/write-after-write handling. However,
the abort is costly as it requires restoring the old values of written addresses. On the other
hand, in write-back the abort procedure simply discards the read and write sets, but commit
requires validating the read-set and moving the write-set values from the local write-buffer
to the main memory.

The use of ETL is interesting to our work as it enable early detection of conflicting trans-
actions which save processing cycles. Additionally, the write-through strategy is perfect for
low-contention workloads as it involves lightweight commit that could lead to a comparable
performance to the sequential execution.
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Figure 2.6: Maximum Speedup according to Amdahl’s and Gustafson’s Lows

2.5 Parallelism Limits and Costs

Amdahl’s law is a formula that defines the upper bound on expected speedup to an overall
system when only part of the system is improved. Let S is the percentage of the program
serial portion of the code (i.e., not included into the parallelism). When executing the
program using n threads, then the expected execution time is

Time(n) = Time(1) ∗ (S + 1/n ∗ (1− S))

Therefore, the maximum speedup is given by the following formula

Speedup(n) = 1/(S + 1/n ∗ (1− S)) = n/(1 + S ∗ (n− 1))

Figure 2.6a shows the maximum possible speedup for different percentages of the sequential
portion of the code with different number of threads. With only 10% of the sequential code,
the maximum speedup using 20 threads is around 7× only. Thus, at some point adding an
additional processor to the system will add less speedup than the previous one, as the total
speedup heads toward the limit of 1/(1 − n). However, here we assume a fixed size of the
input. Usually adding more processors permits solving larger problems (i.e., increasing the
input size), consequently increases the parallel portion of the program. This fact is captured
by Gustafson’s Law which states that computations involving arbitrarily large data sets can
be efficiently parallelized. Accordingly, the speedup can be defined by the following formula
(See Figure 2.6b)

Speedup(n) = n− S ∗ (n− 1)
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In general, parallel applications are much more complex than sequential ones. The com-
plexity appears in every aspect of the development cycle including: design, development,
debugging, tuning, and maintenance. Add to that the hardware requirements for running a
parallel system. The return value per added processor is not guaranteed to be reflected in
the overall performance. On the contrary, sometimes splitting the workload over even more
threads increases rather than decreases the amount of time required to finish. This is known
as parallel slowdown.



Chapter 3

Past & Related Work

3.1 Transactional Memory

The classical solution for handling shared memory during concurrent access is lock-based
techniques [7, 71], where locks are used to protect shared addresses. Locks have many draw-
backs including deadlocks, livelocks, lock-convoying, priority inversion, non-composability,
and the overhead of lock management.

TM, proposed by Herlihy and Moss [67], is an alternative approach for shared memory
access, with a simpler programming model. Memory transactions are similar to database
transactions: a memory transaction is a self-maintained entity that guarantees atomicity
(all or none), isolation (local changes are hidden till commit), and consistency (linearizable
execution). TM has gained significant research interest including that on STM [119, 90, 61,
58, 65, 66, 86], HTM [67, 57, 6, 18, 91], and HyTM [12, 39, 92, 77]. STM has relatively
larger overhead due to transaction management and architecture-independence. HTM has
the lowest overhead but assumes architecture specializations. HyTM seeks to combine the
best of HTM and STM.

STM can be broadly classified as static or dynamic. In static STM [119], all accessed
addresses are defined in advance, while dynamic STM [65, 66, 86] relaxes that restriction. The
dominant trend in STM designs is to implement the single-writer/multiple-reader pattern,
either using locks [44, 43] or obstruction-free (i.e., a single thread executed in isolation will
complete its operation with a bounded number of steps) techniques [109, 65], while few
implementations allow multiple writers to proceed under certain conditions [110]. In fact, it
is shown in [48] that obstruction-freedom is not an important property and results in less
efficient STM implementations than lock-based ones.

Another orthogonal TM property is address acquisition time: pessimistic approaches acquire
addresses at encounter time [48, 22], while optimistic approaches do so at commit time [44,

19
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43]. Optimistic address acquisitions generally provide better concurrency with acceptable
number of conflicts [43]. STM implementations also rely on write-buffer [85, 86, 65] or undo-
log [92] for ensuring a consistent view of memory. In write-buffer, address modifications are
written to a local buffer and take effect at commit time. In the undo-log method, writes
directly change the memory, and the old values are kept in a separate log to be retrieved at
abort.

Nesting (or composability) is an important feature for transactions as it allows partial roll-
back and introduces semantics between the parent transaction and its enclosed ones. Earlier
TM implementations did not support nesting or simply flattened nested transactions into a
single top-level transaction. Harris et. al. [60] argue that closed nested transactions, support-
ing partial rollback, are important to implementing composable transactions, and presented
an orElse construct that relies upon closed nesting. In [4], Adl-Tabatabai et. al. presented
an STM that provides both nested atomic regions and orElse, and introduced the notion
of mementos to support efficient partial rollback. Recently, a number of researchers have
proposed the use of open nesting. Moss described the use of open nesting to implement
highly concurrent data structures in a transactional setting [93]. In contrast to the database
setting, the different levels of nesting are not well-defined; thus different levels may conflict.
For example, a parent and child transaction may both access the same memory location and
conflict.

3.2 Parallelization

Parallelization has been widely explored with different levels of programmer intervention.
Manual parallelization techniques rely on the programmer for analysis and design phases
but assist him in the implementation and performance tuning. Open Multi-Processing
(OpenMP) [37] defines an API that supports shared memory multiprocessing programming
in C, C++, and Fortran. The programmer uses OpenMP directives to define parallel sec-
tions of the code and the execution semantics (e.g., ordering). Synchronization of shared
access is handled through directives that define the scope of access (i.e., shared or pri-
vate). OpenMP transparently and efficiently handles the low-level operations such as locking,
scheduling and threads stalling. MPI [120], Message Passing Interface, is a message-based
language-independent communications protocol used for parallel computing. MPI offers a
basic concepts for messaging between parallel processes such as: grouping and partitioning of
processes, type of communication (i.e., point-to-point, broadcasting or reduce), interchanged
data types, and synchronization (global, pairwise, and remote locks). NVIDIA introduced
CUDA [100] as a parallel programming and computing platform for its graphics process-
ing units (GPUs); This enables programmers to access the GPU virtual instruction set and
memory, and use it for general purpose processing (not exclusively graphics computation).
GPUs rely on using many concurrent slow threads than using limited count of cores with
high speed (as in CPUs), which makes GPUs suitable for data-parallel computations.
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An alternative approach, semi-automatic parallelization, is to provide programmer with hints
and design decisions that helps him to write a code that is more eligible for parallelization,
or detects data dependencies and shared accesses during design phase when they are less
expensive to fix. Paralax [129] is a compiler framework for extracting parallel code using
static analysis. Programmers use annotations to assist the compiler in finding parallel sec-
tions. DiscoPoP [81] and Kremlin [51] are runtime tools that discover and present ranked
suggestions for parallelization opportunities. Intel Parallel Advisor [1] (or Advisor XE) is
a shared memory threading design and prototyping tool. Advisor XE helps programmers
to detect parallel sections and compare the performance using different threading models.
Additionally, it finds data dependencies which enables eliminating them, if possible.

Automatic parallelization aims to produce best-effort performance without any programmer
intervention; This relieve programmers from designing and writing complex parallel applica-
tions, besides, it is highly useful for legacy code. Polaris [49], one of the earliest parallelizing
compiler implementations, proposes a source-to-source transformation that generates a paral-
lel version of the input program (Fortran). Another example is Standford SUIF compiler [55];
It determines parallelizable loops using a set of data dependency techniques such as data
dependence analysis, scalar privatization analysis, and reduction recognization. SUIF opti-
mizes cache usage through ensuring that processors re-use the same data and defragments
shared addresses.

Parallelization techniques can be classified according to its granularity. Significant efforts
have focused on enhancing fine-grain parallelism such as: parallelization of nested loops [19,
107, 36], regular/irregular array accesses [114], and scientific computations [134] (e.g., dense/s-
parse matrix calculations). Sohi et. al. [121] increase instruction-level parallelism by dividing
tasks for speculative execution on functional units; [112] does so with a trace-based processor.
Nikolov et. al. [99] use a hybrid processor/SoC architecture to exploit nested loop parallelism,
while [5] uses postdominance information to partition tasks on a multithreaded architecture.
However, fine-grain parallelism is insufficient to exploit CMP parallelism. Coarse-grain par-
allelism focuses on parallelizing tasks as a unit of work. In [126], programmer manually
annotates concurrent and synchronized code blocks in C programs and then uses those an-
notations for runtime parallelization. Gupta et. al. [54] and Rugina et. al. [113] do a
compile-time analysis to exploit parallelism in array-based, divide-and-conquer programs.

3.3 Optimistic Concurrency

Optimistic concurrency techniques, such as thread-level speculation (TLS) and Transactional
Memory (TM), have been proposed as a way of extracting parallelism from legacy code.
Both techniques split an application into sections using hardware or a compiler, and run
them speculatively on concurrent threads. A thread may buffer its state or expose it and
use a compensating procedure. At some point, the executed code may become safe and
the code proceeds as if it was executed sequentially. Otherwise, the code’s changes are
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reverted, and the execution is restarted. Some efforts combined TLS and TM through a
unified model [11, 106, 105] to get the best of the two techniques.

Parallelization using thread-level speculation (TLS) has been extensively studied using both
hardware [124, 75, 56, 32] and software [107, 82, 107, 30, 88]. It was originally proposed by
Rauchwerger et. al. [107] for identifying and parallelizing loops with independent data access
– primarily arrays. The common characteristics of TLS implementations are: they largely
focus on loops as a unit of parallelization; they mostly rely on hardware support or changes
to the cache coherence protocols, and the size of parallel sections is usually small (e.g., the
inner-most loop). In [88], authors share the same sweet-spot we aim for, applications with
non-partitionable accesses and data sharing by providing a low-overhead STM algorithm.

3.3.1 Thread-Level Speculation

Automatic parallelization for thread-level speculation (TLS) hardware has been extensively
studied, most of which largely focus on loops [107, 127, 46, 83, 123, 31, 33, 103, 131]. Loop
parallelization using TLS is proposed in both hardware [102] and software [107, 13]. The
LRPD Test [107] determines if the loop has any cross-iteration dependencies (i.e., DOALL
loop) and runs it speculatively; At runtime, a validation step is performed to check if the
accessed data is affected by any unpredictable control flow. Saltz and Mirchandane [117]
parallelize DOACROSS loops by assigning iterations to processors in a wrapped manner.
To prevent data dependency violations, processors have to stall till the correct values are
produced. Polychronopoulos [101] proposes running the maximal set of continuous iter-
ations with no dependency concurrently; subsequently this method does not fully utilize
all processors. An alternative approach is to remove dependencies between the iterations.
Krothapalli et. al. [76] propose a runtime method to remove anti write-after-read (WAR) and
write-after-write (WAW) dependencies. This method helps to remove dependencies caused
by reusing memory/registers, but does not remove computation dependencies.

Prabhu et. al. [102] present some guidelines for programmers to manually parallelize the code
using TLS. In their work, a source-to-source transformation is performed to run the loops
speculatively, and TLS hardware detects the data dependency violations and act accordingly
(i.e., squash the threads and restart the iteration). Zilles et. al. [133] introduce an execution
paradigm called Master/Slave Speculative Parallelization (MSSP). In MSSP, a master pro-
cessor executes an approximate version of the program, based on common-case execution,
to compute selected values that the full program’s execution is expected to compute. The
masters results are checked by slave processors that execute the original program.

Automatic and semi-automatic parallelization without TLS hardware have also been ex-
plored [78, 113, 40, 34, 29]. In [104], Raman et. al. propose a software approach that gen-
eralizes existing software TLS memory systems to support speculative pipelining schemes,
and efficiently tunes it for loop parallelization. Jade [78] is a programming language that
supports coarse-grain concurrency and exploits a software TLS technique. Using Jade, pro-
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grammers augment the code with data dependency information, and the compiler uses this
to determine which operations can be executed concurrently. Deutsch [40] analyzes sym-
bolic access paths for interprocedural may-alias analysis, toward exploiting parallelism. In
[34], Choi et. al. present escape analysis for Java programs for determining object lifetimes
toward enhancing concurrency.

3.3.2 Parallelization using Transactional Memory

Tobias et. al. [47] propose an epoch-based speculative execution of parallel traces using
hardware transactional memory (HTM). Parallel sections are identified at runtime based
on binary code. The conservative nature of the design does not utilize all cores, besides,
relying on only at runtime for parallelization introduce nonnegligible overhead to the frame-
work. Similarly, DeVuyst et. al. [41] use HTM to optimistically run parallel sections, which
are detected using special hardware. Sambamba [125] showed that static optimization at
compile-time does not exploit all possible parallelism. Similar to our work, it used Software
Transactional Memory (STM) with an adaptive runtime approach for executing parallel sec-
tions. It relies on user input for defining parallel sections. Gonzalez et. al. [52] proposed
a user API for defining parallel sections and the ordering semantics. Based on user input,
STM is used to handle concurrent sections. In contrast, HydraVM does not require special
hardware and is fully automated, with an optional user interaction for improving speedup.

The study at [130] classified applications into: sequential, optimistically parallel, or truly
parallel and classify tasks into: ordered (speculative iterations of loop), and unordered (crit-
ical sections). It introduces a model that captures data and inter-dependencies. For a set of
benchmarks [25, 9, 98, 28], the study showed important features for each like: size of read
and write sets, dependencies density, and size of parallel sections.

Mehrara et. al. [87] present STMlite: a lightweight STM implementation customized to
facilitate profile-guided automatic loop parallelization. In this scheme, loop iterations are
divided into chunks and distributed over available cores. An outer loop is generated around
the original loop body to manage parallel execution between different chunks.

In MTX, a transaction is running under more than one thread. Vachharajani et. al. [128]
present a hardware memory system that supports MTXs. Their system changes hardware
cache coherence protocol to buffer speculative states and recover from mis-speculation. Soft-
ware Multi-threaded Transactions (SMTX) are used to handle memory access of speculated
threads. Both SMTX and STMlite use a centralized transaction commit manager and con-
flict detection that is decoupled from the main execution.

Sambamba [125] showed that static optimization at compile-time does not exploit all possible
parallelism. Similar to our work, it used Software Transactional Memory (STM) with an
adaptive runtime approach for executing parallel sections. It relies on user input for defining
parallel sections. Gonzalez et. al. [52] proposed a user API for defining parallel sections and
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the ordering semantics. Based on user input, STM is used to handle concurrent sections.

3.4 Comparison with existing work

Most of the methodologies, tools and languages for parallelizing programs target scientific
and data parallel computation intensive applications, where the actual data sharing is very
limited and the data-set is precisely analyzed by the compiler and partitioned so that the
parallel computation is possible. Examples of that those approaches include [97, 111, 82, 68].

Despite the flexibility and ease of use of TM, the primary drawback of using it for paral-
lelization is the significant overhead of code execution and validation [26, 116]. Previous
work [52, 125] relied primarily on the programmer for specifying parallel sections, and defin-
ing ordering semantics. The key weaknesses with the programmer reliance are:

1. it requires a full understanding of the software (e.g., the implementation algorithm and
the input characteristics) and mandates the existence of the source code;

2. it does not take into account TM characteristics and factors of overhead; and

3. it uses TM as a black box utility for preserving data integrity.

In contrast, the solutions proposed in this thesis target common programs and analyzes
the code at its intermediate representation without the need for its original source code.
This makes us independent of the language in which the code was written with, and does
not enforce the user to expose the source code to our framework, especially when it is not
available for him in some cases.

Additionally, In Lerna, we employ alias analysis and propose two novel techniques: irre-
vocable transactions and transactional increment, for reducing read-set size and validation
overhead and eliminates some reasons of transaction conflicts. As far as we know, this is the
first study that attempts to reduce transactional overhead based on program characteristics.

HydraVM and MSSP [133] shares the same concept of using execution traces (not just
loops such as [87, 122]). However, MSSP uses superblock [70] executions for validating
the main execution. In contrast, HydraVM splits execution equally on all threads and
uses STM for handling concurrent memory accesses. Perhaps, the closest to our proposed
work are [21] and [47]. Our work differs from [21] and [47] in the following ways. First,
unlike [47], we propose STM for concurrency control, which does not need any hardware
transactional support. Second, [21] is restricted to recursive programs, whereas we allow
arbitrary programs. Third, [21] does not automatically infer transactions; rather, entire
work performed in tasks (of traces) is packaged as transactions. In contrast, we propose
compile and runtime program analysis techniques that identify traces, which are executed
as transactions.
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Our work is fundamentally different from past STM-based parallelization works in that: we
benefit from static analysis for reducing transactional overheads, and automatically identify
parallel sections (i.e., traces or loops) by compile and runtime program analysis techniques,
which are then executed as transactions. Additionally, our work targets arbitrary programs
(not just recursive such as [21]), is entirely software-based (unlike [21, 47, 41, 128]), and do
not require program source code. Thus, our proposed work of STM-based parallelization
(with the consequent advantages of STM’s concurrency control; completely software-based;
and no need for program sources), has never been done before.



Chapter 4

HydraVM

In this chapter, we present a virtual machine, called HydraVM, that automatically extracts
parallelism from legacy sequential code (at the bytecode level) through a set of techniques
including online and offline code profiling, data dependency analysis, and execution analysis.
HydraVM is built by extending the Jikes RVM [8] and modifying its baseline compiler,
and exploits software transactional memory to manage concurrent and out-of-order memory
accesses.

HydraVM targets extracting parallel jobs in the form of code traces. This approach is
different from loop parallelization [19], because a trace is equivalent to an execution path
which can be a portion of a loop, or spans loops and method calls. Traces were invented
in [10] as part of HP’s Dynamo optimizer, which optimizes native program binary at runtime
using a trace cache.

To handle potential memory conflicts, we develop ByteSTM, which is a VM-level STM
implementation. In order to preserve original semantics, ByteSTM suspends completed
transactions till their valid commit times are reached. Aborted transactions discard their
changes and are either terminated (i.e., a program flow violation or a misprediction) or
re-executed (i.e., to resolve a data-dependency conflict).

We experimentally evaluated HydraVM on a set of benchmark applications, including a
subset of the JOlden benchmark suite [23]. Our results reveal speedup of up to 5× over the
sequential code.

26
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4.1 Program Reconstruction

The program can be represented as a set of basic blocks, where each basic block is a sequence
of non-branching instructions that ends either with a branch instruction (conditional or non-
conditional) or a return. Thus, any program can be represented by a directed graph in which
nodes represent basic blocks and edges represent the program control flow – i.e., control flow
graph (CFG). Basic blocks can be determined at compile-time. However, our main goal is
to determine the context and frequency of reachability of the basic blocks – i.e., when the
code is revisited through execution.

Basic blocks can be grouped according to their runtime behavior and execution paths. A
Trace is a set of connected basic blocks at the CFG, and it represents an execution path
(See Figure 4.5a). A Trace contains one or more conditional branches that may transfer the
control out of the trace boundaries, namely exits. Exists transfer control to the program or
to another trace. It is possible for a trace to have more than one entry, and a trace with a
single entry is named a Superblock [70].

Our basic idea is to optimistically split code into parallel traces. For each trace, we create a
synthetic method (See Figure 4.1b) that:

• Contains the code of the trace.

• Receives its entry point and any variables accessed by the trace code as input param-
eters.

• Returns the exit point of the trace (i.e., the point where the function returns).

Synthetic methods are executed in separate threads as memory transactions, and a TM
library is used for managing the contention. We name a call to the synthetic methods with
a specific set of inputs as a job. Multiple jobs can execute the same code (trace), but with
different inputs. As concurrent jobs can access and modify the same memory location, it is
required to protect memory against invalid accesses. To do so, we employ TM to organize
access to memory and to preserve memory consistency. Each transaction is mapped to a
subset of the job code or spans multiple jobs.

While executing, each transaction operates on a private copy of the accessed memory. Upon
a successful completion of the transaction, all modified variables are exposed to the main
memory. We define a successful execution of an invoked job as an execution that satisfies
the following two conditions:

• It is reachable by future executions of the program; and

• It does not cause a memory conflict with any other job having an older chronological
order.
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(a) Control Flow Graph with two Traces

(b) Transformed Program

Figure 4.1: Program Reconstruction as Jobs
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As we will detail in Section 4.2, any execution of a parallel program produced after our
transformations is made of a sequence of jobs committed after a successful execution.

In a nutshell, the parallelization targets those blocks of code that are prone to be paral-
lelized and uses the TM abstraction to mark them. Such TM-style transactions are then
automatically instrumented by us to make the parallel execution correct (i.e., equivalent to
the execution of the original serial application) even in presence of data-conflicts (e.g., the
case of two iterations of one loop activated in parallel and modifying the same part of a
shared data structure). Clearly the presence of more conflicts leads to less parallelism and
thus poor performance.

4.2 Transactional Execution

TM encapsulates optimism: a transaction maintains its read-set and write-set, i.e., the
objects read and written during the execution, and at commit time checks for conflicts on
shared objects. Two transactions conflict if they access the same object, and one access is
a write. When this happens, a contention manager [118] solves the conflict by aborting one
and allowing the other to proceed to commit, yielding (the illusion of) atomicity. Aborted
transactions are re-started, often immediately. Thus, a transaction ends by either committing
(i.e., its operations take effect), or by aborting (i.e., its operations have no effect).

The atomicity of transactions is mandatory as it guarantees the consistency of the code, even
after its refactoring to run in parallel. However, if no additional care is taken, transactions
run and commit independently of each other, and that could revert the chronological order
of the program, which must be preserved to avoid incorrect executions.

In our model, jobs run (which contain transactions) speculatively, but a transaction, in
general, is allowed to commit whenever it finishes. This property is desirable to increase
thread utilization and avoid fruitless stalls, but it can lead to transactions corresponding
to unreachable code (e.g., a break condition that changes the execution flow), and transac-
tions executing code with earlier chronological order may read future values from committed
transactions that are corresponding to code with later chronological order. The following
example illustrates this situation.

Consider the example in Figure 4.2, where three jobs A, B, and C are assigned to different
threads TA, TB, and TC and execute as three transactions tA, tB, and tC , respectively. Job A
can have B or C as its successor, and that cannot be determined until runtime. According to
the parallel execution in Figure 4.2(b), TC will finish execution before others. However, tC
will not commit until tA or tB completes successfully. This requires that every transaction
must notify the STM to permit its successor to commit.

Now, let tA conflict with tB because of unexpected memory access. STM will favor the
older transaction in the original execution and abort tB, and will discard its local changes.
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Figure 4.2: Parallel execution pitfalls: (a) Control Flow Graph, (b) Possible parallel execu-
tion scenario, and (c) Managed TM execution.
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Later, tB will be re-executed. A problem arises if tA and tC wrongly and unexpectedly access
the same memory location. Under Figure 4.2(b)’s parallel execution scenario, this will not
be detected as a transactional conflict (TC finishes before TA). To handle this scenario,
we extend the lifetime of transactions to the earliest transaction starting time. When a
transaction must wait for its predecessor to commit, its lifetime is extended till the end of
its predecessor. Figure 4.2(c) shows the execution from the our managed TM perspective.

Although these scenarios are admissible under generic concurrency controls (where the order
of transactions is not enforced), it clearly violates the logic of the program. To resolve this
situation, program order is maintained by deferring the commit of transactions that complete
early till their valid execution time.

Motivated by that, we propose an ordered transactional execution model based on the orig-
inal program’s chronological order. Transactions execution works as follows. Transactions
have five states: idle, active, completed, committed, and aborted. Initially, a transaction is
idle because it is still in the transactional pool waiting to be attached to a job to dispatch.
Each transaction has an age identifier that defines its chronological order in the program. A
transaction becomes active when it is attached to a thread and starts its execution. When
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a transaction finishes the execution, it becomes completed. That means that the transac-
tion is ready to commit, and it completed its execution without conflicting with any other
transaction. A transaction in this state still holds all locks on the written addresses. Finally,
the transaction is committed when it becomes reachable from its predecessor transaction.
Decoupling completed and committed states, permits threads to process next transactions
without the need to wait for the transaction valid execution time.

4.3 Jikes RVM

Jikes Research Virtual Machine (Jikes RVM) is an open source implementation Java virtual
machine (JVM). Jikes RVM has a flexible and modular design that support prototyping,
testbed and doing the experimental analysis. Unlike most other JVM implementations,
which is usually written in native code (e.g., C, C++), Jikes is written in Java. This
characteristic provides portability, object-oriented design, and integration with the running
applications.

Jikes RVM is divided to the following components:

• Core Runtime Services : This component is responsible for managing the execution of
running applications, which includes the following:

– Thread creation, management and scheduling.

– Loading classes definitions and triggering compiler.

– Handling calls to Java Native Interface (JNI) methods

– Exception handling and traps

• Magic: This is a mechanism for handling low-level system-programing operations such
as: raw memory access, uninterruptible codes, and unboxed types. Unlike all other
components, this module is not written in pure Java, as it uses machine code to provide
this functionality.

• Compilers : it reads bytecode and generates an efficient machine code that is executable
for the current platform

• The Memory Manager Toolkit (MMTK) handles memory allocation and garbage col-
lection.

• Adaptive Optimization System (AOS) allows online feedback-directed optimizations. It
is responsible for profiling an executing application and triggers the optimizing compiler
to improve its performance.
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4.4 System Architecture

In HydraVM, we extend the AOS [8] architecture to enable parallelization of input programs,
and dynamically refine parallelized sections based on execution. Figure 4.4 shows HydraVM’s
architecture, which contains six components:

• Profiler: performs static analysis and adds additional instructions to monitor data
access and execution flow.

• Inspector: monitors program execution at runtime and produces profiling data.

• Optimization Compiler: recompiles bytecode at runtime to improve performance and
triggers reloading classes definitions.

• Knowledge Repository: a store for profiling data and execution statistics.

• Builder: uses profiling data to reconstruct the program as multi-threaded code, and
tunes execution according to data access conflicts.

• TM Manager: handles transactional concurrency control to guarantee safe memory
and preserves execution order.

HydraVM works in three phases. The first phase focuses on detecting parallel patterns in the
code, by injecting the code with hooks, monitoring code execution, and determining memory
access and execution patterns. This may lead to slower code execution due to inspection
overhead. Profiler is active only during this phase. It analyzes the bytecode and instruments
it with additional instructions. Inspector collects information from generated instructions
and stores it in the Knowledge Repository.

The second phase starts after collecting enough information in the Knowledge Repository
about which blocks were executed and how they access memory. The Builder component
uses this information to split the code into traces, which can be executed in parallel. The
new version of the code is generated and is compiled by the Recompiler component. The
TM Manager manages memory access of the execution of the parallel version, and organizes
transactions commit according to the original execution order. The manager collects profiling
data including commit rate and conflicting threads.

The last phase is tuning the reconstructed program based on thread behavior (i.e., conflict
rate). The Builder evaluates the previous reconstruction of traces by splitting or merging
some of them, and reassigning them to threads. The last two phases work in an alternative
way till the end of program execution, as the second phase represents a feedback to the third
one.

HydraVM supports two modes: online and offline. In the online mode, we assume that
program execution is long enough to capture parallel execution patterns. Otherwise, the
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Figure 4.4: HydraVM Architecture
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first phase can be done in a separate pre-execution phase, which can be classified as offline
mode.

We now describe each of HydraVM’s components.

4.4.1 Bytecode Profiling

To collect this information, we modify Jikes RVM’s baseline compiler to insert additional
instructions (in the program bytecode) at the edges of selected basic blocks (e.g., branching,
conditional, return statements) that detect whenever a basic block is reached. Additionally,
we insert instructions into the bytecode to:

• Statically detect the set of variables accessed by the basic blocks, and

• Mark basic blocks with irrevocable calls (e.g., input/output operations), as they need
special handling in program reconstruction.

This code modification does not affect the behavior of the original program. We call this
version of the modified program, profiled bytecode.

4.4.2 Trace detection

With the profiled bytecode, we can view the program execution as a graph with basic blocks
and variables represented as nodes, and the execution flow as edges. A basic block that is
visited more than once during execution will be represented by a different node each time
(See Figure 4.5b). The benefits of execution graph are multifold:

• Hot-spot portions of the code can be identified by examining the graph’s hot paths,

• Static data dependencies between blocks can be determined, and

• Parallel execution patterns of the program can be identified.

To determine traces, we use a string factorization technique: each basic block is represented
by a character that acts like a unique ID for that block. Now, an execution of a program
can be represented as a string. For example, Figure 4.5a shows a matrix multiplication code
snippet. An execution of this code for a 2x2 matrix can be represented with the execution
graph shown at Figure 4.5b, or as the string abjbhcfefghcfefghijbhcfefghcfefghijk. We
factorize this string into its basic components using a variant of Main’s algorithm [84]. The
factorization converts the matrix multiplication string into ab(jb(hcfefg)2hi)2jk. Using this
representation, combined with grouping blocks that access the same memory locations, we
divide the code into multiple sets of basic blocks, namely traces (See Figure 4.5c). In our
example, we detected three traces:



Mohamed M. Saad Chapter 4. HydraVM 35

f o r ( In t eg e r i = 0 ; i < DIMx; i++)
f o r ( In t eg e r j = 0 ; j < DIMx; j++)

f o r ( In t eg e r k = 0 ; k < DIMy; k++)
X[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;

(a) Matrix Multiplication Code
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Figure 4.5: Matrix Multiplication
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1. Trace ab with two entries (to a and to b), and two exits (to j and to h)

2. Trace jk with a single entry (to j), and two exits (to z and to b), and

3. Trace hcfefg two entries (to h and to e) and three exits (to h, to e and to i). In this
trace the inner most loop was unrolled, so each trace represents two iterations of the
inner most loop. This is reflected in Figure 4.5c by adding an extra node f . Note that
the transition from g to h is represented by an exit and an entry, not as an internal
transition within the trace. This difference enables running multiple jobs concurrently
executing the same trace code.

Thus, we divide the code, optimistically, into independent parts called traces that represent
subsets of the execution graph. Each trace does not overlap with other traces in accessed
variables, and represents a long sequence of instructions, including branch statements, that
commonly execute in this pattern. Since a branch instruction has taken and not taken paths,
the trace may contain one or both of the two paths according to the frequency of using those
paths. For example, in biased branches, one of the paths is often considered; so it is included
in the trace, leaving the other path outside the trace. On the other hand, in unbiased
branches, both paths may be included in the trace. Therefore, a trace has multiple exits,
according to the program control flow during its execution. A trace also has multiple entries,
since a jump or a branch instruction may target one of the basic blocks that constructs it.
The builder module orchestrates the construction of traces and distributes them over parallel
threads. However, this may potentially lead to an out-of-order execution of the code, which
we address through STM concurrency control (see Section 4.2). I/O instructions are excluded
from parallel traces, as changing their execution order affects the program semantics, and
they are irrevocable (i.e., at transaction aborts).

4.4.3 Parallel Traces

Upon detection of candidate trace for parallelization, the program is reconstructed as a
producer-consumer pattern. In this pattern, two daemons threads are active, producer and
consumer, which share a common fixed-size queue of jobs. Recall that a job represents a
call to the synthetic methods executing the trace code with a specific set of inputs. The
producer generates jobs and adds them in the queue, while the consumer dequeues the jobs
and executes them. HydraVM uses a Collector module and an Executor module to process
the jobs: the Collector has access to the generated traces and uses them as jobs, while the
Executor executes the jobs by assigning them to a pool of core threads.

Figure 4.6 shows the overall pattern of the generated program. Under this pattern, we utilize
the available cores by executing jobs in parallel. However, doing so requires handling of the
following issues:

• Threads may finish in out of original execution order.
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Figure 4.6: Program Reconstruction as a Producer-Consumer Pattern

• The execution flow may change at runtime causing some of the assigned traces to be skipped
from the correct execution.

• Due to the differences between the actual execution flow in the profiling phase and the actual

execution, memory access conflicts between concurrent accesses may occur. Also, memory

arithmetic (e.g., arrays indexed with variables) may easily violate the program reconstruction

(see example in Section 4.4.5).

To tackle these problems, we execute each job as a transaction. A transaction’s changes are
deferred until commit. At commit time, a transaction commits its changes if and only if: 1)
it did not conflict with any other concurrent transaction, and 2) it is reachable under the
execution.

4.4.4 Reconstruction Tuning

TM preserves data consistency, but it may cause degraded performance due to successive
conflicts. To reduce this, the TM Manager provides feedback to the Builder component to
reduce the number of conflicts. We store the commit rate, and the conflicting scenarios in
the Knowledge Repository to be used later for further reconstruction. When the commit
rate reaches a minimum preconfigured rate, the Builder is invoked. Conflicting traces are
combined into a single trace. This requires changes to the control instructions (e.g., branching
conditions) to maintain the original execution flow. The newly reconstructed version is
recompiled and loaded as a new class definition at runtime.
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i

Figure 4.7: 3x3 Matrix Multiplication Execution using Traces Generated by profiling 2x2
Matrix Multiplication

4.4.5 Misprofiling

Profiling depends mainly on the program input. This input may not reflect some runtime
aspects of the program flow (e.g., loops limits, biased branches). To illustrate this, we
return to the matrix multiplication example in Figure 4.5a. Based on the profiling using
2x2 matrices, we construct the execution graph shown in Figure 4.5b. Now, recall our three
traces ab, hcfefg, and jk, and assume we need to run this code for matrices 2x3 and 3x2.
The Collector will assign jobs to the Executor, but upon the execution of the trace jk, the
Executor will find that the code exits after j and needs to execute bs. Hence, it will request
the Collector to schedule the job ab, with an entry to basic block b, in the incoming job set.
Doing so allows us to extend the flow to cover more iterations. Note that the entry point
must be sent to the synthetic method that represents the trace, as it should be able to start
from any of its basic blocks (e.g., ab will start from b not a).

In Figure 4.7, traces are represented by blocks with their entries points on the left side, and
exits on the right. The figure describes the execution using the traces extracted by profiling
2x2 matrix (See example at Section 4.4.1).

4.5 Implementation

4.5.1 Detecting Real Memory Dependencies

Recall that we use bytecode as the input, and concurrency refactoring is done entirely at the
VM level. Compiler optimizations, such as register reductions and variable substitutions,
increase the difficulty in detecting memory dependencies at the bytecode-level. For example,
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y = 1 y1 = 1
y += 2 y2 = y1 + 2
x = y / 2 x1 = y2 / 2

Figure 4.8: Static Single Assignment form Example

two independent basic blocks in the source code may share the same set of local variables
or loop counters in the bytecode. To overcome this problem, we transform the bytecode
into the Static Single Assignment form (SSA) [15]. The SSA form guarantees that each local
variable has a single static point of definition and is assigned exactly once, which significantly
simplifies analysis. Figure 4.8 shows an example of the SSA form.

Using the SSA form, we inspect assignment statements, which reflect memory operations re-
quired by the basic block. At the end of each basic block, we generate a call to a hydra touch
operation that notifies the VM about the variables that were accessed in that basic block.
In the second phase of profiling, we record the execution paths and the memory accessed
by those paths. We then package each set of basic blocks in a trace. Traces should not be
conflicting and access the same memory objects. However, it is possible to have such con-
flicts since our analysis uses information from past execution (which could be different from
the current execution). We intentionally designed the data dependency algorithm to ignore
some questionable data dependencies (e.g., loop index). This gives more opportunities for
parallelization since if at run time a questionable dependency occurs, then TM will detect
and handle it. Otherwise, such blocks will run in parallel and greater speedup is achieved.

4.5.2 Handing Irrevocable Code

Input and output instructions must be handled as a special case in the reconstruction and
parallel execution as they cannot be rolled back. Traces with I/O instructions are therefore
marked for special handling. The Collector never schedules such marked traces unless they
are reachable – i.e., they cannot be run in parallel with their preceding traces. However,
they can be run in parallel with their successor traces. This implicitly ensures that at most
one I/O trace executes (i.e., only a single job of this trace runs at a time).

4.5.3 Method Inlining

Method inlining is the insertion of the complete body of a method in every place that it is
called. In HydraVM, method calls appear as basic blocks, and in the execution graph, they
appear as nodes. Thus, inlining occurs automatically as a side effect of the reconstruction
process. This eliminates the time overhead of invoking a method.

Another interesting issue is handling recursive calls. The execution graph for recursion
will appear as a repeated sequence of basic blocks (e.g., abababab . . .). Similar to method-
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inlining, we merge multiple levels of recursion into a single trace, which reduces the overhead
of managing parameters over the heap. Thus, a recursive call under HydraVM will be formed
as nested transactions with lower depth than the original recursive code.

4.5.4 ByteSTM

ByteSTM is STM that operates at the bytecode level, which yields the following benefits:

• Significant implementation flexibility in handling memory access at low-level (e.g.,
registers, thread stack) and for transparently manipulating bytecode instructions for
transactional synchronization and recovery;

• Higher performance due to implementing all TM building blocks (e.g., versioning,
conflict detection, contention management) at bytecode-level; and

• Easy integration with other modules of HydraVM (Section 4.4)

We modified the Jikes RVM to support TM by adding instructions, xBegin and xCommit,
which are used to start and end a transaction, respectively. Each load and store inside a
transaction is done transactionally: loads are recorded in a read signature and stores are
sandboxed; stores are stored in a transaction-local storage, called the write-set. The address
of any variable (accessible at the VM level) is added to the written signature. The read/write
signature is represented using a Bloom filter [16] and used to detect read/write or write/write
conflicts. This approach is more efficient than comparing transaction read-set and write-set
of transactions, but it also increases false negatives. (With the correct signature size, the
effect of false positives can be reduced – we do this.)

When a load is called inside a transaction, we first check the write-set to determine if this
location has been written to before and if so, the value from the write-set is returned.
Otherwise, the value is read from the memory and the address signature is added to the
read signature. At commit time, the read signature and write the signature of concurrent
transactions are compared, and if there is a conflict, the newer transaction is aborted and
restarted again. If the validation shows no conflict, then the write-set is written to memory.

For a VM-level STM, greater optimizations are possible than that for non VM-level STMs
(e.g., Deuce [74], DSTM2 [65]). At the VM level, data types do not matter; only their sizes
do. This allows us to simplify the data structures used to handle transactions. One through
eight-byte data types is handled in the same way. Similarly, all different data addressing is
reduced to absolute addressing. Primitives, objects, array elements, and statics are handled
differently inside the VM, but they are translated into an absolute address and a specific
size in bytes. This simplifies and speeds-up the write-back process, since we only care about
writing back some bytes at a specific address. This allows us to work at the field level and
at the array element level, which significantly reduces conflicts: if two transactions use the
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same object, but each use a different field inside the object, then no conflict occurs (similarly
for arrays).

Another optimization is the ability to avoid the VM’s garbage collector (GC). GC can reduce
STM performance when attempting to free unused objects. Also, dynamically allocating new
memory to be used by STM is costly. ByteSTM disables the GC for the memory used for the
internal data structures that support STM, we statically allocate memory for STM, handle
it without interruption from the GC, and manually recycle it. The new memory is allocated
if there is a memory overflow. Note that if a hybrid TM is implemented in Java, then it must
be implemented inside the VM. Otherwise, hybrid TM will violate invariants of internal data
structures used inside the VM, leading to inconsistencies.

We also inline the STM code inside the load and store instructions and the newly added
instructions xBegin and xCommit. Thus, there is no overhead in calling the STM procedures
in ByteSTM.

Each job has an order that represents its logical order in the sequential execution of the
original program. To preserve the data consistency between jobs, STM must be modified to
support this ordering. Thus, in ByteSTM, when a conflict is detected between two jobs, we
abort the one with the higher order. Also, when a block with a higher order tries to commit,
we force it to sleep until its order is reached. ByteSTM commits the block if no conflict is
detected.

When attempting to commit, each transaction checks its order against the expected order. If
they are the same, the transaction proceeds, validates its read-set, commit its write-set, and
updates the expected order. Otherwise, it sleeps and waits for its turn. The validation is done
by scanning the thread stack and registers, and collecting the accessed objects’ addresses.
Objects IDs are retrieved from the object copies and used to create a transaction signature,
which represents the memory addresses accessed by the transaction. Transactional conflicts
are detected using the intersection of transaction signatures. After committing, each thread
checks if the next thread is waiting for its turn to commit, and if so, that thread is woken up.
Thus, ByteSTM keeps track of the expected order and handles commit in a decentralized
manner.

4.5.5 Parallelizing Nested Loops

Nested loops introduce a challenge for parallelization, as it is difficult to parallelize both
inner and outer loops and imposes complexity to the system design. In HydraVM, we
handle nested loops as nested transactions using the closed-nesting model [95]: aborting a
parent transaction aborts all its inner transactions, but not vice versa, and changes made
by inner transactions become visible to their parents when they commit, but those changes
are hidden from outside world till the highest level parent’s commit.
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Figure 4.9: Nested Traces

1. Inner transactions share the read-set/write-set of their parent transactions;

2. Changes made by inner transactions become visible to their parent transactions when
the inner transactions commit, but they are hidden from the outside world till the
commit of the highest level parent;

3. Aborting an inner transaction aborts only its changes (not other sibling transactions,
and not its parent transaction);

4. Aborting a parent transaction aborts all its inner transactions;

5. Inner transactions may conflict with each other and also with other, non-parent, higher-
level transactions; and

6. Inner transactions are mutually ordered; i.e., their ages are relative to the first inner
transaction of their parent. When an inner transaction conflicts with another inner
transaction of a different parent, the ages of parent transactions are compared.

The use of closed nesting, instead other models such as linear nesting [95], is twofold:

1. Inner transactions run concurrently; conflict is resolved by aborting the higher age
transaction.

2. We leverage the partial rollback of inner-transactions without affecting the parent or
sibling transactions.

Although open nesting model [94] allows further increases in concurrency, open nesting con-
tradicts our ordering model. In open nesting, inner transactions are permitted to commit
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Configurations

Processor AMD Opteron Processor
CPU Cores 8
Clock Speed 800 MHz
L1 64 KB
L2 512 KB
L3 5 MB
Memory 12 GB
OS Ubuntu 10.04, Linux

Table 4.1: Testbed and platform parameters for HydraVM experiments.

before its parent transaction, and if the parent transaction was aborted it uses a compen-
sating action to revert the changes done by its committed inner transactions. However, in
our model allowing inner transactions to commit will violate the ordering rule (lower trans-
actions commit first), and preventing it from commit (i.e., wait until its chronological order)
will cancel the idea behind open nesting.

Consider our earlier matrix multiplication example (See Section 4.4). From the execution
string, ab(jb(hcfefg)2hi)2jk, we can create two nested traces: an outer trace jb(hcfefg)2hi,
and an inner trace hcfefg (See Figure 4.9). The outer trace runs within a transaction,
executing jbhi, that invokes a set of inner transactions hcfefg after the execution of the
basic block b.

4.6 Experimental Evaluation

Benchmarks. To evaluate HydraVM, we used five applications as benchmarks. These
include a matrix multiplication application and four applications from the JOlden benchmark
suite [23]: minimum spanning tree (MST), tree add (TreeAdd), traveling salesman (TSP),
and bitonic sort (BiSort). The applications are written as sequential applications, though
they exhibit data-level parallelism.

Testbed. We conducted our experiments on an 8-core multicore machine. Each core is an
800 MHz AMD Opteron Processor, with 64 KB L1 data cache, 512 KB L2 data cache, and
5 MB L3 data cache. The machine ran Ubuntu Linux.

Evaluation. Table 4.2 shows the result of the Profiler analysis on the benchmarks. The
table shows the number of basic blocks, traces, and the average number of instructions per
basic block. The lower part of the table shows the number of executed jobs by the Executor,
and the maximum level of nesting during the experiments.

Using our techniques, we manage to split the sequential implementation of the benchmarks
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Table 4.2: Profiler Analysis on Benchmarks

Benchmark Matrix TSP BiSort MST TreeAdd

Avg. Instr. per BB. 4.29 4.2 4.75 3.7 4.1
Basic Blocks 31 77 24 52 10
Traces 3 12 5 3 4
Jobs 1001 1365 1023 12241 8195
Max Nesting 2 5 2 1 3
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Figure 4.10: HydraVM Speedup

into parallel jobs that exploit the data-level parallelism. Figure 4.10 shows the speedup ob-
tained for different number of processors. For matrix multiplication, HydraVM reconstructs
the outer two loops into nested transactions, while the inner-most loop is formed as a trace
because of the iteration dependencies. In TSP, BiSort, and TreeAdd, each multiple level of
the recursive call is inlined into a single trace. For the MST benchmark, each iteration over
the graph adds a new node to the MST, which creates inter-dependencies between iterations.
However, updating the costs from the constructed MST and other nodes presents a good
parallelization opportunity for HydraVM.
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4.7 Discussion

We presented HydraVM, a JVM that automatically refactors concurrency in Java programs
at the bytecode level. HydraVM extracts control-level parallelism by reconstructing program
as independent traces. Loops, as a special case of traces, is included into the reconstruction
procedure which supports data-level parallelism. Although, our proposal targets extracting
code traces, most of the applications spend most of time executing loops. Loops have
interesting features such as: symmetric code blocks, data level parallelism, recurrences, and
induction variables. In the next chapter, we focus on loops as a unit for parallelization.

Online profiling and adaptive compilation provide transparent execution of the programs.
Nevertheless, it adds an overhead to the runtime. Such overhead is non-negligible for short
life applications, or ones with unpredictable execution paths. Static analysis of the code
could be beneficial for providing an initial guess of hot-spot regions of the code, and build
dependency relations between code-blocks. Adding a pre-execution static analysis and em-
ploying data dependency analysis could enhance the code generation and reduce transactional
overhead, we followed this approach in Lerna.



Chapter 5

Lerna

In this chapter, we present Lerna, a system that automatically and transparently detects
and extracts parallelism from sequential code. Lerna is cross-platform and independent of
the programming language, and does not require the analysis of the application’s source
code, it simply takes its intermediate representation compiled using LLVM [80], the well-
known compiler infrastructure, as input and produces ready-to-run parallel code as output1,
thus finding its best fit with (legacy) sequential applications. This approach makes Lerna
independent also of the specific hardware used.

Similar to HydraVM, the parallel execution exploits memory transactions to manage con-
current and out-of-order memory accesses. While, HydraVM presents an initial concept of
a virtual machine that exploits in-memory transactions to parallelize traces, Lerna focus on
parallelizing loops, which usually contains the hotspot sections in many applications. Recall
that HydraVM reconstructs the code at runtime through recompilation and reloading class
definition, and it is obligated to run the application through the virtual machine. Unlike
HydraVM, Lerna does not change the code at runtime through recompilation, which enable
us to compile the code to its native representation. Nevertheless, Lerna supports adaptive
execution of transformed programs through changing some key perfomance parameters of its
runtime library (See Section 5.7). Finally, the extensive profiling phase at HydraVM relies
on establishing a relation between basic blocks and their accessed memory addresses, which
limits its usage to small size applications. In Lerna, we replaced that with a static alias
analysis phase combined with light offline profiling step that complement our static analysis.

Lerna is a complete system, which overcome all the above limitations and embeds system
and algorithmic innovations to provide high performance. Our experimental study involves
the transformation of 10 sequential applications into parallel. Results showed an average of
2.7× speedup for micro-benchmarks and 2.5× for the macro-benchmarks.

1Lerna supports the generation of native executable as output.

46
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5.1 Challenges

Despite the high-level goal showed above, without fine-grain optimizations and innovations,
deploying TM-style transactions to blocks of code that are prone to be parallelized leads
the application performance to be slower (often much slower) than the sequential, non-
instrumented execution. As an example of that, a blind parallelization of a loop (Figure 5.1a)
would mean wrapping the whole body of the loop within a transaction (Figure 5.1b). By
doing so, we let all transactions conflict with each other on, at least, the increment of the
variable c or i2. In addition: variables that have been never modified within the loop may be
transactionally accessed; the transaction commit order should be the same as the completion
order of the iterations if they would have executed sequentially; aborts could be costly, as
it involves retrying the whole transaction including local processing work. The combination
of these factors nullifies any possible gain due to parallelization, thus letting the application
pay just the overhead of the transactional instrumentation and, as a consequence, providing
performance slower than sequential execution.

Lerna does not suffer from the above issues (as showed in Figure 5.1c). It instruments a
small subset of code instructions, which is enough to preserve correctness, and optimizes the
processing by a mix of static optimizations and dynamic tuning. The first include: loop sim-
plification, induction variable reduction, removal of non-transactional work from the context
to restore after a conflict, exploitation of the symmetry of executed parallel code, and an
optimized in-order commit of transactions. Regarding the latter, Lerna provides an adaptive
runtime layer to improve the performance of the parallel execution. This layer is fine-tuned
by collecting feedbacks from the actual execution in order to capture the best settings of the
key performance parameters that most influence the effectiveness of the parallelization (e.g.,
number of worker threads, size and number of parallel jobs).

The results are impressive. We evaluated Lerna’s performance using a set of 10 applica-
tions including micro-benchmarks from the RSTM [2] framework, STAMP [25], a suite of
sequential applications designed for evaluating in-memory concurrency controls, and Flu-
idanimate [96], an application performing physics simulations. The reason we selected them
is because they provide (except for Fluidanimate) also a performance upper-bound for Lerna.
In fact, they are released with a version that provides synchronization by using manually
defined, and optimized, transactions. This way, besides the speedup over the sequential
implementation, we can show the performance of Lerna against the same application with
an efficient, hand-crafted solution. Lerna is on average 2.7× faster than the sequential
version using micro-benchmarks (with a pick of 3.9×), and 2.5× faster considering macro-
benchmarks (with a top speedup of one order of magnitude reached with STAMP).

Lerna is the first self-contained, completely automated and transparent system that makes
sequential applications parallel. Thanks to an efficient use of transactional blocks, it finds

2Libraries that require programmer interaction, as OpenMP, already offer programming primitives to
handle loops increments.
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c = min ;
whi l e ( i < max){

i ++;
c = c + 5 ;
. . . l o c a l p r o c e s s i n g work . . .
i f ( i < j )

k = k + c ;
}

(a) Loop with data dependency

c = min ;
whi l e ( i < max){

atomic{
TX WRITE( i , TX READ( i ) + 1 ) ;
TX WRITE( c , TX READ( c ) + 5 ) ;
. . . l o c a l p r o c e s s i n g work . . .
i f (TX READ( i ) < TX READ( j ) )

TX WRITE(k ,
TX READ( k ) + TX READ( c ) ) ;

}
}

(b) Loop with atomic body

c = min ;
whi l e ( i < max){

i ++;
p a r a l l e l ( i ){

c = min + i ∗5 ;
. . . l o c a l p r o c e s s i n g work . . .
atomic{
i f ( i < j )

TX INCREMENT(k , c ) ;
}

}
}

(c) Loop with parallelized body

Figure 5.1: Lerna’s Loop Transformation: from Sequential to Parallel.
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Figure 5.2: LLVM Three Layers Design

its sweet spot with applications involving data sharing but not simply those with partitioned
memory access.

5.2 Low-Level Virtual Machine

Low-Level Virtual Machine (LLVM) is a modular and reusable collection of libraries, with
well-defined interfaces, that define a complete compiler infrastructure. It represents a middle
layer between front-end language-specific compilers, and back-end instruction sets genera-
tors. LLVM offers an intermediate representation (IR), bytecode, that can be optimized
and transformed into more efficient IR. Optimizers can be chained to provide multi-level of
optimizations at different levels of scopes (modules, call graph, function, loop, region, and
basic block). LLVM supports a language-independent instruction set and data types in the
form of Single Static Assignment (SSA).

Such separation of layers help developers to write front-ends to get use of underlying compiler
optimizations. At the current stage, LLVM supports most of the widely used languages such
as: C, C++, Objective-C, Java, Fortran, Haskell, and Ruby – the full list at [3]. The most
common LLVM front-end is Clang which support compiling C, Objective-C and C++ codes.
CLange is supported by Apple as a replacement for C/Objective-C compiler in the GCC
system. Likewise, several platforms including: x86/x86-64, AMD, ARM, SPARC, MIPS,
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and Nvidia, have LLVM back-end generators for its instruction sets – See Figure 5.2. These
factors together builds a large community for LLVM as a popular compiler infrastructure.
With LLVM, researchers build their optimizations on the intermediate layer using LLVM
byte code, and have their optimizations available for large set of languages/platforms.

5.3 General Architecture and Workflow

Lerna is deployed as a container of:

• an automated software tool that performs a set of transformations and analysis steps
(also called passes in accordance with the terminology used by LLVM) that run on the
LLVM intermediate representation of the original binary application code. It produces
a refactored multi-threaded version of the input program that can run efficiently on
multiprocessor architectures;

• a runtime library that is linked dynamically to the generated program, and is respon-
sible for: 1) organizing the transactional execution of dispatched jobs so that the
original program order (i.e., the chronological order) is preserved; 2) selecting (adap-
tively) the most effective number of worker threads according to the actual setup of
the runtime environment, and based on the feedbacks collected from the online exe-
cution; 3) scheduling jobs to threads according to threads’ characteristics (e.g., stack
size, priority); and 4) performing memory housekeeping and releasing computational
resources.

Figure 5.3 shows the architecture and the workflow of Lerna. Lerna operates at the LLVM
intermediate representation of the input program, thus it does not require the application to
be written in any specific programming language. However, Lerna’s design does not preclude
the programmer from providing hints that can be leveraged to make the refactoring process
more effective. In this work we provide the fully automated process without considering any
programmer intervention, and we discuss how to exploit the prior application knowledge in
Section 5.7. Lerna’s workflow includes the following three steps in this order: Code Profiling,
Static Analysis, and Runtime.

In the first step, our software tool executes the original (sequential) application by activating
our own profiler that collects some important parameters (e.g., execution frequencies) later
used by the Static Analysis.

The goal of the Static Analysis is to produce a multi-threaded (also called reconstructed)
version of the input program. This process evolves by following the below passes:

• Dictionary Pass. It scans the input program to provide a list of the accessible (i.e.,
which is not either a system-call or a native-library call) functions of the bytecode (or



Mohamed M. Saad Chapter 5. Lerna 51

Input

Program

(bytecode)

metadata
+

bytecode

@
Optional User

Annotations

Job(...)

Dispatch
& Sync

Executor
Knowledge

Base

Jobs QueueWorkers 

Manager

Thread
Pool

Reconstructed

Program

(multi-thread)

Input Data
__ _ ___ _ _
_ __ _ _ _ _
_ _ _ _ _ __
_ _ __ _ __

Lerna Runtime

Dictionary
Pass

Builder
Pass

Transactifier
   Pass

Static Analysis

Abort
Rate

Commit
Rate

Dequeue

Enqueue
Acquire Tx Release Tx

Synch

DispatchSTM
Tx

Pool

Garbage
Collector

Contention
Manager

Profiled

Code

Training

Input Data
__ _  _   _ _
_ _ _ _ _ __
_ _ __ _ __

Dictionary
Pass

Code Profiling

Profiling 
Info

Figure 5.3: Lerna’s Architecture and Workflow



Mohamed M. Saad Chapter 5. Lerna 52

the bitcode as named by LLVM) that we can analyze to determine how to transform.
By default, any call to an external function is flagged as unsafe. This information
is important because transactions cannot contain unsafe calls as they may include
irrevocable (i.e., which cannot be further aborted) operations, such as I/O system
calls.

• Builder Pass. It detects the code eligible for parallelization; it transforms this code into
a callable synthetic method; and it defines the transaction’s boundaries (i.e., where the
transaction begins and ends).

• Transactifier Pass. It applies the alias analysis [35] (i.e., it detects if multiple references
point to the same memory location) and some memory dependency techniques (e.g.,
given a memory operation, extracts the preceding memory operations that depend
on it) to reduce the number of transactional reads and writes. It also provides the
instrumentation of memory operations invoked within the body of a transaction by
wrapping them into transactional calls for read, write or allocate.

Once the Static Analysis is complete, the reconstructed version of the program is linked to
the application through the Lerna runtime library, which is mainly composed of the following
three components:

• Executor. It dispatches the parallel jobs and provides the exit of the last job to the
program. To exploit parallelism, the executor dispatches multiple jobs at-a-time by
grouping them as a batch. Once a batch is complete, the executor simply waits for the
result of this batch. Not all the jobs are enclosed in a single batch, thus the executor
could need to dispatch more jobs after the completion of the previous batch. If no more
job should be dispatched, the executor finalizes the execution of the parallel section.

• Workers Manager. It extracts jobs from a batch and it delivers ready-to-run transac-
tions at available worker threads.

• TM. It provides the handlers for transactional accesses (read and write) performed by
executing jobs. In case a conflict is detected, it also behaves as a contention manager
by aborting the conflicting transactions with the higher chronological order (this way
the original program’s order is respected). Also, it handles the garbage collection of
the memory allocated by a transaction, after it completes.

The runtime library makes use of two additional components: the jobs queue, which stores the
(batch of) dispatched jobs until they are executed; and the knowledge base, which maintains
the feedbacks collected from the execution in order to enable the adaptive behavior.
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5.4 Code Profiling

Lerna uses the code profiling technique for identifying hotspot sections of the original code,
namely those most visited during the execution. This information is fundamental for letting
the refactoring process focus on the real parts of the code that are fruitful to parallelize (e.g.,
it would not be effective to parallelize a for-loop with only two iterations).

To do that, we consider the program as a set of basic blocks, where each basic block is a se-
quence of non-branching instructions that ends either with a branch instruction (conditional
or non-conditional) or a return. Given that, any program can be represented as a graph in
which nodes are basic blocks and edges reproduce the program control flow (an example of
such a graph is shown in Figure 5.5). Basic blocks are easily determined from the bytecode
(see Figure 5.4).

In this phase, our goal is to identify the context, frequency and reachability of each basic
block. To determine that information, we profile the input program by instrumenting its
bytecode at the boundaries of any basic blocks to detect whenever a basic block is reached.
This code modification does not affect the behavior of the original program. We call this
version of the modified program profiled bytecode.

5.5 Program Reconstruction

In the following, we illustrate in detail the transformation from sequential code to parallel
made during the static analysis phase. The LLVM intermediate representation (i.e., the
bytecode) is in the static single assignment (SSA) form. With SSA, each variable is defined
before it is used, and it is assigned exactly once. Figure 5.4 shows LLVM intermediate
representation of the loop Figure 5.1a. The code at Figure 5.4 is in SSA form, and is divided
into sets of basic blocks. Each basic block starts with an optional label; it is composed of
LLVM assembly instructions; and it ends with a branching instruction (terminator).

5.5.1 Dictionary Pass

In the dictionary pass, a full bytecode scan is performed to determine the list of accessible
code (i.e., the dictionary) and, as a consequence, the external calls. Any call to an external
function that is not included in the input program prevents the enclosing basic block from
being included in the parallel code. However, the user can override this rule by providing a
list of safe external calls. An external call is defined as safe if:

• It is revocable (e.g., it does not perform input/output operations);

• It does not affect the state of the program; and
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entry :
%r e t v a l = a l l o c a i32 , a l i g n 4
br l a b e l %whi le . cond

whi le . cond :
; preds = %i f . end , %entry

%0 = load i32 ∗ %i , a l i g n 4
%1 = load i32 ∗ %max , a l i g n 4
%cmp = icmp s l t i 32 %0, %1
br i 1 %cmp , l a b e l %whi le . body , l a b e l %whi le . end

whi l e . body : ; preds = %whi le . cond
%2 = load i32 ∗ %i , a l i g n 4
%inc = add nsw i32 %2, 1
s t o r e i 32 %inc , i 32 ∗ %i , a l i g n 4
c a l l void @ Z19do loca l p roce s s ingv ( )
%3 = load i32 ∗ %i , a l i g n 4
%4 = load i32 ∗ %j , a l i g n 4
%cmp1 = icmp s l t i 32 %3, %4
br i 1 %cmp1 , l a b e l %i f . then , l a b e l %i f . end

i f . then : ; preds = %whi le . body
%5 = load i32 ∗ %k , a l i g n 4
%add = add nsw i32 %5, 1
s t o r e i 32 %add , i 32 ∗ %k , a l i g n 4
br l a b e l %i f . end

i f . end :
; preds = %i f . then , %whi le . body

br l a b e l %whi le . cond
whi le . end : ; preds = %whi le . cond

%6 = load i32 ∗ %r e t v a l
r e t i 32 %6

Figure 5.4: The LLVM Intermediate Representation using SSA form of Figure 5.1a.
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• It is thread safe.

A common example of safe calls are random generators, or mathematical basic functions
such as trigonometric functions.

5.5.2 Builder Pass

This pass is one of the core steps made by the refactoring process because it takes the code to
transform (as output of the profiling phase) and makes it parallel by matching the outcome
of the dictionary pass. In fact, if the profiler highlights an often invoked basic block that
contains calls not in the dictionary, then the parallelization cannot be performed on that
basic block.

In this thesis we focus on loops as the most appropriate blocks of code for being parallelized.
However, our design is applicable (unless stated otherwise) for any independent sets of basic
blocks. The actual operation of building the parallel code takes place after the following two
transformations.

• Loop Simplification analysis. A natural loop has one entry block header and one or
more back edges (latches) leading to the header. The predecessor blocks for the loop
header are called pre-header blocks. We say that a basic block α dominates another
basic block β if every path in the code β go through α. The body of the loop is the set
of basic blocks that are dominated by its header, and reachable from its latches. The
exits are basic blocks that jump to a basic block that is not included in the loop body.
In Figure 5.4, the entry block is the loop pre-header, while its header is while.cond.
The loop has one latch (i.e., if.end), and a single exit while.end (from while.cond).
The loop body is the set of blocks while.body, if.then and if.end. A simple loop is a
natural loop, with a single pre-header and single latch; and its index (if exists) starts
from zero and increments by one.

We apply the loop simplification to put the loop into its simplest form. Examples
of natural and simple loops are reported in Figures 5.5 (a) and (b), respectively. In
Figure 5.5 (a), the loop header has two types of predecessors, external basic blocks
from outside of the loop, and one of the body latches. Putting this loop in its simple
form requires adding: i) a single pre-header and changing the external predecessors to
jump to the pre-header; and ii) an intermediate basic block to isolate the second latch
from the header.

• Induction Variable analysis. An induction variable is a variable within a loop whose
value changes by a fixed amount every iteration (i.e., the loop index) or is a linear func-
tion of another induction variable. Affine (linear) memory accesses are commonly used
in loops (e.g., array accesses, recurrences). The index of the loop, if one exists, is often
an induction variable, and the loop can contain more than one induction variable. The
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Header

Latch

Latch

Exit 2Exit 1

Exit 2Exit 1

Preheader

Sync Dispatcher

(a) Natural Loop (b) Simple Loop

(c) Transformed Loop

Synthetic Method

Normal Exit
Exit 1 Exit 2

Header

Latch
Latch

Exit 2Exit 1

Asynchronous 
Call

Figure 5.5: Natural, Simple and Transformed Loop

induction variable substitution is a transformation to rewrite any induction variable
in the loop as a closed form (function) of its index. It starts by detecting the candi-
date induction variables, then it sorts them topologically and creates a closed symbolic
form for each of them. Finally, it substitutes their occurrences with the corresponding
symbolic form.

As a part of our transformation, a loop is simplified, and its induction variable (i.e., the index)
is transformed into its canonical form where it starts from zero and is incremented by one.
A simple loop with multiple induction variables is a very good candidate for parallelization.
However, any induction variables introduce dependencies between iterations, which are not
desirable to maximize parallelism. To solve this problem, the value of such induction variables
is calculated as a function of the index loop prior to executing the loop body, and it is sent
to the synthetic method as a runtime parameter. This approach avoids unnecessary conflicts
on the induction variables.

Next, we extract the body of the loop as a synthetic method. The return value of the method
is a numeric value representing the exit that should be used. The addresses of all variables
accessed within the loop body are passed as parameters to the method.

The loop body is replaced by two basic blocks: Dispatcher and Sync. In the Dispatcher, we
prepare the arguments for the synthetic method, calculate the value of the loop index and
invoke an API of our library, named lerna dispatch, providing it with the address of the
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Tx1 Tx2
Y[ 1 ] := 0 Y[ 2 ] := 0
Z [ 1 ] := X[ 1 ] Z [ 2 ] := X[ 2 ]

(a) Symmetric Transactions

Tx1 Tx2
Y[ 1 ] := 0

X[ 1 ] := Y[ 1 ]
Z [ 1 ] := X[ 1 ]

(b) Normal Transactions

Figure 5.6: Symmetric vs Normal Transactions

synthetic method and the list of the just-computed arguments. Each call to lerna dispatch
adds a job to our internal jobs queue, but it does not start the actual execution of the job.
The Dispatcher keeps dispatching jobs until our API decides to stop. When it happens, the
control passes to the Sync block. Sync immediately blocks the main thread and waits for
the completion of the current jobs. Figure 5.5 (c) shows the control flow diagram (CFG) for
the loop before and after transformation.

Regarding the exit of a job, we define two types of exits: normal exit and breaks. A normal
exit occurs when a job reaches the loop latch at the end of its execution. In this case, the
execution should go to the header and the next job should be dispatched. If there are no
more dispatched jobs to execute and the last one returned a normal exit, then the Dispatcher
will invoke more jobs. On the other hand, when the job exit is a break, then the execution
needs to leave the loop body, and hence ignore all later jobs. For example, assume a loop
with N iterations. If the Dispatcher invokes B jobs before moving to the Sync, then dN/Be
is the maximum number of transitions that can happen between Dispatcher and Sync.

Summarizing, the Builder Pass turns the execution model into the job-driven model, which
can exploit parallelism. This strategy abstracts the processing from the way the code is
written.

5.5.3 Transactifier Pass

After turning the bytecode into executable jobs, we employ additional passes to encapsulate
jobs into transactions. Each synthetic method is demarcated by tx begin and tx end, and any
memory operation (i.e., load, stores or allocation) within the synthetic method is replaced
by the corresponding transactional handler.

It is quite common that memory reads are numerous (and outnumber writes), thus it would
be highly beneficial to minimize those performed transactionally. That is because, the read-
set maintenance and the validation performed at commit time for preserving the correctness
of the transaction, which iterates over the read-set, is the primary source of TM’s overhead.
Several hardware prototypes have been proposed to enhance TM read-set management [26,
116]. Alternatively, in our work the transactifier pass eliminates unnecessary transactional
reads, thus significantly improving the performance of the transaction execution due to the
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following reasons:

• direct memory read is even three times faster than transactional read [26, 116]. In fact,
reading an address transactionally requires: 1) checking if the address has already been
written before (i.e., check the write-set); 2) adding the address to the read-set; and 3)
returning the address value to the caller.

• the size of the read-set is limited, thus extending it requires copying entries into a
larger read-set, which is costly. Keeping the read-set small reduces the number of
resize operations.

• read-set validation is mandatory during the commit. The smaller the read-set, the
faster the commit operation.

In our model, concurrent transactions can be described as “symmetric”, which means that
the code executed in all active transactions is the same. That is because each transaction
executes one or more iterations of the same loop. Figure 5.1 shows an example of sym-
metric transactions. We take advantage of this characteristic by reducing the number of
transactional calls as follows.

Clearly, local addresses defined within the scope of the loop are not required to be accessed
transactionally. On the other hand, global addresses allow iterations to share information,
and thus they need to be accessed transactionally. We perform the global alias analysis as
a part of our transactifier pass to exclude some of the loads to shared addresses from the
instrumentation process.

To reduce the number of transactional reads, we apply the global alias analysis between all
loads and stores in the transaction body. A load operation that will never alias with any
store operation does not need to be read transactionally. For example, when a memory
address is always loaded and never written in any path of the symmetric transaction code,
Figure 5.6a, then the load does not need to be performed transactionally. In Figure 5.1,
concurrent transactions execute symmetric iterations of the loop. Although j is read within
the transactions, we do not have to read it transactionally as it can never be changed by any
of the transactions produced from the same loop (thus the only allowed to run concurrently).
Note that this technique is specific for parallelizing loops and cannot be applied to the normal
transaction processing where all transactions do not necessarily execute the same code as
for the symmetric transactions.

In contrast, in Figure 5.6b we show an example of two concurrent non-symmetric transac-
tions, thus executing different transaction bodies. Also in this case each transaction has a
load operation that does not alias with other stores but when the two transactions (with
different code paths) run concurrently they can produce wrong result. This is because these
transactions are not symmetric and thus the read must be done transactionally.
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Transactions may contain calls to other functions. As these functions may manipulate mem-
ory locations, they must be handled. Whenever possible, we try to inline the called functions;
otherwise we create a transactional version of the function called within a transaction. In
the latter case, instead of calling the original function, we call its transactional version.
Inlined functions are preferable because they permit the detection of dependencies between
variables, which can be leveraged to reduce transactional calls, or the detection of dependent
loop iterations, which is useful to exclude them from the parallelization.

Finally, to avoid unnecessary overhead in the presence of single-threaded computation or a
single job executed at a time, we create another non-transactional version of the synthetic
method. This way we provide a fast version of the code without unnecessary transactional
accesses.

5.6 Transactional Execution

Transactional memory algorithms differ in the memory versioning techniques, i.e., undo-log
or write-buffer, and in the conflict detection, i.e., lazy or eager. In write-buffer algorithms,
transactional loads are recorded in a read-set and stores are and-boxed, which means that
each store is not written to the original address but it is kept into a local storage called
the write-set until commit. When a load is called inside a transaction, the write-set is first
checked to determine if this location has been written before and, if so, the value from the
write-set is returned. Otherwise, the value is read from the memory and the address is
added to the read-set. At commit time, the read-set is validated to make sure that it is
still consistent. If the validation shows no conflict, then the write-set is written back to
the shared memory and the changes become visible to all. On the other hand, undo-log
algorithms expose memory changes to the main memory right after the transactional write,
and they keep the old values in a local log to be restored upon transaction abort.

Contention between transactions occur when two transactions access the same address and
one of them is a writer. Eager contention detection is done by associating a lock with each
memory address (a lock can cover multiple addresses). A transaction acquires locks on its
written addresses at encounter time. Conflicts are detected when a transaction tries to access
a locked address. Alternatively, in lazy contention detection, each address has a version
record. Transaction stores the version of its read addresses. Succeeded transactions modify
the version of their written addresses at commit time. Transaction is aborted when it finds
a different version number than the one recorded. Validation of memory addresses accessed
transactionally is done either by performing addresses comparison [43], or by checking if the
values have changed [38].

Table 5.1 shows different design choices of some known transactional memory implementa-
tions.

Our proposal is decoupled from the specific TM implementation used but it requires in-order
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Version
Eager Lazy

Contention
Eager

TinySTM [50], LogTM [92] LTM [6], TinySTM [50],
UTM [6], McRT-STM [115] SwissTM [45]

Lazy TL2 [43], TCC [57], NOrec [38]

Table 5.1: Transactional Memory Design Choices

commit. To allow the integration of further TMs, we identified the following requirements
needed to support ordering:

Single Committer. At any time only one thread is allowed to commit its transaction(s). This
thread is the one executing the transaction with lowest age. While a thread is committing,
other threads can proceed by speculatively executing next transactions, or wait until the
committed completes. Allowing threads to proceed their execution is risky because it can
increase the contention probability (the life of an uncommitted transaction enlarges), so this
speculation must be limited by a certain, predefined threshold.

Age-based Contention Management (CM). Algorithms with eager conflict detection (i.e., at
encounter time) should favor transactions with lower age (i.e., that encapsulate older itera-
tions), while algorithms that use lazy conflict detection (i.e., at commit time) should employ
an aggressive CM that favors the transaction that is committing using the single committer.
Note that, for value-based validation with eager versioning, it is possible for earlier transac-
tions to wrongly commit after it read from a speculative iteration. To solve this, during the
commit phase, the read-set must be compared with the write-sets of completed transactions.

Memory Versioning. For eager versioning, if the implementation uses eager CM, then it
prevents speculative iterations from affecting older iteration because they will collide. On
the other hand, Lazy CM may cause earlier iterations to read from speculative iterations.
However, thanks to the single committer, the former iteration will detect the conflict and
both transactions will be aborted. Lazy versioning implementations hide their changes from
other transactions, thus no modification is required for this category.

5.6.1 Ordered NOrec

In the current implementation we used NOrec [38] as a TM library. It is an algorithm
that offers low memory access overhead with constant amount of global meta-data. Unlike
most STM algorithms, NOrec does not associate ownership records (e.g., locks or version
number) with accessed addresses; instead, it employs a value-based validation technique
during commit. A characteristic of this algorithm is that it permits a single committing writer
at a time, which is in general not desirable but it matches the need of Lerna’s concurrency
control: having a single committer (See Section 5.6). For this reason we decided to rely on
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NOrec as the default STM implementation for Lerna because of its small memory footprint
and because it matches our ordering conditions (we need a single committer as limitation at
NOrec, it is one of the requirement for ordering transactions). Our modified version of NOrec
manages which transaction should be the single committer according to the chronological
order (i.e., age).

5.6.2 Ordered TinySTM

TinySTM algorithm uses encounter time locking (ETL) and comes with two memory access
strategies: write-through and write-back. TinySTM uses timestamps for transactions to
ensure a consistent view of memory; we exploit this timestamp to represent the age of
transactions. Using an aggressive age-based contention manager, transactions can be ordered
according to the chronological order of their executing code. With TinySTM, transactions
conflict at access time; this allows early detection of conflicting iterations. The choice of
write-through or write-back strategy is workload specific; at low-contention write-through
provides a fast path execution, while write-back is more suitable for high-contention as it
exhibits lower overhead abort procedure.

5.6.3 Irrevocable Transactions

A transaction performs a read-set validation at commit time to preserve correctness. That
is needed to ensure that its read-set has not been overwritten by any other committed
transaction. Let Txn be a transaction that has just started its execution, and let Txn−1 be
its immediate predecessor (i.e., Txn−1 and Txn process consecutive iterations of a loop). If
Txn−1 has been committed before that Txn performs its first transactional read, then we
can avoid the read-set validation of Txn when it commits. That is because Txn is now the
highest priority transaction at this time, so no other transaction can commit its changes
to the memory. We do that by flagging Txn as an irrevocable transaction. Similarly, a
transaction is irrevocable if: i) it is the first, thus it does not have a predecessor; ii) it is
a retried transaction of the single committer thread; iii) there is a sequence of transactions
with consecutive age running on the same thread.

This optimization reduces the commit time by just writing the write-set values to the mem-
ory.

5.6.4 Transactional Increment

Figure 5.7 illustrates a common situation, which is the counter. Loops with counters hamper
parallelism because they create data dependencies between iterations, even non-consecutive
iterations, which produces a large amount of conflicts. The induction variable substitution
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f o r ( i n t i =0; i <100; i ++){
. . .
i f ( some condi t ion )

counter++;
. . .

}

(a) Conditional increments

whi le ( proceed ) {
. . .
counter++;
. . .

}

(b) No induction variable

Figure 5.7: Conditional Counters

cannot produce a closed form (function) of the loop index (if it exists). If a variable is incre-
mented (or decremented) based on any arbitrary condition and its value is used only after
the loop completes the whole execution, then it is eligible for the Transactional Increment
optimization.

In addition to the classical transactional read and write (tx read and tx write), we propose
a new transactional primitive, the transactional increment, to enable the parallelization of
loops with irreducible counters. This type of counter can be detected during our transfor-
mations. Within the transactional code, a store St is eligible for our optimization if it aliases
only with one load Ld, and it writes a value that is based on the return value of Ld. The
load, change, and store operations are replaced with a call to tx increment, which receives
the address and the value to increment. We propose two ways to implement tx increment:

• Using an atomic increment to the variable, and storing the address to the transaction’s
meta-data. The atomic operation preserves data consistency; however, it affects the
shared memory before the transaction commits. To address this issue, aborted trans-
actions compensate all accessed counters by performing the same increment but with
the inverse value.

• By storing the increments into thread-specific meta-data. At the end of each Sync
operation, threads coordinate with each other to expose the aggregated per-thread
increments of the counter. This method is appropriate for floating point variables,
which cannot be updated atomically on commodity hardware.

Using this approach, transactions will not conflict on this address, and the correct value of
the counter will be in memory after the completion of the loop (See Figure 5.1c).
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5.7 Adaptive Runtime

The Adaptive Optimization System (AOS) [8] is a general virtual machine architecture that
allows online feedback-directed optimizations. In Lerna, we apply the AOS to optimize the
runtime environment by tuning some important parameters (e.g., the batch size, the number
of worker threads) and by dynamically refining sections of code already parallelized statically
according to the characteristics of the actual application execution.

Before presenting the optimizations made at runtime, we detail the component responsible
for executing jobs (i.e., the Workers Manager in Figure 5.8). Jobs are evenly distributed
over workers. Each worker thread keeps a local queue of its slice of dispatched jobs and a
circular buffer of transaction descriptors. A worker is in charge of executing transactions and
keeping them in the completed state once they finish. As stated before, after the completion
of a transaction, the worker can speculatively begin the next transaction. However, to avoid
unmanaged behaviors, the number of speculative jobs is limited by the size of its circular
buffer. The buffer size is crucial as it controls the lifetime of transactions. A larger buffer
allows the worker to execute more transactions, but it increases also the transaction life time,
and consequently the conflict probability.

The ordering is managed by a worker-local flag called state flag. This flag is read by the
current worker, but is modified by its predecessor worker. Initially, only the first worker
(executing the first job) has its state flag set, while others have their flag cleared. After
completing the execution of each job, the worker checks its local state flag to determine if it is
permitted to commit or proceed to the next transaction. If there are no more jobs to execute,
or the transactions buffer is full, the worker spins on its state flag. Upon successful commit,
the worker resets its flag and notifies its successor to commit its completed transactions.
Finally, if one of the jobs has a break condition (i.e., not the normal exit) the workers manager
stops other workers by setting their flags to a special value. This approach maximizes the
use of cache locality as threads operate on their own transactions and access thread-local
data structures, which also reduces bus contention.

5.7.1 Batch Size

The static analysis does not always provide information about the number of iterations,
hence, we cannot accurately determine the best size for batching jobs. A large batch size
may cause many aborts due to unreachable jobs, while having small batches increases the
number of iterations between dispatcher and the executor, and, as a consequence, the number
of pauses to perform due to Sync. In our implementation, we use an exponentially increasing
batch size. Initially, we dispatch a single job, which covers the common set of loops with
zero iterations; if the loops are longer, then we increase the number of dispatched jobs
exponentially until reaching a pre-configured threshold. Once a loop is entirely executed, we
record the last batch size used so that, if the execution goes back on calling the same loop,
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Figure 5.8: Workers Manager

we do not need to perform again the initial tuning.

5.7.2 Jobs Tiling and Partitioning

As explained in Section 5.5.2, the transformed program dispatches iterations as jobs, and our
runtime runs jobs as transactions. Here we discuss an optimization, named jobs tiling, that
allows the association of multiple jobs to a single transaction. Increasing jobs per transaction
reduces the total number of commit operations. Also, it allows assigning enough computation
power to the threads, which outweigh the cost of transactional setup. Nevertheless, tiling is
a double-edged sword. Increasing tiles increases the size of read and write sets which can
degrade performance. We tune tiling by taking into account the number of instructions per
job, and commit rate of past executions using the knowledge base.

In contrast to tiling, a job may perform a considerable amount of non-transactional work.
In this case, enclosing the whole job within the transaction boundaries makes the abort op-
eration very costly. Instead, the transactifier pass checks the basic blocks with transactional
operations and finds the nearest common dominator basic block for all of them. Given that,
the transaction start (tx begin) is moved to the common dominator block, and tx end is
placed at each exit basic block that is dominated by the common dominator. As a result,
the job is partitioned into non-transactional work, which is now moved out of the transaction
scope, and the transaction itself (See Figure 5.1c).

5.7.3 Workers Selection

Figure 5.3 shows how the workers manager module handles the concurrent executions. The
number of worker threads in the pool is not fixed during the execution, and it can be changed
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by the executor module. The number of workers affects directly the transactional conflict
probability. The smaller the number of concurrent workers, the lower the conflict probability.
However, optimistically, increasing the number of workers can increase the overall parallelism
(thus performance), and the underlying hardware utilization.

In practice, at the end of the execution of a batch of jobs, we calculate the throughput and
we record it into the knowledge base, along with the commit rate, tiles and the number of
workers involved. We apply a greedy strategy to find an effective number of workers by
matching with the obtained throughput. The algorithm constructs a window of different
worker counts, and iteratively improves it by changing the count of workers.

Using the throughput metric is better than relying on the commit rate. For example, three
workers with an average commit rate equal to 50% are better than two workers with 70%
average commit rate. In addition to that, parallel execution is subject to other factors such
as bus contention, cache hits, and thread overhead.The throughput combines all of these
factors, thus giving a global picture about the performance gain.

Finally, in some situations (e.g., high contention or very small transactions) it is better to
use a single worker (sequentially). For that reason, if our heuristic decides to use only one
worker, then we use the non-transactional version (as a fast path) of the synthetic method
to avoid the unnecessary transaction overhead.

5.7.4 Manual Tuning

As stated early, Lerna is completely automated but it still allows the programmer to provide
hints about the program to parallelize. In this section we present some of the manual
configurations that can be done. These configurations are only applicable if the source code
is available.

A safe call is a call to an external function defined as a library or a system call; such a call
must be stateless and cannot affect the program result if repeated multiple times. Such calls
cannot be detected using static analysis, so we rely on the user for defining a list of them.
Our framework generates a histogram of calls that represents the number of excluded blocks
from our transformation because of this call. Based on this histogram, user can decide which
calls are more beneficial to be classified as a safe call.

The alias analysis techniques (see Section 5.5.3) help in detecting dependencies between loads
and stores; however, in some situations (as documented in [35]) it produces conservative
decisions, which limit the opportunities of parallelization. It is non-trivial for the static
analysis to detect aliases throughout nested calls. To assist the alias analysis, we try to
inline the called functions within the transactional context. Nevertheless, it is common in
many programs to find a function that does only loads of immutable variables (e.g., reading
memory input). Marking such a function as read-only can significantly reduce the number of
transactional reads, as we will be able to use the non-transactional version of the function,
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Configurations

Processor 2× Opteron 6168 processors
CPU Cores 12
Clock Speed 1.9 GHz
L1 128 KB
L2 512 KB
L3 12 MB
Memory 12 GB
OS Ubuntu 10.04, Linux

Table 5.2: Testbed and platform parameters for Lerna experiments.

hence reducing the overall overhead.

Section 5.4 explains how Lerna detects the eligible code for parallelization through the profil-
ing phase. Alternatively, users can directly inform our Builder Pass of their recommendations
for applying our analysis. Also, the programmer can exclude some sections of the code from
being parallelized for some reason. We support a user-defined exclude list for portions of
code that will be excluded from any transformation.

5.8 Evaluation

In this section we evaluate Lerna and measure the effect of the key performance parameters
(e.g., job size, worker count, tiling) on the overall performance. Our evaluation involves a
total of 13 applications grouped into micro-benchmarks and macro-benchmarks: STAMP [25]
and PARSEC [96]. The micro-benchmarks allow us to tune the application workload in
order to show strengths (and weaknesses) of our automated solution. The applications of
the macro-benchmarks show the impact of Lerna in well-known workloads.

We compare the speedup of Lerna over the (original) sequential and the manual, optimized
transactional version of the code (not available for PARSEC benchmarks). Note that the
latter is not coded by us; it is released along with the benchmark itself, and is made manually
by knowing the details of the application logic, thus it can leverage optimizations, such as
the out-of-order commit, that cannot be caught by Lerna automatically. As a result, Lerna’s
performance goal is twofold: providing a substantial speedup over the sequential code, and
to be as close as possible to the manual transactional version.

The testbed used in the evaluation consists of an AMD multicore machine equipped with 2
Opteron 6168 processors, each with 12-cores running at 1.9 GHz of clock speed. The total
memory available is 12 GB and the cache sizes are 128 KB for the L1, 512 KB for the L2
and 12 MB for the L3. This machine represents well a current commodity hardware. On
this machine, the overall refactoring process, from profiling to the generation of the binary,
took ∼10s for micro-benchmarks and ∼40s for the macro-benchmarks.
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Figure 5.9: ReadNWrite1 Benchmark.

5.8.1 Micro-benchmarks

In our first set of experiments we consider the RSTM micro-benchmarks [2] to evaluate the
effect of different workload characteristics, such as the amount of transactional operations
per job, the job length, and the read/write ratio, on the overall performance.

We report the speedup over the sequential code by varying the number of threads used. The
performance is measured for two versions of Lerna: one adaptive, where the most effective
number of workers is selected at runtime (thus its performance do not depend on the number
of threads reported in the x-axis), and one with a fixed number of workers. We also reported
the percentage of aborted transactions (right y-axis). As a general comment, we observe
some small slow-down only when one thread is used; otherwise Lerna is usually very close
to the manual transactional version. Our adaptive version gains on average 2.7× over the
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original code and it is effective because it finds (or is close to) the configuration where the
top performance is reached.

In ReadNWrite1Bench (Figure 5.9), transactions read N locations and write 1 location.
Given that, the transaction write-set is very small, hence it implies a fast commit of a lazy TM
algorithm as ours. The abort rate is low (0% in the experiments), and the transaction length
is proportional to the read-set size. Figure 5.9c illustrates how the size of transaction read-
set (with a small size write-set) affects the speedup. Lerna performs closer to the manual Tx
version; however, when transactions become smaller, the ordering overhead slightly outweighs
the benefit of more parallel threads.

In ReadWriteN (Figure 5.10), each transaction reads N locations, and then writes to another
N locations. The large transaction write-set introduces a delay at commit time for lazy
versioning TM algorithms, and increases the number of aborts. Both Lerna and manual Tx
incur performance degradation at high numbers of threads due to the high abort rate (up
to 50%). In addition, for Lerna the commit phase of long transactions forces some (ready to
commit) workers to wait for their predecessor, thus degrading the overall performance. In
such scenarios, the adaptive worker selection helps Lerna avoid this degradation.

MCASBench performs a multi-word compare and swap, by reading and then writing N
consecutive locations. Similarly to ReadWriteN, the write-set is large, but the abort prob-
ability is lower than before because each pair of read and write acts on the same location.
Figure 5.11 illustrates the impact of increasing workers with long and short transactions.
In Figure 5.11e, we see that with increasing the number of operations per transaction, the
speedup degrades; besides threads contention, the number of aborts increases with increasing
the number of accessed locations (See Figures 5.11b and 5.11d).

Interestingly, unlike the manual Tx, Lerna performs better at single thread because it uses
the fast path version of the jobs (non-transactional) to avoid needless overhead. It worth
noting that all micro-benchmarks does not perform many calculations on accessed memory
locations, which represents a challenge for a TM-based approach.

Figure 5.12 summarizes the behavior of the adaptive selection of the number of workers for
the three micro-benchmarks and varying the size of the batch. The procedure starts by
trying different worker counts within a fixed window (shown here, it is 7), then it picks the
best worker according to the calculated throughput. Changing the worker counts shifts the
window, thus allowing the technique to learn more and find the most effective settings for
the current execution.
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Figure 5.10: ReadWriteN Benchmark.
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Figure 5.11: MCAS Benchmark.
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5.8.2 The STAMP Benchmark

STAMP [25] is a comprehensive benchmark suite with eight applications that cover a variety
of domains. Figures 5.13, 5.14 and 5.15 show the speedup of the Lerna’s transformed code
over sequential code, and against the manually transactified version of the application, which
exploits unordered commit. While the main focus of our work is speedup over baseline
sequential code, we highlight here the overheads and tradeoff with respect to a handcraft
manual transformation aware of the underlying program semantics. Two applications (Yada
and Bayes) have been excluded because they expose non-deterministic behaviors, thus their
evolution is unpredictable when executed transactionally. Table 5.3 provides a summary of
benchmarks and inputs used in the evaluation.

Kmeans, a clustering algorithm, iterates over a set of points and associate them to clusters.
The main computation in finding nearest point, while shared data updates occur at the end
of each iteration. Using job partitioning, Lerna achieves 6× and 1.6× speedup over the
sequential version (See Figures 5.13a - 5.13d). The ordering introduces 25% delay compared
to the unordered transactional version.

Genome, a gene sequencing program, reconstructs the gene sequence from segments of a
larger gene. It uses a shared hash-table to organize the segments, which requires synchro-
nization over its accesses. In Figures 5.13e - 5.13h, Lerna has 3× to 5.5× speedup over
sequential. Ordering semantics is not a must for the hash-table insertion, which causes the
manual Tx to perform 1.4× to 1.8× faster than Lerna, as transactions commit as soon as
they end.
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Figure 5.13: Kmeans and Genome Benchmarks
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Benchmark Configurations Description

Kmeans Low -m60 -n60 -t0.00001 n65536 -d128 -c16
m: max clusters, n: min clusters

High -m20 -n20 -t0.00001 n65536 -d128 -c16
Genome Low -g16384 -s64 -n86777216

n: number of segments
High -g16384 -s64 -n16777216

Vacation Low -n30 -q90 -u100 -r1048576 -t4194304
n: queries, q: relations queried ratio

High -n50 -q60 -u100 -r1048576 -t4194304
SSCA2 Low -s20 -i0.1 -u0.1 -l3 -p3 s: problem scale, i: inter cliques ratio,

High -s19 -i0.5 -u0.5 -l3 -p3 u: unidirectional ratio
Labyrinth Low -x128 -y128 -z3 -n128

x, y, z: maze dimensions, n: exits
High -x32 -y32 -z3 -n96

Intruder Low -a10 -l128 -n262144 -s1
l: max number of packets per stream

High -a10 -l12 -n262144 -s1

Table 5.3: Input configurations for STAMP benchmarks.

Vacation is a travel reservation system using an in-memory database. The workload consists
of clients reservation. This application emulated an OLTP workload. Lerna improves the
performance by 2.8× faster than the sequential system, and it is very close to the manual
(See Figures 5.14a - 5.14d). Vacation transactions do not inhibit a lot of aborts as it accesses
relatively large amount of data.

SCAA2 is a multi-graph kernel that is commonly used in domains such as biology and
security. The core of the kernel uses a shared graph structure that is updated at each
iteration. The transformed kernel outperforms the original by 1.4×, while dropping the
in-order commit allows up to 3.9× (See Figures 5.14e - 5.14h).

Lerna exhibits no speedup using Labyrinth and Intruder (See Figure 5.15) because they use
an internal shared queue for storing the processed elements and they access it at the beginning
of each iteration to dispatch them for the execution (i.e., a single contention point). While
our jobs execute as a single transaction, the manual transactional version, creates multiple
transactions per iteration. The first iteration, handle just the queue synchronization, while
other iterations do the processing. Jobs partitioning will not help in this situation because
the shared access occur at the beginning of the iteration. Assume splitting each job into two
transactions, the ordering between jobs will prevent the first transaction at higher iterations
from commit. However, we can see that this technique can help to parallelize two concurrent
iterations at most; the first transaction at the higher index iteration can access the shared
queue right after the corresponding lower index iteration commits.
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Figure 5.14: Vacation and SSCA2 Benchmarks
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Figure 5.15: Labyrinth and Intruder Benchmarks
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Figure 5.16: Effect of Tiling on abort and speedup using 8 workers and Genome.

As explained in Section 5.7.2, selecting the number of jobs per each transaction (jobs tiling)
is crucial for performance. Figure 5.16 shows the speedup and abort rate with changing the
number of jobs per transaction from 1 to 10000 using the Genome benchmark. Although the
abort rate decreases when reducing the number of jobs per transaction, it does not achieve
the best speedup. The reason is that the overhead for setting up transactions nullifies the
gain of executing small jobs. For this reason, we dynamically set the job tiling according to
the job size and the gathered throughput.

The manual tuning further assists Lerna for improving the code analysis and eliminating any
avoidable overhead. An evidence of this is reported in Figure 5.17 where we show the speedup
of Kmeans against different numbers of worker threads using two variants of the transformed
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Figure 5.17: Kmeans performance with user intervention
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Benchmark Configurations Description

Fluidanimate -i in 500K i: input file with 500K particles data
Swaptions -ns 100000 -sm 1 -nt 1 ns: number of swaptions
Blackscholes -i in 10M i: input file with 10 millions equations data
Ferret top=50 depth=5 top: top K, depth: depth

Table 5.4: Input configurations for PARSEC benchmarks.

code using Lerna: the first is the normal automatic transformation, and the second leverages
user’s hints about memory locations that can be accessed safely (i.e., non-transactionally).
The figure shows that Lerna’s transformed code outperforms even the manual transactional
code.

5.8.3 The PARSEC Benchmark

PARSEC [14] is a benchmark suite for shared memory chip-multiprocessors architectures.
We evaluate Lerna performance using a subset of these benchmarks which cover different
aspects of our implementation. Table 5.4 provides a summary of benchmarks and inputs
used in the evaluation.

The Black-Scholes equation [73] is a differential equation that describes how, under a certain
set of assumptions, the value of an option changes as the price of the underlying asset
changes. This benchmark calculates Black-Scholes equation for input values and produces
the results. The iterations are relatively short; which causes producing a lot of jobs in Lerna’s
transformed program. However, jobs can be tiled (See Section 5.7.2) where each group of
iterations execute within a single job. Another approach is to add an unrolling pass earlier to
our transformation. Figure 5.18c shows the speedup with different values for loop unrollings.

Swaptions benchmark contains routines to compute various security prices using Heath-
Jarrow-Morton (HJM) [62] framework. Swaptions employs Monte Calro (MC) simulation to
compute prices. Figure 5.18b shows Lerna speedup over the sequential code.

Fluidanimate [96] is a known application performing physics simulations (about incompress-
ible fluids) to animate arbitrary fluid motion by using a particle-based approach. The main
computation is spent on computing particle densities and forces, which involves six levels of
loops nesting updating a shared array structure. However, iterations updates a global shared
matrix of particles; which makes every concurrent transaction conflicts with its preceding
transactions (See Figure 5.18d).

Ferret is a toolkit which is used for content-based similarity search. The benchmark workload
is a set of queries for image similarity search. Similar to Labyrinth and Intruder, Ferret uses
a shared queue to process its queries; which represents a single contention point and prevents
any speedup with Lerna (See Figure 5.18e).
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Figure 5.18: PARSEC Benchmarks
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5.9 Discussion

Lerna can be applied to all applications other than the used benchmarks. Here we discuss
the lesson learnt from our evaluation in order to provide an intuition about which are the
(negative) cases where Lerna’s parallelization refactoring is less effective.

Lerna extracts parallelism when possible. There are scenarios where, without the program-
mer handing the application’s logic on the refactoring process, Lerna encounters some hin-
drance (e.g., single point of contention) that cannot automatically break due to the lack of
“semantic” knowledge. Examples of that include complex data structure operations. Exam-
ples of that include Labyrinth, Intruder and Ferret as explained before, or data-level conflicts
as in Fluidanimate. We also looked into SPEC [63] applications, and we found that most of
them use data structures iterators.

The primary factors of overhead are: ordering transactions, contention on accessing shared
data (e.g., implied constraint by underlying bus-based architecture), and aborting conflicting
transactions because of true data or control dependencies, or false conflicts.

In addition, Lerna becomes less effective when: there are loops with few iterations (e.g.,
Fluidanimate) because the actual application parallelization degree is limited; there is an
irreducible global access at the beginning of each loop iteration, thus increasing the chance
of invalidating most transactions from the very beginning (e.g., Labyrinth); and workload
is heavily unbalanced across iterations. Anyway, in all the above cases, at worst, the code
produced by Lerna performs as the original.



Chapter 6

Conclusions & Post-Preliminary Work

The vast majority of the applications and algorithms are not designed to fulfill the new
trend of multi-processor chips design, which creates a gap between the available commodity
hardware and the running software. This gap is expected to continue for years with the
burdens of developing and maintaining parallel programs. This dissertation proposal aims
at extracting coarse-grained parallelization from the sequential code. We exploited TM
as an optimistic concurrency technique for supporting safe memory access and introduced
algorithmic modifications for preserving program chronological order. TM is known with its
execution overhead, which could be comparable to locking overhead, but in comparison to
sequential code it could outweigh any performance gain. We tackled this issue in several ways
such as: employing static analysis, fast-path sequential execution, transactional pooling,
transactional increments, and irrevocable transactions optimizations.

We presented HydraVM, a JVM that automatically refactors concurrency in Java programs
at the bytecode-level. Our basic idea is to reconstruct the code in a way that exhibits data-
level and execution-flow parallelism. STM was exploited as memory guards that preserve
consistency and program order. Our experiments show that HydraVM achieves speedup
between 2×-5× on a set of benchmark applications.

We presented Lerna, the first completely automated system that combines a software tool and
a runtime library to extract parallelism from sequential applications without any programmer
intervention. Lerna leverages software transactions to solve conflicts due to data sharing of
the produced parallel code, thus preserving the original application semantics. Using Lerna is
finally possible ignoring the application logic and exploiting the cheap hardware parallelism
using a blind parallelization. Lerna showed promising results with multiple benchmarks with
average 2.7× speedup over the original code.

80



Mohamed M. Saad Chapter 6. Conclusions & Post-Preliminary work 81

6.1 Proposed Post-Prelim Work

In the previous chapters, we leveraged the key idea of employing TM as an optimistic con-
currency strategy where code blocks run as transactions and they commit according to the
program chronological order. Conflict is handled by aborting (and re-executing) the trans-
action which run code with the later chronological order.

As a post-preliminary works, we propose two optimizations for enhancing the TM per-
formance and increasing processors utilization. Our first optimization aims to relax the
transaction commit ordering and instead modifying the underlying TM algorithm to recover
from inconsistent memory state. Secondly, we try to minimize the costly abort procedure by
checkpointing the work done within a conflict transaction. That way, an aborted transaction
does not need to retry all work done from the beginning.

6.1.1 Analysing Ordered Commit

Assuming Ti and Tj running code blocks i and j respectively, where i < j in the program
chronological order (age). Although that Tj may finish executing its code before Ti, it must
wait for Ti to commit first, before Tj can start committing its changes. This strategy force
thread executing higher age transactions to either: i) stall, or ii) freeze completed trans-
action, and moving to higher age transactions which increases transaction lifetime (hence,
the conflict probability). In both cases, the overall utilization is negatively affected either
by wasting processing cycles in the stall or through re-excuting aborted transactions (as a
result of increasing conflict probability).

Let τx be the time required for Tx to execute code block x, where x is the transaction age
according to program chronological order. Tx requires time of χx to expose (commit) its
changes to outer world (including the time for retry executing transaction, if commit fails),
and to notify its successor transaction with the commit completion.

Assuming Tx is the last committed transaction, and transactions Tx+1 to Tx+n are running in
parallel on n processor. Given two transactions Tx+i and Tx+j, where i < j, if Tx+j completed
execution before Tx+i finish commit, so Tx+j will have to wait for δi,j time.

The following formula shows the total wait time for N transactions distributed equally over
the n processor.

Σδ = (N − n) ∗ ((n− 1) ∗ χ− τ) + χ ∗ n ∗ (n− 1)/2

The first n transactions start at the same time but commit in order, causing the delay
represented by the second term in the equation. Transactions n+1 till N have to wait all its
predecessors to completes commit, however, there could be an overlap between transaction
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Figure 6.1: The Execution of Ordered Transactions over 4 and 8 threads

active and the commit of its predecessors. This (possible) delay is formed in the first term
of the formula.

Figure 6.1 shows the execution of ordered transactions running over 4 and 8 threads, where
χ = 0.25 τ . For the sake of brevity, in this example we assume that: 1) all transaction
executing code with same size, 2) there is no conflicting transaction. With 4 threads, the
delay occurs only at the beginning (the second term of the above equation), while 8 threads
suffer from continuous delay along the execution. Using the above formula we can see that
up to 5 threads, there is no continuous delay during the execution.

The total delay exhibits quadratic growth with increasing the number of threads, and is
affected by the ratio of commit time, χ, to execution time, τ . Figure 6.2 shows the total
delay with increasing number of threads, and for different ratios of χ and τ . Notice that χ
can be longer than τ when the transaction is aborted during the commit (e.g., as a result of
read-set validation), so it will be re-executed.
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From the previous discussion, we see that ordering transactions commit greatly affects the
overall utilization and could nullify any targeted gain from adding more threads. In the
following section, we propose some changes to transactional memory algorithms to avoid
ordering delay.

Towards Out-Of-Order Transactional Execution

In the context of speculative code execution using memory transactions, transactions are
aborted if: 1) transaction is unreachable (e.g., change in the program control flow), or 2)
transaction conflict with earlier transactions. If we allowed transactions to commit indepen-
dently from its chronological order, then we will need to handle the following situations:

• For unreachable transactions, there must be a way to rollback its changes

• Aborted transactions must be able to do cascade aborting to any other transaction
that had read a variable in the aborted transaction write-set

• Lower age transactions must be able to conflict with (and abort) committed higher age
transactions

To support these situations, we will need to keep some transaction meta-data even after it
commit. This meta-data should help us to detect conflict or abort the committed transac-
tions, however, once we are sure that the transaction become reachable (i.e., all its prede-
cessor transactions get committed successfully) then we can release this meta-data.
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Figure 6.3 shows the proposed transactional states: idle, active, committed, and aborted,
with its transition conditions. Transaction descriptor is idle till being assigned to a code
block to execute. The transaction is active as long as it is executing the code block. Upon
conflict with another concurrent transaction with lower age, the transaction is aborted. If
the transaction completed all code execution, it does the validation step and commit its
changes moving to the committed state. Transaction keeps its read-set and write-set in the
committed state. Unlike the classical transactional state, committed transaction may move
to the aborted state due to conflict with lower age transactions, or if it had read address
from another aborted transaction (cascade abort).

To summarize, the required changes to TM algorithm to support out-of-order commit of
parallel code is:

• Keep read and write sets, including any acquired locks, for the committed transaction,
and release them when all predecessor transactions get committed.

• Support cascade abort between multiple transactions in the committed states that
shares read and write sets addresses. Taking into account that cycles can exist when
an active transaction with lower age read value from committed transaction, then tries
to update a value written by the committed transaction, In this case, both transactions
will be aborted.
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6.1.2 Transaction Checkpointing

Transactions are defined as a unit of work; all or none. This assumption mandates executing
the whole transaction body upon conflicts, even if the transaction has executed correctly for
a subset of its lifetime. In the context of parallelization, restarting transactions could prevent
any possible speedup; especially with preserving order and executing balanced transactions
with equal processing time (e.g., similar loop iterations). In order to tackle this problem, we
propose transaction checkpointing as a technique that creates multiple checkpoints at some
execution points. Using checkpoints, a transaction acts as if it saved the system state at
each checkpoint. A conflicting transaction can select which is the best checkpoint wherein
the execution was valid and retry execution from it.

Inserting checkpoints can be done using different techniques:

• Static Checkpointing. Insert new checkpoint at equal portions of the transaction. This
is done statically at the code.

• Dependency Checkpointing. Alias analysis and memory dependency analysis provides
a best-effort guess for memory addresses aliasing. A common situation is the may
alias result, which indicates a possible conflict. Placing a checkpoint before may alias
accesses could improve the performance; a transaction will continue execution if no
alias, and will retry execution right before the invalid access at exact alias situations.

• Periodic Checkpointing. During runtime, we checkpoint the work done at certain times
(e.g., after doing a considerable amount of work).

• Last Conflicting Address. In our model, transactions executing symmetric code (i.e.,
iteration). Conflicting transactions usually continue conflicting at successive retrials.
A conflicting address represents a guess for possible transactions collisions, and could
be used as a hint for placing a checkpoint (i.e., before accessing this address).

The performance gain from using any of these proposed techniques is application and work-
load dependent. Additionally, checkpointing introduces an overhead for handling the check-
points; unless the work done by the transaction is large enough to outweigh this overhead,
it is not recommended. Checkpointing is useful when a transaction finishes its processing by
updating a shared data structure (e.g., Fluidanimate see Section 5.8.3); with checkpointing,
the aborted transaction can jump back till the checkpoint before the shared access and retry
execution.

In order to support checkpointing a transaction must be partially aborted. As mentioned
before, TM algorithms use either eager or lazy versioning through the usage of a write-buffer
or an undo log. For eager TM, the undo log need to store a meta-data about the checkpoint
(i.e., when it occurs). Whenever transaction wants to partially rollback, the undo-log is
used to undo changes until the last recorded checkpoint in the log (See Figure 6.4b). With
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Figure 6.4: Checkpointing implementation with write-buffer and undo-logs

lazy TM implementations, the write-buffer must be split according to the checkpoints. Each
checkpoint is associated with a separate write-buffer stores its changes (See Figure 6.4a).
Upon conflict, transaction discard write-buffers for checkpoints exist after the conflicting
location. Drawbacks of this approach are: read operations needs to check multiple write-
sets, and write-buffers should not be overlapped. Another alternative approach is to consider
check checkpoint as a nested transaction, and employs closed-nesting techniques for handling
partial rollback. However, supporting closed-nesting introduces a considerable overhead to
the TM performance and complicates the system design.
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