
On Fault-tolerant and High Performance Replicated Transactional
Systems

Sachin Hirve

Preliminary Examination Proposal submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Binoy Ravindran, Chair
Robert P. Broadwater

Roberto Palmieri
Eli Tilevich
Chao Wang

October 17, 2014
Blacksburg, Virginia

Keywords: Distributed Transaction Memory, Fault-tolerance, Active Replication,
Distributed Systems, On-line Transaction Processing

Copyright 2014, Sachin Hirve

On Fault-tolerant and High Performance Replicated Transactional Systems

Sachin Hirve

(ABSTRACT)

With the recent technological developments in last few decades, there is a notable shift in the
way business/consumer transactions are conducted. A majority of transaction now a days fall
in Online Transaction Processing (OLTP) category, where transactions are triggered over the
internet and transactional systems working in the background ensure that these transactions
are processed. One of the most important requirements of these OLTP transaction systems
is dependability.

Replication is a common technique that makes the services dependable and therefore helps
in providing reliability, availability and fault-tolerance. Active replication based replicated
transaction systems exploit full replication to avoid service interruption in case of node fail-
ures. Deferred Update Replication (DUR) and Deferred Execution Replication (DER) rep-
resent the two well known transaction execution models for replicated transactional systems.
Under DUR, transactions are executed by clients before a global certification is invoked to
resolve conflicts against other transactions running on remote nodes. On the other hand,
DER postpones the transaction execution until the agreement on a common order of trans-
action requests is reached. Both DUR and DER require a distributed ordering layer, which
ensures a total order of transactions even in case of faults.

In today’s distributed transaction processing systems, performance is of paramount impor-
tance. Any loss in performance results e.g. latency resulting from slow processing of a client
request or slow page load, results in loss of revenue for businesses. Although DUR model
perform good when conflicts are rare, it is found to be worst impacted by high conflict work-
load profiles. In contrast, immunity from percentage of conflicts within transactions make
DER an attractive choice of transaction execution model, but its serial execution results in
limited performance and its total order layer for serializing all the transactions results in
moderately high latencies. In addition to it, total order layer poses scalability challenges i.e.
it does not scale with increase in system size.

In this dissertation, we propose multiple innovations and system optimizations to enhance
the overall performance of replicated transactional systems. First, in HiperTM we exploit
the time between the instance when a client broadcasts its request and the instance when
its order is finalized, to speculatively execute the request and commit it when the final order
arrives. To achieve this goal, we extend S-Paxos with optimistic delivery, resulting in OS-
Paxos and build a transactional system based on DER model. HiperTM uses a novel,
speculative concurrency control protocol called SCC, which processes write transactions
serially, minimizing code instrumentation (i.e., locks or CAS operations). When a transaction
is optimistically delivered by OS-Paxos, its execution speculatively starts, assuming the
optimistic order as the processing order. For read-only transaction processing we use Multi-
Version objects, which helps to execute write transactions in parallel, while eliminating the
possible conflicts between read and write transactions.

Second, we designed and implemented Archie which improves over HiperTM in two aspects.
As the first contribution, Archie includes a highly optimized total order layer that mixes
optimistic-delivery and batching thus allowing the anticipation (thanks to the reliable opti-

iii

mistic notification) of a big amount of work (thanks to the batching) before the total order
is finalized. Second contribution in Archie is a novel speculative parallel concurrency con-
trol that processes transactions speculatively with high parallelism, upon their optimistic
notification, enforcing the same order as the sequence of optimistic notifications.

Both HiperTM and Archie perform well upto a certain number of nodes in the systems,
beyond which the leader becomes the bottleneck. This motivates the design of Caesar,
which is a transactional system based on a novel multi-leader partial order protocol. Caesar
enforces a partial order on the execution of transactions according to their conflicts, by letting
non-conflicting transactions to proceed in parallel and without enforcing any synchronization
during the execution (e.g., no locks).

Finally, we stumbled upon the idea that not all read-only workloads require up-to-date data
and application specific freshness and content-based constraints could be exploited to service
read-only transactions to achieve high scalability. We designed Dexter, a replication frame-
work which services the read-only requests according to the freshness guarantees specified
by the application.

Our first major post-preliminary research goal is to optimize the DUR replication model.
DUR systems pay high cost of local and remote aborts in case of high contention on shared
objects, due to which their performance is adversely affected. Exploiting the knowledge of
client’s transaction locality, we propose to incorporate the benefits of state machine approach
to scale-up the distributed performance of DUR systems. As our second contribution, we
propose to incorporate HTM for transaction execution in replicated transaction systems,
thereby eliminating the overheads associated with software solutions e.g., read-set, write-
set, and multi-versioning etc. Since HTM does not have a notion of transaction order,
ensuring the transaction execution compliant with total order is an interesting challenge
that we would like to address. Lastly, in a replicated transactional system, transaction’s
latency also depends on the communication steps required by global ordering protocol to
finalize its order. Fast decisions involving only two communication steps are optimal, but
require the same set of dependencies observed by a quorum of nodes. Since this condition
can not be guaranteed due to non-deterministic nature of message exchange among different
nodes, achieving fast decisions is not always possible. As the last effort, we propose to design
a multi-leader partial order protocol for ring based network which always ensures the fast
decision, thereby improving the latency and performance of transactional systems.

This work is supported in part by US National Science Foundation under grants CNS
0915895, CNS 1116190, CNS 1130180, and CNS 1217385.

iv

Contents

1 Introduction 2

1.1 Replication Model . 3

1.2 Motivation . 5

1.3 Summary of Current Research Contributions 7

1.4 Summary of Proposed Post-Prelim Work . 10

1.5 Thesis Organization . 11

2 Related Work 13

2.1 Transactional Replication Systems . 13

2.2 Optimistic Atomic Broadcast . 15

2.3 Scalable Read Processing . 15

3 Background 17

3.1 Paxos . 18

3.1.1 The Paxos Algorithm . 18

3.1.2 Multi-Paxos . 19

3.1.3 Generalized Paxos . 20

3.2 Atomic Broadcast . 21

3.3 Optimistic Atomic Broadcast . 21

3.4 Transaction Memory . 22

3.5 Software Transaction Memory . 23

3.5.1 Concurrency Control Mechanisms . 24

v

3.5.2 Version Management Systems . 24

3.5.3 Conflict Detection . 25

4 Common System Model 26

4.1 Assumptions . 26

4.2 Transaction Model and Processing . 27

5 Hiper TM 29

5.1 Optimistic S-Paxos . 31

5.2 The Protocol . 34

5.2.1 Write Transaction Processing . 35

5.2.2 Read-Only Transaction Processing 37

5.3 Speculative Concurrency Control . 37

5.4 Properties . 40

5.4.1 Formalism . 40

5.4.2 Global Properties . 41

5.4.3 Local Properties . 45

5.5 Implementation and Evaluation . 46

5.5.1 Bank Benchmark . 47

5.5.2 TPC-C Benchmark . 50

5.6 Summary . 51

6 Archie 53

6.1 MiMoX . 55

6.1.1 Ordering Process . 56

6.1.2 Handling Faults and Re-transmissions 57

6.1.3 Evaluation . 58

6.2 PARSPEC . 60

6.2.1 Transactional Read Operation . 62

6.2.2 Transactional Write Operation . 62

vi

6.2.3 X-Commit . 63

6.2.4 Commit . 64

6.2.5 Abort . 65

6.2.6 Read-Only Transactions . 65

6.3 Consistency Guarantees . 66

6.4 Implementation and Evaluation . 67

6.4.1 Bank Benchmark . 69

6.4.2 TPC-C Benchmark . 70

6.4.3 Vacation Benchmark . 72

6.5 Summary . 73

7 Caesar 74

7.1 Leaderless Transactions’ Ordering . 77

7.1.1 Overview . 77

7.1.2 Unfolding the Idea . 79

7.2 Protocol Details . 81

7.2.1 Proposal Phase . 81

7.2.2 Retry Phase . 83

7.2.3 Execution Phase . 83

7.2.4 Size of the Quorums and Handling of Failures 84

7.3 Correctness . 86

7.4 Implementation and Evaluation . 87

7.4.1 TPC-C and Vacation Benchmarks . 88

7.4.2 Bank Benchmark . 91

7.5 Conclusion . 92

8 Dexter 93

8.1 System Model and Assumptions . 95

8.2 Architecture Overview . 96

vii

8.3 Rule-based framework . 100

8.4 Processing transactions in Dexter . 102

8.4.1 Handling Transactions In The Synchronous Level 102

8.4.2 Propagating updates . 103

8.4.3 Handling read-only transactions . 105

8.5 Correctness . 107

8.6 Evaluation . 108

8.7 Summary . 112

9 Conclusions 113

9.1 Proposed Post-Prelim Work . 114

9.1.1 Ordering Transactions in DUR . 114

9.1.2 Executing Distributed Transactions on HTM 115

9.1.3 Multi-leader Partial Order Ring-based Transactional System 116

viii

List of Figures

3.1 Consensus mechanism with classic Paxos ballot 19

3.2 Consensus mechanism in Multi-Paxos . 20

5.1 OS-Paxos performance. 33

5.2 Example of committing transactions {T1,T2,T3,T4} varying the conflict of ac-
cessed objects, in case the final order contradicts the optimistic order. 35

5.3 Throughput and abort percentage of HiperTM and PaxosSTM for Bank bench-
mark. 48

5.4 Latency of HiperTM and PaxosSTM for Bank benchmark. 49

5.5 Throughput and abort percentage of HiperTM and PaxosSTM for TPC-C
benchmark. 51

5.6 Latency of HiperTM and PaxosSTM for TPC-C benchmark. 52

6.1 MiMoX’s message throughput. 58

6.2 Time between optimistic/final delivery. 59

6.3 Performance of Bank benchmark varying nodes, contention and percentage of
write transactions. 69

6.4 Performance of TPC-C benchmark varying nodes and number of warehouses. 71

6.5 % of x-committed transactions before the notification of the total order. . . . 71

6.6 Abort % of PaxosSTM and Archie. 72

6.7 Throughput of Vacation benchmark. 72

7.1 Acceptance rule Acc2 on denied positions. 80

7.2 Performance of TPC-C benchmark. 88

ix

7.3 Performance of Vacation benchmark. 89

7.4 Performance of Bank benchmark. 90

8.1 Dexter’s architecture. 97

8.2 Throughput with Bank and different % of read-only transactions at syn-
chronous node. 108

8.3 Throughput with TPC-C and different % of read-only transactions at syn-
chronous node. 109

8.4 Throughput of read-only transactions with Bank, varying the update size at
asynchronous node. 109

8.5 Throughput of read-only transactions with TPC-C, varying the update size
at asynchronous node. 110

8.6 Throughout of read transactions at asynchronous node, pushing updates every
12 seconds. 110

8.7 Throughput of Dexter with 48 nodes and 3 levels in the chain using Bank. . 111

8.8 Throughput of Dexter with 48 nodes and 3 levels in the chain using TPC-C. 111

x

List of Tables

6.1 Size of requests, batches, and % reorders. 59

7.1 Costs of EPaxos’s graph analysis using TPC-C. 90

xi

Acknowledgement

We would like to thank the authors of S-Paxos [8] and PaxosSTM [117] for their willingness
to share their projects’ source codes.

1

Chapter 1

Introduction

With the technological developments in last few decades, we have seen a notable transfor-
mation in the way business transactions are conducted. For an example, no matter which
country are you in, with the internet access and few computer clicks you can buy a mer-
chandise from any part of the world within a few seconds. While customer only observes
his/her purchase, there are a lot more activities that happen in background, such as updat-
ing the inventory of available items, charging the credit card of customer etc. This all is
made possible by transactional processing systems which work in the background without
the knowledge of regular customer.

Transactions are defined as a logical unit of work, which could be composed of multiple
actions on some data, but appears to be indivisible and instantaneous for other transactions.
When transactions successfully complete, they commit i.e. they change the data state and
make it visible for other transactions. If they fail, they roll-back i.e. undo the changes made
to data by different actions contained in transaction. From a long time, Database manage-
ment systems (DBMS) have been seen as default model for processing transactions. Database
systems have effectively exploited the hardware for concurrency for decades. Databases exe-
cute multiple queries simultaneously and possibly on several available processors to achieve
good performance.

A database transaction supports atomicity, consistency, isolation and durability properties,
also known as ACID properties. Atomicity property ensures that either the transaction
completes successfully or none of its actions appear to execute. Consistency is application
specific property which guarantees that transaction moves from one consistent state to an-
other according to invariants on underlying data storage system. Isolation property requires
that transactions do not observe changes made to shared data by other concurrent trans-
actions, not yet completed. Lastly durability requires that once the transaction completes
successfully, changes made by it are permanent (i.e. stored on stable storage).

Satisfying these properties has an associated cost to pay and even after meeting these re-

2

Sachin Hirve Chapter 1. Introduction 3

quirements, services provided by these systems are prone to disruption from faults. Even
though durability property promises that data changes are permanent, crash of the processing
element (node) makes the system unavailable which is undesirable, specially in today’s time
when there are large scale transaction processing systems which have service level agreements
(SLAs) to satisfy and any deviation from SLAs leads to revenue loss. Replication promises
to address this problem by providing availability without any compromise on performance.
Using replication, in case of a process failure, other processes can still deliver the request
without service interruption and without the knowledge of clients.

1.1 Replication Model

Replication makes the data or services redundant and therefore helps in improving reliability,
accessibility or fault-tolerance. Replication could be classified as: data replication, where
identical data is stored at multiple storage locations; or computation replication, where same
task is executed multiple times. A computational task is typically replicated in space, i.e.
executed on separate devices, or it could be replicated in time, if it is executed repeatedly on
a single device. Application and platform requirements play a part in selection of a particular
approach for the distributed system under consideration. We focus on data replication as
it also provides high availability. We treat objects as the quantum of data in the view of
transactional systems.

Replication could be categorized depending on the degree of data replication provided in
the system i.e. no-replication, partial replication, and full replication. Degree of replication
denotes the number of object copies in the system and it impacts overall performance and
data availability. No-replication model contains only one copy of data object in a system
of multiple nodes, thereby has a replication degree 1. On the other hand, full replication
model places each object at all nodes (replicas), resulting in a replication degree of N in a
system consisting of n replicas. Partial replication model lies between these two extremes
and could have degree of replication between 1 and N, which is selected by considering
the system’s requirements. As no-replication model does not provide better availability in
presence of faults, we only focus on partial replication and full replication models in following
discussion.

Partial replication paradigm allows transaction processing in the presence of node failures,
but as data objects copies are hosted on a subset of replicas, the overhead paid by transactions
for looking-up latest object copies at encounter time limits the achievable performance.
Current partial replication protocols [87, 100] report performance in the range of hundreds
to tens of thousands transactions committed per second, while centralized STM systems have
throughput in the range of tens of millions [26, 27]. Full replication approach annuls the cost
of object look-up and benefits from local execution since each data object is available at all
replicas, but to ensure replica consistency, it requires a common serialization order (CSO)
over transactions which itself involves network interactions with other replicas.

Sachin Hirve Chapter 1. Introduction 4

Both partial- and full replication mechanisms have their own pros and cons. Though full
replication gives the benefit of local execution on replicated objects, while building the large
scale systems, increased storage for hosting all data objects rules-out it as a viable option. In
this case, partial replication not only becomes the viable option with better availability, but it
also provides added computing power due to sheer number of nodes processing only a subset
of transactions. In a typical large scale system, both partial- and full replication models
could co-exist. For example, in geo-replicated system, different data centres work under
partial replication approach for fault-tolerance, whereas nodes within individual data centre
follow full replication model to ensure high availability and exploit the higher bandwidth of
local area network for arriving at CSO to achieve high performance.

Orthogonal to the above classification, depending on how and when the updates are ap-
plied at different replicas, replication techniques could be classified as: active and passive
replication. In active replication [102], client requests are ordered by an ordering protocol
and each replica individually executes requests. Consistency is guaranteed since replicas
deterministically process each request in the same order given the same initial state. In pas-
sive replication, also known as primary-backup replication, a replica (called primary) receives
client requests and executes them. Subsequently primary updates the state of other (backup)
replicas and sends back the response to client. If the primary replica fails (crashes), one of the
backup replicas takes the role of primary and helps the system to make progress. Primary-
backup approach with single primary suffers from limited performance since only one replica
processes transactions. Multi-primary replication addresses this problem in a setting where
data access could be partitioned and using this inherent data partitioning, different replicas
can process some share of workload and backup the others. In case data accesses are not
completely disjoint accesses, replicas slow down and give degraded performance due to need
of increased coordination.

Both of these mechanisms i.e.active- and passive replication, have different trade-off. While
passive replication could be a better choice for compute intensive workloads thereby saving
computational resources, active replication has distinct advantage when the state updates
are large enough to reach network bandwidth limit. In case of crash, passive replication
could have detection and recovery delay, whereas active replication provides failure masking
without noticeable performance degradation.

Active replication can be classified according to the time when transactions are ordered
globally. On the one hand, transactions can be executed by clients before a global certification
is invoked to resolve conflicts against other transactions running on remote nodes (approach
also known as Deferred Update Replication or DUR) [117, 100, 8, 57]). Global certification
phase requires exchange of network messages containing the object updates. On the other
hand, clients can postpone the transaction execution after the agreement on a common order
is reached. This way, they do not process transactions but they simply broadcast transaction
requests to all nodes and wait until the fastest replica replies (we name it Deferred Execution
Replication or DER) [70, 80, 48].

Sachin Hirve Chapter 1. Introduction 5

DUR approach gives high throughput (requests processed per second) when the conflicts
among distributed transactions are rare and messages containing data updates are not big.
In case the conflicts among distributed transactions are high, DUR severely suffers due to
increase in remote aborts. Also if messages encapsulating data updates become very large,
performance of DUR goes down due to limited network bandwidth. On the flip side, in
case of DER, size of message containing the transaction request (and input parameters)
is usually much smaller and is independent of object size, which helps to achieve a high
throughput for defining the serialization order among requests. On top of that, harnessing the
local execution, DER achieves moderately high throughput even for high conflict scenarios
compared to DUR execution model.

Both DUR and DER approaches require a message ordering layer for defining the order of
transactions so that each replica observes a consistent and unique order of transactional
updates. While DUR approach requires the unique order of all object updates proposed by
distributed concurrent transactions to ensure that each replica reaches same decision during
certification phase, DER approach requires global order of all client requests so that each
replica reaches an identical state after processing client requests following it.

Global order for transactions could be defined in two ways i.e., total order or partial order.
Total order blindly defines the order of the transactions i.e., without taking into account
the dependencies (or conflicts) among different transactional requests. Paxos [60] and S-
Paxos [8] are widely known examples of total-order protocols. Partial order, on the other
hand, only defines the global order for the conflicting transactions. Generalized Paxos [59]
and Egalitarian-Paxos [78] are exmaples of such partial order protocols.

1.2 Motivation

In today’s distributed transaction processing systems, performance is of paramount impor-
tance. Any loss in performance results e.g. latency resulting from slow processing of a client
request or slow page load [39, 41], results in loss of revenue for businesses. As an example,
google looses 0.44% of search sessions for each 400ms of increased page load time [39]. In
another estimate, a 1-millisecond advantage in trading applications can add $100 million
per year to a major brokerage firm [75]. In order to scale the request processing, usually
transaction processing systems increase the system size i.e. add more processing elements.
As majority of transaction request fall in the category of query transactions, therefore so-
lutions which can ensure performance scaling for read-only workloads with the increase in
system size are preferred. Another key insight is that not all read-only workloads need to
access the latest data. With these goals in mind, we design transaction processing systems in
this dissertation which can leverage local execution of read requests and different freshness
guarantees, thereby giving high performance with low latencies for read workloads.

While high-performance for processing query transaction is preferred, ensuring the progress

Sachin Hirve Chapter 1. Introduction 6

of write transactions with high throughput is equally important. This specially becomes
of significance in case transactions experience high conflict scenario when they access same
pool of shared data. Conflicts are resolved by letting one transaction proceed and aborting
others which contend for same set of data objects, resulting in higher number of aborts for
such transactions. Although DUR performs good when conflicts are rare, it is found to
be worst impacted by high conflict workload profiles, since transactions execute in parallel
before agreeing on an order and majority of them abort and restart. DER, on the other
hand serializes all the update transactions before processing them serially, therefore it does
not get affected by conflicting workloads.

Immunity from percentage of conflicts within transactions, make DER an attractive choice
of transaction execution model, but its serial execution results in limited performance and
moderately high latencies for write requests. This limitation can be addressed by designing
parallel execution mechanisms for DER model, but honouring the order defined by request
ordering layer along with parallel execution of request, makes it a challenging and interesting
problem. We attempt to solve this problem in this dissertation.

DER requires a total order layer to serialize all the update transactions, which introduces a
delay before a request could be processed resulting in longer latencies perceived by clients.
This delay could be eliminated by anticipating the work and processing requests specula-
tively, but without an oracle, requests would be required to execute speculatively in multiple
serialization orders. This could not only make it difficult to manage all those possible execu-
tions, but it could also result in wastage of computing resources as a lot of work is discarded
if it does not match with output of total order i.e. final order. We exploit the early message
delivery from total order, also known as optimistic delivery to guess the final order of request
for speculative execution, so that when final order arrives, majority of work is already ac-
complished and if optimistic delivery order matches the final order, response to clients could
be sent earlier.

Total order layer poses scalability challenges i.e. it does not scale with increase in system
size. As the number of nodes in the system increase, single leader becomes the bottleneck
of total order layer and its performance suffers. Also single leader total order protocols may
fail to give high performance if the elected leader gets overloaded and starts to show de-
graded performance. Lastly, total order protocols, though provide a simpler implementation
solution, they make request processing inefficient since transactions are forced to follow the
order even if they are independent of each other i.e. non-conflicting.

Multi-leader partial order protocols [59, 78] address the challenges of single-leader total order
protocols. On one hand existence of multiple leaders alleviates the problem of bottleneck
created by single leader and degraded performance of overloaded leader as other nodes help
the system to make progress. On the other hand, partial order protocol examines con-
flicts among different transaction prior to defining the order and as a result they enable
non-conflicting transactions to execute concurrently whereas conflicting transactions are se-
rialized. We attempt to design a multi-leader partial order messaging layer which could be

Sachin Hirve Chapter 1. Introduction 7

exploited to build high performance transactional systems.

To summarize, in this research proposal, our main aim is to design high performance fault-
tolerant distributed transactional systems. Observing the collective benefits of active repli-
cation e.g., full-failure masking, local computation, and high performance, we select it as
our default replication model. Further, our focus is to design systems which can give high
performance even under high conflict scenarios, therefore we select DER model of request
execution. We use optimistic delivery to process requests in parallel, while their order is be-
ing finalized, to help reduce the request latency. Next we design a novel multi-leader partial
order protocol and build a transactional system exploiting its benefits. Lastly, we exploit
highly multi-core architectures to service transactional queries locally at each replica (as
replica consistency is assured by active replication) using a multi-version concurrency con-
trol. This scheme reduces the contention among read and write accesses to objects, thereby
scaling the performance of queries with the system size.

1.3 Summary of Current Research Contributions

Total-order can be formed by solving the consensus (or atomic broadcast [24]) problem. In
this area, one of the most studied algorithm is Paxos [60]. Though Paxos’s initial design
was expensive (e.g., it required three communication steps), significant research efforts have
focused on alternative designs for enhancing performance. A recent example is JPaxos [57,
98, 99], built on top of MultiPaxos [60], which extends Paxos to allow processes to agree on
a sequence of values, instead of a single value. JPaxos incorporates optimizations such as
batching and pipelining, which significantly boost message throughput [98]. S-Paxos [8] is
another example that seeks to improve performance by balancing the load of the network
protocol over all the nodes, instead of concentrating that on the leader.

We extend S-Paxos with optimistic-delivery and call it OS-Paxos. OS-Paxos optimizes the S-
Paxos architecture for efficiently supporting optimistic deliveries, with the aim of minimizing
the likelihood of mismatches between the optimistic order and the final delivery order. Based
on OS-Paxos, we designed HiperTM, a high performance active replication protocol. This
protocol wraps write transactions in transactional request messages and executes them on
all the replicas in the same order.

HiperTM uses a novel, speculative concurrency control protocol called SCC, which processes
write transactions serially, minimizing code instrumentation (i.e., locks or CAS operations).
When a transaction is optimistically delivered by OS-Paxos, its execution speculatively
starts, assuming the optimistic order as the processing order. Avoiding atomic operations
allows transactions to reach maximum performance in the time available between the opti-
mistic and the corresponding final delivery. Conflict detection and any other more complex
mechanisms hamper the protocol’s ability to completely execute a sequence of transactions
within their final notifications – so those are avoided.

Sachin Hirve Chapter 1. Introduction 8

For read-only transaction processing we use Multi-Version objects, which helps to execute
write transactions in parallel, while eliminating the possible conflicts between read and write
transactions. Additionally read-only transactions are directly delivered to individual replicas
and processed locally, without going through total-order layer since replica consistency is
guaranteed by total-order layer.

An experimentation evaluation of HiperTM on a public cluster1, revealed that serially
processing optimistically delivered transactions guarantees a throughput (transactions per
second) that is higher than atomic broadcast service’s throughput (messages per second),
confirming optimistic delivery’s effectiveness for concurrency control in actively replicated
transactional systems. Additionally, the reduced number of CAS operations allows greater
concurrency, which is exploited by read-only transactions for executing faster.

From the experience with HiperTM, we learned about some possible improvements in our
system. Firstly, assuming that optimistic-order matches final-order, any processing hap-
pening after arrival of final-order could be avoided, resulting in a lower latency and better
performance. Second was to enhance the serial transaction execution to a high-performance
concurrent one. Last one was to improve the optimistic-delivery mechanism to keep pace
with the enhanced transaction processing.

Keeping these goals in sight, we designed Archie, an transactional framework based on state
machine replication (SMR) that incorporates a set of protocol and system innovations that
extensively use speculation for removing any non-trivial task after the delivery of the trans-
action’s order. The main purpose of Archie is to avoid the time-consuming operations (e.g.,
the entire transaction execution or iterations over transaction’s read and written objects)
performed after this notification, such that a transaction can be immediately committed in
case of no failure or node suspicion.

Archie incorporates MiMoX, a highly optimized total order layer, which proposes an architec-
ture that mixes optimistic-delivery and batching [98] thus allowing the anticipation (thanks
to the reliable optimistic notification) of a big amount of work (thanks to the batching)
before the total order is finalized. Nodes take advantage of the time needed for assembling
a batch to compute a significant amount of work before the delivery of the order is issued.
This anticipation is mandatory in order to minimize (possibly remove) the transaction’s
serial phase.

At the core of Archie there is a novel speculative parallel concurrency control, named Par-
Spec, that processes transactions speculatively and concurrently, upon their optimistic no-
tification, enforcing the same order as the sequence of optimistic notifications. ParSpec
does it by executing transactions speculatively in parallel, but allowing them to speculative
commit only in-order, thus reducing the cost of possible out-of-order executions. ParSpec
makes modifications visible to the following speculative transactions and ready-to-commit
snapshot of transaction’s modifications are pre-installed into the shared data-set, but only

1We evaluate all our works on PRObE [32], a high performance public cluster.

Sachin Hirve Chapter 1. Introduction 9

publishes these modified object versions to non-speculative transactions post– final-delivery
and validation step.

We implemented Archie in Java and our comprehensive experimental study with TPC-C [20],
Bank and a distributed version of Vacation [13] benchmarks revealed that Archie outper-
forms all competitors including PaxosSTM [117], the classical state-machine replication [84]
implementation and HiperTM [48], in most of the tested scenarios. on the other hand, when
the contention is very low, PaxosSTM performs better than Archie.

Looking back at the experience with building HiperTM and Archie, we learned that when the
systems size increases and thus the load of the system is high, total order based transactional
system exhibits two well-known drawbacks which may limit its effectiveness: poor parallelism
in the transaction execution and the existence of a single node (a.k.a. leader), which defines
the order on behalf of all nodes. Processing transactions in accordance with a total order
means effectively processing them serially, whereas total order can be seen as an unnecessary
overestimation because the outcome of the commits of two non-conflicting transactions is
independent from their commit order.

These two drawbacks are already addressed in literature. On one hand, more complex
ordering techniques have been proposed, which allow the coexistence of multiple leaders at
a time so that the system load is balanced among them, and the presence of a slow leader
does not hamper the overall performance (as in the case of single leader) [69, 78]. On the
other hand, the problem of ordering transactions according to their actual conflicts has been
originally formalized by the Generalized Consensus [59] and Generic Broadcast [86] problems.
The core idea consists of avoiding a “blind” total order of all submitted transactions whereas
only those transactions that depend upon each other are totally ordered.

As current leaderless Generalized Paxos-based protocols suffer from serious performance
penalties when deployed in systems where general purpose transactions (i.e., transactions
that perform both read and write operations) are assumed, we designed a novel protocol
that inherits the benefits from existing solutions while achieving high performance for trans-
actional systems. We built Caesar, a replicated transactional system that takes advantage
of an innovative multi-leader protocol implementing generalized consensus to enable high
parallelism when processing transactions. The core idea is enforcing a partial order on the
execution of transactions according to their conflicts, by leaving non-conflicting transactions
to proceed in parallel and without enforcing any synchronization during the execution (e.g.,
no locks). The novelty of Caesar is in the way it is able to efficiently find a partial order
among transactions without relying on any designated single point of decision, i.e., leaderless,
and overcoming the limitations of recent contributions in the field of distributed consensus
(e.g., [78]) when applied to transactional processing.

We implemented Caesar’s prototype in Java and conducted an extensive evaluation involving
three well-known transactional benchmarks like Bank, TPC-C [20], and distributed version
of Vacation from the STAMP suite [13]. In order to cover a wide range of competitors, we
compared Caesar against EPaxos [78], Generalized Paxos [59], and a transactional system

Sachin Hirve Chapter 1. Introduction 10

using MultiPaxos [60] for ordering transactions before the execution. As a testbed, we used
Amazon EC2 [2] and we scaled our deployment up to 43 nodes. To the best of our knowledge,
this is the first consensus-based transactional system evaluated with such a large network
scale. The results reveal that Caesar is able to outperform competitors in almost all cases,
reaching the highest gain of more than one order of magnitude using Bank benchmark, and
by as much as 8× running TPC-C.

While incorporating the system optimizations in HiperTM and Archie, we stumbled upon
the idea that not all read-only workloads require up-to-date data and application specific
freshness and content-based constraints could be exploited to service read-only transactions
to achieve high scalability. As a result, we designed Dexter which is built upon HiperTM
which is a state machine based transactional system. Since HiperTM is just a transaction
processing abstraction, Dexter can very well be based on other alternative transactional
systems [117].

Dexter’s architecture divides nodes into one synchronous group and a set of asynchronous
groups. Nodes in the synchronous group process write-transactions according to the classical
active replication paradigm. Nodes in the asynchronous groups are lazily updated, and only
serve read-only transactions with different constraints on data freshness or content. The
asynchronous groups are logically organized as a set of levels and with each increasing level
the expected freshness of objects decreases (staleness increases). The synchronous group
stores the latest versions of the objects, and thereby serves those read-only requests that
need access to the latest object versions. The main advantage of this architecture is that
write transactions yield AR’s traditional high performance, while at the same time, nodes can
scale up for serving additional read-only workloads, exploiting the various levels of freshness
that is available or expected.

For exploiting the aforementioned architecture, obviously, the application must specify the
needed level of freshness guarantees. For this reason, Dexter provides a framework for
inferring rules that are used for characterizing the freshness of a read-only transaction when
it starts in the system. Using this framework, the programmer can describe the application’s
requirements. Rules can be defined based on the elapsed time since the last update on an
object was triggered, as well as based on the content of the object (or the type of the object).

We implemented Dexter in Java and used HiperTM [48] for implementing the synchronous
group. The rest of the infrastructure was built with classical state machine replication
implementation. An extensive evaluation study aimed at testing the scalability of the system,
revealed that Dexter outperform competitors by as much as 2×.

1.4 Summary of Proposed Post-Prelim Work

In the pre-preliminary work, we have focused on optimizing the transaction execution us-
ing optimistic delivery, exploiting transaction parallelism within total ordered transactions,

Sachin Hirve Chapter 1. Introduction 11

harnessing the benefits of partial order etc. to build high performance fault-tolerant transac-
tional systems. In post-preliminary work, we seek to further enhance replicated transactional
systems by incorporating locally ordered transactions in DUR systems, exploiting Hardware
Transaction Memory (HTM) for distributed transactions and lastly optimizing the multi-
leader partial order protocol in a ring based network.

Current certification-based deferred-update replication systems pay high cost of local and
remote aborts in case of high contention on shared objects, due to which their performance
is adversely affected. Usually clients have a transaction locality i.e. with a high probability a
client will access the same transaction processing node and same set of objects over and over.
If object accesses are well partitioned in this manner, then a number of local aborts could be
eliminated by ordering the conflicting transactions prior to the execution and certification
phase. We plan to investigate in this direction and incorporate the benefits of local state
machine approach to scale-up the distributed performance of DUR systems.

With our experience with HiperTM and Archie, we learnt that maintaining each component
of software transactional memory e.g., read-set, write-set, and multi-versioning etc. has some
unavoidable overheads. On the other hand, HTM is well known to yield high performance
as it exploits the underlying hardware capabilities to manage contention while providing
transactional (ACI) properties. Even more, recently HTM systems are gathering even more
interest, after the introduction of support for transactional synchronization extensions in
Intelr CoreTM Haswell processors, enabling ease of executing transactions on hardware.
Considering these benefits, we plan to incorporate HTM support for in-order processing of
distributed transactions to build high performance transactional systems without any major
code instrumentation.

Apart from the execution time, transaction latency depends on the communication steps
required by global ordering protocol to finalize the order of transaction. From our experience
with Caesar, fast decisions involving only two communication steps are found to give optimal
performance, but as a precondition it requires the same set of dependencies observed by a
quorum of nodes. As message exchange among nodes is non-deterministic, this precondition
is difficult to meet for each transaction. We find this as an interesting challenge and propose
to design a multi-leader partial order protocol for ring based network which always ensures
the fast decision, thereby improving the latency and performance of transactional systems.

1.5 Thesis Organization

This thesis proposal is organized as follows. In Chapter 2 we summarize the relevant and
related previous work. In Chapter 5, we introduce and discuss HiperTM, a distributed
transactional system built on top of OS-Paxos. Next, we present a highly concurrent trans-
actional system Archie in 6, which incorporates optimizations to total-order layer and local
concurrency control to achieve high performance. In chapter 7, we introduce Caesar, a high

Sachin Hirve Chapter 1. Introduction 12

performance distributed transactional system based on multi-leader partial order protocol.
In Chapter 8, we present Dexter, a transactional framework where we exploit application
specific staleness and content-based constraints to scale the performance with the system
size. Chapter 9 summarizes the thesis proposal and proposes post-preliminary work.

Chapter 2

Related Work

2.1 Transactional Replication Systems

Replication in transactional systems has been widely explored in the context of DBMS, in-
cluding protocol specifications [51] and infrastructural solutions [104, 82, 83]. These propos-
als span from the usage of distributed locking to atomic commit protocols. [116] implements
and evaluates various replication techniques, and those based on active replication are found
to be the most promising.

Transactional replication based on atomic primitives had been widely studied in the last
several years [52, 56, 117, 100]. Some of them focus on partial replication [100], while others
target full replication [56, 117]. Partial replication protocols are affected by application
locality: when transactions mostly access remote objects instead of local, the performance
of the local concurrency control becomes negligible as compared to network delays. Full
replication systems have been investigated in certification-based transaction processing [53,
14, 88]. In this model, transactions are first processed locally, and a total order service is
invoked in the commit phase for globally certifying transaction execution (by broadcasting
their read and write-sets).

Granola [21] is a replication protocol based on a single round of communication. Granola’s
concurrency control technique uses single-thread processing for avoiding synchronization
overhead, and has a structure for scheduling jobs similar to speculative concurrency control.

Transactional systems can be categorized according to the scheme adopted for ordering
transactions, i.e., total order or partial order. Total order finds its basis in Paxos [60], the
original algorithm for establishing agreement among nodes in the presence of failures. A
number of solutions can be listed here [70, 113, 50] but all of them suffer from a scalability
bottleneck due to the presence of a single leader in the system. Recently, a redesign of the
state-machine approach, called P-SMR, has been proposed in [70]. P-SMR is geared towards

13

Sachin Hirve Chapter 2. Related Work 14

increasing the parallelism of transaction processing for total order-based distributed systems.
P-SMR pursues this goal by creating a total order and then defining a set of worker threads
per node, each processing a particular transaction conflict class. This way, transactions are
pre-classified according to their conflicts and executed in parallel. Another approach, which
extensively uses partitioned accesses and total ordered transactions is [71].

Calvin [113] assumes a partitioned repository of data (i.e., partial replication) and, on top of
it, it builds a replication protocol. However, even though its partial replication model can be
a way to enable scalability in case the mapping of data to nodes follows the distribution of
the application’s locality, it still requires the total order of all transactions. This is achieved
via a logical entity, named sequencer, that is responsible for defining the total order by
associating transactions with monotonically increasing sequencer numbers. To alleviate the
pressure on a single point of processing, Calvin implements the logical sequencer as a set
of distributed sequencers, and it defines a deterministic total order among messages from
different sequencers via epoch numbers and sequencers’ ids.

Eve [50] is another replicated transactional system that proposes the execution-verify ap-
proach. Roughly, Eve inherits the benefits from the DUR model, while falling back to the
DER approach when the result of the optimistic execution is not compliant with other re-
mote executions. This entails retrying the executions and committing them serially, after
having established a total order for them. This approach reduces the load on the ordering
layer because not all transactions necessarily undergo the ordering process. But in high
contention scenarios, most speculative executions could be irreconcilable and Eve does not
provide a specific solution to preserve high performance.

Mencius [69] is an ordering protocol that is able to establish a partial order on transactions
on the basis of their dependencies. It is very close to the ordering scheme proposed by
Caesar, even though it has a strong requirement that Caesar relaxes: it pre-assigns sending
slots to nodes, and a sender can decide the order of a message at a certain slot s only after
having heard from all nodes about the status of slots that precede s. This approach results
in poor performance in case there is a slow or suspected node.

Alvin [115] is a recent transactional system that proposes an optimized version of the
EPaxos’s ordering protocol. Like Caesar, it only enforces an order among conflicting trans-
actions, and it is able to avoid the expensive computation on the dependency graph enforced
by EPaxos to find out the final execution order for a transaction. However, unlike Caesar
and EPaxos, a transaction’s leader in Alvin needs to re-collect dependencies from the other
replicas in case it is not able to decide after the first round of communication. And this
happens, in accordance with the scheme also adopted by EPaxos, in case the dependencies
collected in the first round are discordant. This is not the case of Caesar, which forces an
autonomously chosen decision only if it receives an explicit rejection in the first round of
votes.

Rex [40] is a fault-tolerant replication system where all transactions are executed on a sin-
gle node, thus retaining the advantages of pure local execution, while traces are collected

Sachin Hirve Chapter 2. Related Work 15

reflecting the transaction’s execution order. Then, Rex uses consensus to make traces stable
across all replicas for fault-tolerance (without requiring a total order).

2.2 Optimistic Atomic Broadcast

The original Paxos algorithm for establishing agreement among nodes in the presence of
failures was presented in [60], and later optimized in several works, e.g., [98, 57, 8]. These
efforts do not provide any optimistic delivery. S-Paxos [8] introduced the idea of offloading
the work for creating batches from the leader and distributing it across all nodes.

Optimistic delivery has been firstly presented in [52], and later investigated in [79, 80, 71].
[79] presents AGGRO, a speculative concurrency control protocol, which processes trans-
actions in-order, in actively replicated transactional systems. In AGGRO, for each read
operation, the transaction identifies the following transactions according to the opt-order,
and for each one, it traverses the transactions’ write-set to retrieve the correct version to
read. The authors only present the protocol in [79]; no actual implementation is presented,
and therefore overheads are not revealed. The work in [80] exploits optimistic delivery and
proposes an adaptive approach to different networks models. The ordering protocol proposed
in [71] is the first that ensures no-reordering between optimistic and final delivery in case of
stable leader by relying on a network with a ring topology.

2.3 Scalable Read Processing

As read-only workloads form the majority of requests, considerable research efforts had been
invested in improving the response time (latency) of query transactions. One of the ways
to improve read-only workload performance is to service the query transactions using multi-
version object storage. [68] presents a word-based Multi-version STM implementation in
”C”. Motivation for multi-version concurrency control is invisibility of read transactions to
write transaction and long running read transactions may starve (abort and retry repeti-
tively) in case there are a lot updates on the objects used by read transaction. [94], [93]
and [10] are object-based multi-version STM implementations for centralized STMs and
authors use multi-versions to improve the performance of read transactions.

Improvement over read-only workloads has been also studied in content-based caching tech-
niques. In [66] a freshness-driven adaptive caching protocol is presented. They consider a
model containing edge servers that cache data, web servers, application servers and backend
DBMS. They propose changing the cache capacity for improving the cache hits and thereby
reducing request response time. In [18] is presented the idea of updating cached objects (or
validate them) when a predefined Time-To-Live (TTL) expires. It improves the performance
as seen by the user, since getting a fresh data from main server is done offline and user only

Sachin Hirve Chapter 2. Related Work 16

receives the fresh data from caching server. They also present policies to update/re-validate
the objects after that their TTL is expired. The work in [12] considers search results caches
used in Yahoo! search engine and introduces the concept of refreshing cache entries with
expired TTL, leveraging idle cycles of engine. It prioritizes refreshing cache entries based on
the access frequency and the duration of the cached entry. However, those techniques are
not suited for transactional application with isolation and atomicity guarantees.

One of the observation over usual transaction workloads reveals that not all read-only work-
loads need to access the latest data. Some of the approaches proposed by database commu-
nity [81, 31] tries to exploit this insight. Both [81, 31] use full replication with local databases
ensuring local consistency and introduce a routing layer which enforces global consistency.
Refresco [81] is based on single Master replication where the master node processes all the
update (write) transactions and query (read-only) transactions are served by slave nodes.
Slave nodes are updated asynchronously by master node through refresh transactions (single-
primary lazy-backup). Leganet [31] uses full replication (lazy master replication)with local
database ensuring local consistency and introduces a routing layer which enforces global
consistency. Leganet runs all conflicting update (write) transactions in the same relative
order at each node.

Pileus [111, 112] is a cloud storage based system which defines service level agreements
(SLA) and gives the programmer the flexibility of selecting the consistency level for each
read request. In Pileus, programmer could specify an SLA for read request and system
translates the SLA for appropriate consistency guarantees which can be provided within
desired latency bounds.

Chapter 3

Background

Replication has been studied extensively as a solution to provide improved availability for
distributed systems. Replica consistency can be ensured if each replica observes same se-
quence of updates on replicated data. This is made feasible by atomic broadcast layer, a
variant of reliable broadcast. Atomic broadcast is a broadcast messaging protocol that ensures
that messages are received reliably and in the same order by all participant replicas [24]. So-
lution to atomic broadcast problem has been shown to reduce to consensus on messages [28].
Although many consensus algorithms [60, 15, 49, 63, 74, 73] have been studied till now,
Paxos [60] is still one of the most widely studied consensus algorithm.

Usually in local area networks, under moderate loads, with high probability two messages m
and m’ would be received in the same order by all processes (replicas). Optimistic atomic
broadcast was introduced by Pedone and Schiper [85], which exploits this knowledge to reduce
the average delay for message delivery. Optimistic atomic broadcast helps to execute the
request speculatively by earlier delivery of request i.e. optimistic-delivery, thereby reducing
the cost of execution after the consensus.

While consensus and optimistic atomic broadcast forms the reliable messaging layer, transac-
tional systems require a concurrency control mechanism at each processes which can provide
concurrent request execution with high performance. These requests could access the same
data and to ensure that data consistency is maintained, traditionally lock-based synchro-
nization mechanisms have been used. Lock-based approaches are usually hard to maintain
and have programmability, scalability and composability challenges. Transactional memory
(TM) is an alternative synchronization solution which promises to address these challenges.

We use these different building blocks to design high-performance replicated transactional
systems in this dissertation. In this chapter, we provide a brief discussion over these building
blocks.

17

Sachin Hirve Chapter 3. Background 18

3.1 Paxos

In a distributed system, where multiple processes coordinate among themselves to achieve
their individual goals using common shared resources, the need to incorporate consensus be-
comes implicit. In other words, any algorithm that helps to maintain a common order among
multiple processes, in a model where some processes may fail, involves solving a consensus
problem. Within a rich set of consensus algorithms [60, 15, 49, 63, 74, 73], Paxos [60] is one
of the most widely studied consensus algorithm. Paxos was introduced by Leslie Lamport
as a solution to finding an agreement among a group of participants even under failures.

After the initial design [60], there have been many variants of Paxos [65, 63, 62, 74] studied
by research community. The Paxos family of protocols includes a spectrum of trade-offs
between the number of processors, number of message delays before learning the agreed
value, the activity level of individual participants, number of messages sent, and types of
failures. Although no deterministic fault-tolerant consensus protocol can guarantee progress
in an asynchronous network [29], Paxos guarantees safety (consistency), and the conditions
that could prevent it from making progress are difficult to provoke.

3.1.1 The Paxos Algorithm

Paxos categorises processes by their roles in the protocol: proposer, acceptor, and learner. In
a typical implementation a process may assume one or more roles. This does not affect the
correctness of the protocol, but could improve the latency and throughput due to reduced
number of messages by coalescing roles.

Client issues a request to the distributed system, and waits for a response. Proposer receives
request and attempt to convince acceptors to agree on it by sending proposals, acting like a
coordinator of client request, to move protocol forward. Acceptors act at the fault-tolerant
memory of the protocol and responds to proposer’s proposals to arrive on an agreement.
Consensus over a proposal can only arrive if a quorum of acceptors agree to that proposal.
Learner act as the replication factor for the protocol. Once consensus over a client request
is formed, learner may process the request and respond to clients. Additional learners could
be added to improve the system availability. Paxos requires a distinguished proposer, also
known as leader, to make the protocol progress. Multiple proposers could believe that they
are leaders, but it results in stalling of protocol due to continuous conflicting proposals.

In Paxos, consensus for each request constitutes a new ballot (Fig. 3.1) and processes could
execute a series of ballots to agree on different requests. In each ballot one of the proposers,
also called leader of the ballot, tries to convince other processes to agree on a value proposed
by it. If ballot succeeds the value proposed is decided, otherwise other processes may start
a new ballot. Each ballot is composed of two phases of communication:

Phase1: Proposer initiates a ballot by sending a Prepare message for a proposal to a quorum

Sachin Hirve Chapter 3. Background 19

of acceptors. Each proposal is assigned a number, also called view or Epoch, which is higher
than any previous proposal number used by this proposer.

Acceptors responds to the proposal and promises to ignore any later proposal lesser than
current proposal’s number N, if N is higher than any previous proposal number received by
the Acceptor. Though responding to proposer is optional in case this condition is not met,
as an optimization sending a Nack helps proposer to stop the attempt to create consensus
on proposal number N.

Phase2: Proposer enters the second phase of ballot when it receives a quorum of responses
from acceptors. If a response from some Acceptor contains a value, then proposer selects
that value to its proposal. Otherwise if none of the Acceptors accepted a proposal up to
this point, then the Proposer can choose any new value for its proposal. Proposer sends an
Accept message to the quorum of Acceptors with the chosen value for the proposal.

Acceptors, on receiving Accept message with a proposal number N, accept the proposal iff
they have not promised to participate in proposal higher than N. In this case, each acceptor
sends Accepted message to proposers and learners informing them that it has accepted the
proposal. Proposal is decided once learners receive a majority of Accepted messages for a
proposal.

P
ro
m
is
e(
v
)

Phase−1 Phase−2

R
ep
ly
(m

)

Client−(1)

Client−(2)

Process−(1)

Process−(3)

Process−(2)

P
rep

are(v
)

A
cc
ep
te
d
(m

,v
)A

ccep
t(m

,v
)

P
ro
m
is
e(
v
+
n
)

Phase−1 Phase−2

R
eq
u
est(m

’)

A
ccep

t(m
’,v

+
n
)

A
cc
ep
te
d
(m

’,
v
+
n
)

P
rep

are(v
+
n
)

R
ep
ly
(m

’)

R
eq
u
est(m

)

Figure 3.1: Consensus mechanism with classic Paxos ballot

3.1.2 Multi-Paxos

Paxos protocol requires phase-1 of ballot to select a leader (distinguished proposer), which
then tries to get a consensus over a client request. Since it does not assume that leader could
be stable, it suffers from significant amount of overhead when each request is agreed through
a separate ballot. In case, leader process is relatively stable, phase-1 become redundant.

Multi-Paxos is an optimization over Paxos, where processes try to agree on a sequence

Sachin Hirve Chapter 3. Background 20

P
ro
m
is
e(
v
)

Phase−1 Phase−2

R
eq
u
est(m

)

R
ep
ly
(m

)

Client−(1)

Client−(2)

Process−(1)

Process−(3)

Process−(2)

P
rep

are(v
)

A
cc
ep
te
d
(m

,v
)A

ccep
t(m

,v
)

Phase−2

A
ccep

t(p
,v
)

A
cc
ep
te
d
(p
,v
)

R
ep
ly
(p
)

R
eq
u
est(p

)

R
eq
u
est(m

’)

Phase−2

A
ccep

t(m
’,v

)

A
cc
ep
te
d
(m

’,
v
)

R
ep
ly
(m

’)

Figure 3.2: Consensus mechanism in Multi-Paxos

of client requests rather than single request with the same leader (Fig. 3.2). Multi-Paxos
executes prepare phase (phase-1) for selecting a new leader for arbitrary number of future
consensus instances. Afterwards, it only executes phase-2 for each instance, till this leader
is suspected to have crashed by failure detector. This optimization reduces the number of
communication steps for an instance, thereby improves the overall performance and latency.

3.1.3 Generalized Paxos

Paxos (as well as Multi-Paxos) “blindly” defines a total order for client requests in a single
leader environment. Establishing a total order relying on one leader is widely accepted solu-
tion since it guarantees the delivery of a decision with the optimal number of communication
steps [61], though existence of an overloaded or slow leader could become a bottleneck and
limits its effectiveness. Fast Paxos [64] extends Classic Paxos by allowing fast rounds, in
which a decision can be learned in two communication steps without relying on a leader but
requires bigger quorums.

Additionally, defining a total order can be seen as an unnecessary overestimation of conflicts
among client requests, because the outcome of two non-conflicting requests is independent
from their commit order. As a consequence total order limits the parallelism with request
execution, as all requests have to execute serially. The problem of ordering transactions
according to their actual conflicts has been originally formalized by Generalized Paxos [59]
which defines a total order on only those transactions that depend upon each other.

Generalized Paxos allows all processes (proposers) to send proposal for their client requests,
thereby becoming the coordinator for their respective proposal. At the start, a request
coordinator sends its proposal to other processes using Propose message. On receiving the
proposal from an individual coordinator, acceptors evaluate proposal’s conflict with the other

Sachin Hirve Chapter 3. Background 21

concurrent proposals and broadcast their evaluated dependencies to others in the form of
Accepted message. Each acceptor waits for fast quorum (QF) of Accepted messages for a given
proposal. If the dependencies observed by fast quorum of Accepted messages are identical,
proposed request is committed, thereby defining the order using the fast round similar to
Fast Paxos. Otherwise if dependencies observed by different processes are non-identical, a
dedicated leader resolves the conflict and defines the order for the proposed request. Leader
then informs all other processes about the order by sending a Stable message. As a result,
only those requests that depend upon each other are totally ordered, whereas each process
is allowed to deliver an order that differs from the one delivered by another process, while
all of them have in common the way conflicting requests are ordered.

3.2 Atomic Broadcast

Different reliable broadcast protocols support different properties. FIFO-order broadcast
ensures that messages from the same process are delivered in the same order that the sender
has broadcast them. But it does not guarantee any order for messages from different senders.
On the other hand, causal-order broadcast ensures the global order for all causally dependent
messages, but it does not guarantee order among unrelated messages. Total-order broadcast,
also known as atomic broadcast, addresses the drawbacks of both of these broadcast protocols
and orders all messages, even those that are from different senders and causally unrelated.
Therefore, atomic broadcast provides much stronger ordering properties for all processes and
without any knowledge about messages’ causal dependency.

Total-order broadcast is called atomic broadcast because the message delivery occurs as if
the broadcast were an indivisible “atomic” action: the message is delivered to all or to none
of the processes and, if the message is delivered, every other message is ordered either before
or after this message. Atomic broadcast defines two primitives: ABcast(m), used by clients
to broadcast a message m to all the processes; ADeliver(m), event notified to each process
for delivering message m. These primitives satisfy the following properties: Validity, if a
correct process ABcast a message m, then it eventually ADeliver m; Agreement, if a process
ADelivers message m, then all correct processes eventually ADeliver m; Uniform integrity,
for any message m, every process ADelivers m at most once, and only if m was previously
ABcasted ; Total order, if some process ADelivers m before m’, then every process ADelivers
m and m’ in the same order.

3.3 Optimistic Atomic Broadcast

Optimistic atomic broadcast [85] was proposed as an optimization over atomic broadcast,
which exploits the spontaneous total-order property: if processes p and q sends messages
m and m’ respectively to all processes, then both messages might be received in the same

Sachin Hirve Chapter 3. Background 22

order by all processes. This property usually holds in local-area networks under moderate
load conditions.

Apart from ABcast(m) and ADeliver(m), optimistic atomic broadcast defines an additional
primitive, called ODeliver(m), which is used for early delivering a previously broadcast
message m before the Adeliver for m is issued. Earlier delivery of message helps to reduce the
latency as request (wrapped within message) is processed optimistically before the consensus
decision arrives, but updates by the request are buffered. When message m is Adelivered,
if the message order of ODeliver(m) matches ADeliver(m) then the buffered changes from
request execution are applied to main memory (or the stable storage whatever the case may
be).

In addition to the properties of atomic broadcast, optimistic atomic broadcast supports fol-
lowing properties: 1) If a process Odeliver(m), then every correct process eventually Ode-
liver(m); 2) If a correct process Odeliver(m), then it eventually Adeliver(m); 3) A process
Adeliver(m) only after Odeliver(m).

3.4 Transaction Memory

Taking the inspiration from database transactions, need for a similar abstraction in program-
ming language semantic was felt for ensuring consistency of shared data among several pro-
cesses. The usual way for managing concurrency in a system is using locks, which inherently
suffers from programmability, scalability, and composability challenges [45]. Additionally,
the implementation of complex algorithms based on manually implemented mutual exclusion
supports becomes hard to debug, resulting in high software development time.

Herlihy and Moss [46] proposed hardware supported transactional memory which was fol-
lowed by proposal on atomic multi-word operation known as “Oklahoma update” by Stone
et al. [109]. These works became the starting point for research in hardware and soft-
ware systems for implementing transactional memory. TM has been proposed in hard-
ware(HTM) [89, 90, 17, 106], software (STM) [76, 26, 107, 10, 9, 108, 95] and hybrid ap-
proaches [23, 58, 22].

TM [42] provides the synchronization abstraction that promises to alleviate programma-
bility, scalability and composability issues with lock-based approaches. In fact, leveraging
the proven concept of atomic and isolated transactions, TM spares programmers from the
pitfalls of conventional manual lock-based synchronization, significantly simplifying the de-
velopment of parallel and concurrent applications. TM transactions are characterized by
only in-memory operations, thus their performance is orders of magnitude better than that
of non in-memory processing systems (e.g.. database systems), where interactions with stable
storage often degrade performance.

In software, STM libraries offer APIs to programmers for reading and writing shared ob-

Sachin Hirve Chapter 3. Background 23

jects, ensuring atomicity, isolation, and consistency in a completely transparent manner.
STM transactions optimistically execute, logging object changes in a private space. Two
transactions conflict if they access the same object and one access is a write. When that
happens, a contention manager resolves the conflict by aborting one and committing the
other, yielding (the illusion of) atomicity. Aborted transactions are re-started, after rolling-
back the changes.

In hardware, similar objective is achieved by best-effort execution enabled by underlying
hardware. In cache extension based HTMs, conflict is detected when cache line of read-
set/writeset of one transaction is written by another transaction, thereby invalidating the
cache line. In addition to cache extension, HTM could be implemented either by extend-
ing the functionality of the memory ordering buffer (MOB) and re-order buffer (ROB) in
modern x86 microprocessors, or modifications to the pipeline of an x86 microprocessors. In
the pursuit of benefiting from HTM’s performance, IBM and Intel [11, 92] have recently
launched new processors with HTM support. Even though transaction execution is usually
much faster in HTM as compared to STM, all transaction profiles are not suitable for HTM,
resulting in keeping STM research alive. HTM transactions which are either very long or
accesses many objects become prone to aborts due to timer interrupts and cache capacity
miss respectively.

The challenges of lock-based concurrency control are exacerbated in distributed systems,
due to the additional complexity of multi-computer concurrency (e.g., debugging efforts,
distributed deadlocks, and composability challenges). Distributed TM (or DTM) [87, 80, 19]
has been similarly motivated as an alternative to distributed locks. In addition to multi-
computer synchronization primitive, DTM also adds extra computing power due to increased
number of nodes. DTM can be classified based on the mobility of objects and transactions,
with concomitant tradeoffs, including a) control flow [4], where objects are immobile and
transactions invoke object operations through RMIs/RPCs and b) dataflow [114], where
transactions are immobile, and objects are migrated to invoking transactions.

In this thesis, our focus is on software enabled DTM solutions i.e. we employ STM solutions
to process transactions locally at a processing node (replica) in a distributed transaction
processing system. Therefore for completeness we overview STM and its basic building
blocks.

3.5 Software Transaction Memory

Conventional trend for handling shared objects during concurrent accesses is employing
lock-based solutions [3], where shared object accesses are protected by locks. Lock-based
approaches suffer from many drawbacks including deadlocks, livelocks, lock-convoying, pri-
ority inversion, and non-composability etc. Software transaction memory (STM) [105], a
TM’s software variant, has been seen as an alternative software based solution for accessing

Sachin Hirve Chapter 3. Background 24

shared memory objects, without exposing locks in the programming interface. STM provides
the synchronization abstraction that promises to addresses programmability, scalability and
composability challenges associated with lock-based approaches. In the following sections,
we provide an overview of different building blocks of a TM system.

3.5.1 Concurrency Control Mechanisms

In a TM system concurrent accesses to shared objects generates conflicts. A conflict could oc-
cur when two transactions perform conflicting operations on same data object i.e. either both
write or one transaction reads and another writes concurrently. TM system detects the con-
flict and resolves it by delaying or aborting one of the two conflicting transactions. Based on
how the conflicts are detected or resolved, TM concurrency control could be broadly divided
into two approaches: pessimistic concurrency control, where the conflict occurrence, detec-
tion and resolution all happen simultaneously; and optimistic concurrency control, where the
conflict detection and resolution happens later than conflict occurrence.

Pessimistic concurrency control allows a transaction to exclusively claim a data prior to
modifying the data, preventing other transactions from accessing it. If conflicts are frequent,
then pessimistic concurrency control pays off i.e. once a transaction has locks over its
objects, it could run to completion without any hurdle. However in case conflicts are rare,
then pessimistic concurrency control results in low throughput.

On the other hand, optimistic concurrency control allows multiple transactions to access data
concurrently and let them continue to run even if they conflict, till these conflicts are caught
and resolved by TM. In case conflicts are rare, optimistic concurrency control gives better
throughput, as it allows higher concurrency among transactions as compared to Pessimistic
concurrency control.

3.5.2 Version Management Systems

Depending upon the concurrency control being used, TM systems require mechanisms to
manage the tentative writes of concurrent transactions i.e. version management. The first
approach is eager version management, also known as direct update where transactions di-
rectly update the data in memory. Transactions maintain an undo log which holds all the
values transaction has overwritten. If the transaction aborts, it roll-backs all the changes
it has performed in memory by writing back the undo log. Eager version management re-
quires Pessimistic concurrency control because the transaction requires exclusive access to
the objects if it is going to overwrite them directly.

Second approach is lazy version management, also known as deferred update because the
updates are delayed till the transaction doesn’t commit. Transaction maintains a private
redo log to write the tentative writes. Transaction’s updates are buffered in this log and

Sachin Hirve Chapter 3. Background 25

transaction reads from this log if a modified object is read again within the same transaction
context. If a transaction commits, it updates the objects in main memory with these private
logs. On abort, transaction’s redo log is simply discarded.

3.5.3 Conflict Detection

With pessimistic concurrency control, conflict detection is trivial since lock over an object
could only be acquired if it is not already held by another thread in conflicting mode. For
optimistic concurrency control, transaction uses validation operation to check whether or
not it has experienced a conflict. Successful validation implies that transaction could be
serialized in history of transactions executed so far.

Conflicts could be detected at different times during transaction execution. Firstly, a trans-
action could be detected when it declares its intent to access a new object. This approach
is also known as eager conflict detection [77]. Next, conflicts could be detected by execut-
ing validation operation any time, or even multiple times, during transaction’s execution to
examine the collection of locations it previously read or updated. Lastly, a conflict could be
detected when a transaction attempts to commit by validating the complete set of read/-
modified locations one final time. This last approach is also called lazy conflict detection [77].

Chapter 4

Common System Model

4.1 Assumptions

We consider a classical distributed system model [37] where a set of nodes/processes Π =
{N1, N2, . . . , N|Π|} communicate using message passing links. A node can be correct (or
non-faulty), i.e., working properly; or faulty, i.e., crashed; or suspected, i.e., some node
experienced interrupted interaction with it but it is still not marked as crashed.

Processes running distributed algorithms are subject to failures of different components. It
could range from a process crash or message link failure to malicious malfunctioning of a
process. Accordingly faults could be broadly classified as: 1) Crash faults, where process
stops executing; 2) Omission faults, where a process doesn’t send or receive a message; or 3)
Arbitrary faults also known as Byzantine faults, where process deviates from the assigned
algorithm leading to unpredictable behaviour.

For our systems, we assume that nodes may fail according to the fail-stop (crash) model [7].
We assume a partially synchronous system [60], where every message may experience an
arbitrarily large, although finite, delay. We assume a maximum number of faulty nodes to
be equal to f , and the number of nodes |Π| equal to 2f + 1. We consider only non-byzantine
faults, i.e., nodes cannot perform actions that are not compliant with the replication algo-
rithm.

Decisions about the final order of a transaction are made by collecting information from other
nodes in the system. Depending upon the communication steps involved and consensus
protocol, we leverage different quorums. When the leader, under single-leader consensus
protocol such as multi-paxos, decides the final order of a transaction, it waits for a quorum
QC = f + 1 of replies. Similarly for leaderless protocols (e.g., Caesar), when a leader
decides the final order of a transaction after two communication delays, it waits for a quorum

26

Sachin Hirve Chapter 4. Common System Model 27

QF = f +

⌊
f + 1

2

⌋
of replies1. On the other hand, if a decision cannot be accomplished

after two communication delays, then a quorum QC = f + 1 is used, as in [60]. This way
any two quorums always intersect, thus ensuring that, even though f failures happen, there
is always at least one site with the last updated information that we can use for recovering
the system.

To eventually reach an agreement on the order of transactions when nodes are faulty, we
assume that the system can be enhanced with the weakest type of unreliable failure detec-
tor [38] that is necessary to implement a leader election [37].

4.2 Transaction Model and Processing

For the sake of generality and following the trend of [56, 48, 70], we adopt the programming
model of software transactional memory (STM) [105] and its natural extension to distributed
systems (i.e., DTM). DTM allows the programmer to simply mark a set of operations with
transactional requirements as an “atomic block”. The DTM framework transparently ensures
the atomic block’s transactional properties (i.e., atomicity, isolation, consistency), while
executing it concurrently with other atomic blocks.

A transaction is a sequence of operations, each of which is either a read or a write on a
shared object, wrapped in a clearly marked procedure that starts with the begin operation
and ends with the commit (or abort) operation. This procedure is available at the system
side and may or may not be available at the client side. We name a transaction as write
transaction in case it performs at least one write operation on some shared object, otherwise
the transaction is called read-only transaction.

We consider a full replication model, where the application’s entire shared data-set is repli-
cated across all nodes. Transactions are not executed on application threads. Instead,
application threads, referred to as clients, inject transactional requests into the replicated
system and service threads process transactions. These two groups of threads do not neces-
sarily run on the same physical machine. Our transaction processing model is similar to the
multi-tiered architecture that is popular in relational databases and other modern storage
systems, where dedicated threads (different from threads that invoke transactions) process
transactions.

Each request is composed of a key, identifying the transaction to execute, and the values of
all the parameters needed for running the transaction’s logic (if any). Threads submit the
transaction request to a node, and wait until the node successfully commits that transaction.

Specifically for Caesar, which orders transactions according to their conflicts, we broadcast
the objects expected to be accessed together with the transaction key and input parame-

1The size of the quorum is the same adopted in [78] for fast quorums.

Sachin Hirve Chapter 4. Common System Model 28

ters. This additional information, although mandatory for avoiding overestimation of actual
conflicts, does not represent a limitation especially if the business logic of the transaction
is snapshot-deterministic (i.e., the sequence of performed operations depend only on the re-
turned value of previous read operations). In fact, in this case usually once the values of the
input parameters of the stored-procedure are known, then the set of objects accessed, which
could conflict with other, is likely known.

We use a multi-versioned memory model, wherein an object version has two fields: times-
tamp, which defines the logical time when the transaction that wrote the version committed;
and value, which is the value of the object (either primitive value or set of fields).

Chapter 5

Hiper TM

State-machine replication (or active replication) [102] is a paradigm that exploits full repli-
cation to avoid service interruption in case of node failures. In this approach, whenever the
application executes a transaction T , it is not directly processed in the same application
thread. Instead, a group communication system (GCS), which is responsible for ensuring
the CSO, creates a transaction request from T and issues it to all the nodes in the system.
The CSO defines a total order among all transactional requests. Therefore, when a sequence
of messages is delivered by the GCS to one node, it guarantees that other nodes also receive
the same sequence, ensuring replica consistency.

A CSO can be determined using a solution to the consensus (or atomic broadcast [24]) prob-
lem: i.e., how a group of processes can agree on a value in the presence of faults in partially
synchronous systems. Paxos [60] is one of the most widely studied consensus algorithms.
Though Paxos’s initial design was expensive (e.g., it required three communication steps),
significant research efforts have focused on alternative designs for enhancing performance.
A recent example is JPaxos [57, 98, 99], built on top of MultiPaxos [60], which extends
Paxos to allow processes to agree on a sequence of values, instead of a single value. JPaxos
incorporates optimizations such as batching and pipelining, which significantly boost mes-
sage throughput [98]. S-Paxos [8] is another example that seeks to improve performance by
balancing the load of the network protocol over all the nodes, instead of concentrating that
on the leader.

A deterministic concurrency control protocol is needed for processing transactions according
to the CSO. When transactions are delivered by the GCS, their commit order must coincide
with the CSO; otherwise replicas will end up in different states. With deterministic con-
currency control, each replica is aware of the existence of a new transaction to execute only
after its delivery, significantly increasing transaction execution time. An optimistic solution
to this problem has been proposed in [52], where an additional delivery, called optimistic
delivery, is sent by the GCS to the replicas prior to the final CSO. This new delivery is used
to start transaction execution speculatively, while guessing the final commit order. If the

29

Sachin Hirve Chapter 5. HiperTM 30

guessed order matches the CSO, then the transaction, which is already executed (totally or
partially), is ready to commit [79, 80, 72]. However, guessing alternative serialization or-
ders [96, 97] – i.e., activate multiple speculative instances of the same transactions starting
from different memory snapshots – has non-trivial overheads, which, sometimes, do not pay
off.

In this chapter, we present HiperTM, a high performance active replication protocol. HiperTM
is based on an extension of S-Paxos, called OS-Paxos that we propose. OS-Paxos optimizes
the S-Paxos architecture for efficiently supporting optimistic deliveries, with the aim of min-
imizing the likelihood of mismatches between the optimistic order and the final delivery
order. The protocol wraps write transactions in transactional request messages and executes
them on all the replicas in the same order. HiperTM uses a novel, speculative concurrency
control protocol called SCC, which processes write transactions serially, minimizing code
instrumentation (i.e., locks or CAS operations). When a transaction is optimistically deliv-
ered by OS-Paxos, its execution speculatively starts, assuming the optimistic order as the
processing order. Avoiding atomic operations allows transactions to reach maximum per-
formance in the time available between the optimistic and the corresponding final delivery.
Conflict detection and any other more complex mechanisms hamper the protocol’s ability to
completely execute a sequence of transactions within their final notifications – so those are
avoided.

For each shared object, the SCC protocol stores a list of committed versions, which is
exploited by read-only transactions to execute in parallel to write transactions. As a conse-
quence, write transactions are broadcast using OS-Paxos. Read-only transactions are directly
delivered to one replica, without a CSO, because each replica has the same state, and are
processed locally.

We implemented HiperTM and experimentally evaluated on PRObE [32], a high performance
public cluster with 19 nodes1 using benchmarks including TPC-C [20] and Bank. Our results
reveal three important trends:

A) OS-Paxos provides a very limited number of out-of-order optimistic deliveries (0%
when no failures happen and <5% in case of failures), allowing transactions processed
– according to the optimistic order – to more likely commit.

B) Serially processing optimistically delivered transactions guarantees a throughput (trans-
actions per second) that is higher than atomic broadcast service’s throughput (mes-
sages per second), confirming optimistic delivery’s effectiveness for concurrency control
in actively replicated transactional systems. Additionally, the reduced number of CAS
operations allows greater concurrency, which is exploited by read-only transactions for
executing faster.

1We selected 19 because, according to Paxos’s rules, this is the minimum number of nodes to tolerate 9
simultaneous faults.

Sachin Hirve Chapter 5. HiperTM 31

C) HiperTM’s transactional throughput is up to 3.5× better than PaxosSTM [117], a
state-of-the-art atomic broadcast-based competitor, using the classical configuration
of TPC-C.

With HiperTM, we highlight the importance of making the right design choices for fault-
tolerant DTM systems. To the best of our knowledge, HiperTM is the first fully implemented
transaction processing system based on speculative processing, built in the context of active
replication.

5.1 Optimistic S-Paxos

Optimistic S-Paxos (or OS-Paxos) is an implementation of optimistic atomic broadcast [85]
built on top of S-Paxos [8]. S-Paxos can be defined in terms of two primitives (compliant
with the atomic broadcast specification):

- ABcast(m): used by clients to broadcast a message m to all the nodes

- Adeliver(m): event notified to each replica for delivering message m

These primitives satisfy the following properties:

- Validity. If a correct process ABcast a message m, then it eventually Adeliver m.

- Uniform agreement. If a process Adelivers a message m, then all correct processes even-
tually Adeliver m.

- Uniform integrity. For any message m, every process Adelivers m at most once, and only
if m was previously ABcasted.

- Total order. If some process Adelivers m before m′, then every process Adelivers m and
m′ in the same order.

OS-Paxos provides an additional primitive, called Odeliver(m), which is used for delivering
a previously broadcast message m before the Adeliver for m is issued. OS-Paxos ensures
that:

- If a process Odeliver(m), then every correct process eventually Odeliver(m).

- If a correct process Odeliver(m), then it eventually Adeliver(m).

- A process Adeliver(m) only after Odeliver(m).

Sachin Hirve Chapter 5. HiperTM 32

OS-Paxos’s properties and primitives are compliant with the definition of optimistic atomic
broadcast [85]. The sequence of Odeliver notifications defines the so called optimistic order
(or opt-order). The sequence of Adeliver defines the so called final order. We now de-
scribe the architecture of S-Paxos to elaborate the design choices we made for implementing
Odeliver and Adeliver.

S-Paxos improves upon JPaxos with optimizations such as distributing the leader’s load
across all replicas. Unlike JPaxos, where clients only connect to the leader, in S-Paxos each
replica accepts client requests and sends replies to connected clients after the execution of the
requests. S-Paxos extensively uses the batching technique [98, 99] for increasing throughput.
A replica creates a batch of client requests and distributes it to other replicas. The receiver
replicas forward this batch to all other replicas. When the replicas observe a majority of
delivery for a batch, it is considered as stable batch. The leader then proposes an order
(containing only batch IDs) for non-proposed stable batches, for which, the other replicas
reply with their agreement i.e., accept messages. When a majority of agreements for a
proposed order is reached (i.e., a consensus instance), each replica considers it as decided.

S-Paxos is based on the MultiPaxos protocol where, if the leader remains stable (i.e., does
not crash), its proposed order is likely to be accepted by the other replicas. Also, there
exists a non-negligible delay between the time when an order is proposed and its consensus is
reached. As the number of replicas taking part in the consensus agreement increases, the time
required to reach consensus becomes substantial. Since the likelihood of a proposed order to
get accepted is high with a stable leader, we exploit the time to reach consensus and execute
client requests speculatively without commit. When the leader sends the proposed order for
a batch, replicas use it for triggering Odeliver. On reaching consensus agreement, replicas
fire the Adeliver event, which commits all speculatively executed transactions corresponding
to the agreed consensus.

Network non-determinism presents some challenges for the implementation of Odeliver and
Adeliver in S-Paxos. First, S-Paxos can be configured to run multiple consensus instances
(i.e., pipelining) to increase throughput. This can cause out-of-order consensus agreement
e.g., though an instance a precedes instance b, b may be agreed before a. Second, the client’s
request batch is distributed by the replicas before the leader could propose the order for
them. However, a replica may receive a request batch after the delivery of a proposal that
contains it (due to network non-determinism). Lastly, a proposal message may be delivered
after the instance is decided.

We made the following design choices to overcome these challenges. We trigger an Odeliver
event for a proposal only when the following conditions are met: 1) the replica receives a
propose message; 2) all request batches of the propose message have been received; and 3)
Odeliver for all previous instances have been triggered i.e., there is no “gap” for Odelivered
instances. A proposal can be Odelivered either when a missing batch from another replica is
received for a previously proposed instance, or when a proposal is received for the previously
received batches. We delay the Odeliver until we receive the proposal for previously received

Sachin Hirve Chapter 5. HiperTM 33

batches to avoid out-of-order speculative execution and to minimize the cost of aborts and
retries.

The triggering of the Adeliver event also depends on the arrival of request batches and the
majority of accept messages from other replicas. An instance may be decided either after the
receipt of all request batches or before the receipt of a delayed batch corresponding to the
instance. It is also possible that the arrival of the propose message and reaching consensus is
the same event (e.g., for a system of 2 replicas). In such cases, Adeliver events immediately
follow Odeliver. Due to these possibilities, we fire the Adeliver event when: 1) consensus
is reached for a proposed message; and 2) a missing request batch for a decided instance is
received; and 3) the corresponding instance has been Odelivered. If there is any out-of-order
instance agreement, Adeliver is delayed until all previous instances are Adelivered.

 0

 1

 2

 3

 4

 5

 6

3 7 11 15 19

O
d
e
liv

e
r

o
u
t-

o
f-

o
rd

e
r

%

Replicas

Failure-free
Faulty

(a) % of out-of-order Odeliver w.r.t. Adeliver

 0

 100

 200

 300

 400

 500

 600

3 7 11 15 19

D
e
la

y
 f
ro

m
 O

d
e
liv

e
r

to
 A

d
e
liv

e
r

(µ
s
e
c
)

Replicas

Failure-free
Faulty

(b) Time between Odeliver and Adeliver

Figure 5.1: OS-Paxos performance.

In order to assess the effectiveness of our design choices, we conducted experiments measuring
the percentage of reordering between OS-Paxos’s optimistic and final deliveries, and the
average time between an Odeliver and its subsequent Adeliver. We balanced the clients
injecting requests on all the nodes and we reproduced executions without failures (Failure-
free) and manually crashing the actual leader (Faulty). Figure 5.1 shows the results. The
experimental test-bed is the same used for the evaluation of HiperTM in Section 5.5 (briefly,
we used 19 nodes interconnected via 40 Gbits network on PRObE [32] public cluster).

Reordering (Figure 5.1(a)) is absent for failure-free experiments (Therefore the bar is not
visible in the plot). This is because, if the leader does not fail, then the proposing order
is always confirmed by the final order in OS-Paxos. Inducing leader to crash, some reorder
appears starting from 7 nodes. However, the impact on the overall performance is limited
because the maximum number of reordering observed is lower than 5% with 19 replicas. This
confirms that the optimistic delivery order is an effective candidate for the final execution
order. Figure 5.1(b) shows the average delay between Odeliver and Adeliver. It is in the

Sachin Hirve Chapter 5. HiperTM 34

rage of ≈300 microseconds to ≈500 microseconds in case of failure-free runs and it increases
up to ≈550 microseconds when leader crashes. The reason is related to the possibility that
the process of sending the proposal message is interrupted by a fault, forcing the next elected
leader to start a new agreement on previous messages.

The results highlight the trade-off between a more reliable optimistic delivery order and
the time available for speculation. On one hand, anticipating the optimistic delivery results
in additional time available for speculative processing transactions, at the cost of having an
optimistic delivery less reliable. On the other hand, postponing the optimistic delivery brings
an optimistic order that likely matches the final order, restricting the time for processing.
In HiperTM we preferred this last configuration and we designed a lightweight protocol for
maximizing the exploitation of the time between Odeliver and Adeliver.

5.2 The Protocol

Application threads (clients), after invoking a transaction using the invoke API, wait until
the transaction is successfully processed by the replicated system and its outcome becomes
available. Each client has a reference replica for issuing requests. When that replica becomes
unreachable or a timeout expires after the request’s submission, the reference replica is
changed and the request is submitted to another replica. Duplication of requests is handled
by tagging messages with unique keys composed of client ID and local sequence number.

Replicas know about the existence of a new transaction to process only after the transac-
tion’s Odeliver. The opt-order represents a possible, non definitive, serialization order for
transactions. Only the sequence of Adelivers determines the final commit order. HiperTM
overlaps the execution of optimistically delivered transactions with their coordination phase
(i.e., defining the total order among all replicas) to avoid processing those transactions from
scratch after their Adeliver. Clearly, the effectiveness of this approach depends on the like-
lihood that the opt-order is consistent with the final order. In the positive case, transactions
are probably executed and there is no need for further execution. Conversely, if the final
order contradicts the optimistic one, then the executed transactions can be in one of the
following two scenarios: i) their serialization order is “equivalent” to the serialization or-
der defined by the final order, or ii) the two serialization orders are not “equivalent”. The
notion of equivalence here is related to transactional conflicts: when two transactions are
non-conflicting, their processing order is equivalent.

Consider four transactions. Suppose {T1,T2,T3,T4} is their opt-order and {T1,T4,T3,T2} is
their final order. Assume that the transactions are completely executed when the respective
Adelivers are issued. When Adeliver(T4) is triggered, T4’s optimistic order is different
from its final order. However, if T4 does not conflict with T3 and T2, then its serialization
order, realized during execution, is equivalent to the final order, and the transaction can be
committed without re-execution (case i)). On the contrary, if T4 conflicts with T3 and/or

Sachin Hirve Chapter 5. HiperTM 35

T2, then T4 must be aborted and restarted in order to ensure replica consistency (case ii)).
If conflicting transactions are not committed in the same order on all replicas, then replicas
could end up with different states of the shared data-set, violating correctness (i.e., the return
value of a read operation can be different if it is executed on different replicas).

T1:[R(A1);W(A1)], T2:[R(A2);W(A2)], T3:[R(A3);W(A3)], T4:[R(A4);W(A4)],

Opt3order:,T1,3>,T2,3>,T3,3>,T4,

Case,i)#
,

T4,conflicts,with,T2,and/or,T3,
A2,∩,A4,≠,�,and/or,A3,∩,A4,≠,�,,

Final3order:,T1,3>,T4,3>,T3,3>,T2,

Case,ii)#
,

T4,does,not,conflict,with,T2,and/or,T3,
A2,∩,A4,=,�,and/or,A3,∩,A4,=,�,#

Commit,order,
T1,3>,T4,3>,T3,3>,T2,is,NOT,equivalent,to,

T1,3>,T2,3>,T3,3>,T4,

Commit,order,
T1,3>,T4,3>,T3,3>,T2,is,equivalent,to,

T1,3>,T2,3>,T3,3>,T4,

Figure 5.2: Example of committing transactions {T1,T2,T3,T4} varying the conflict of accessed
objects, in case the final order contradicts the optimistic order.

Figure 5.2 pictures the previous two cases. For the sake of clarity, we assume each transaction
performing one read operation and one write operation on the same object. We distinguish
between case i) and case ii) by, respectively, assigning different values to accessed objects
(left column in the figure) or same values (right column in the figure). However, in both the
cases, transaction T4 reads and writes the same object managed by T1, thus A1 is equals
to A4 (due to the compact representation of the example, each object’s name is different
but it can refer to same object). In case i), where object A2 (or A3) is the same as A4, the
validation of T4 after T1 cannot complete successfully because the value of A2 (or A3) read by
T4 does not correspond to the actual committed value in memory, namely the one written by
T1. On the contrary, the right column shows the case ii) where object A2 (or A3) is different
from A4. This way, T4 can successfully validate and commit even if its speculative execution
order was different. This is because the actual dependencies with other transactions of T4

are the same as those in the final order (i.e., T1 has to commit before T4). As a result, T1 is
still committed before T4, allowing T4 to commit too.

5.2.1 Write Transaction Processing

We use the speculative processing technique for executing optimistically (but not yet finally)
delivered write transactions. (We recall that only write transactions are totally ordered
through OS-Paxos). This approach has been proposed in [52] in the context of traditional
DBMS. In addition to [52], we do not limit the number of speculative transactions exe-
cuted in parallel with their coordination phase, and we do not assume a-priori knowledge
on transactions’ access patterns. Write transactions are processed serially, without parallel

Sachin Hirve Chapter 5. HiperTM 36

activation (see Section 5.3 for complete discussion). Even though this approach appears
inconsistent with the nature of speculative processing, it has several benefits for in-order
processing, which increase the likelihood that a transaction will reach its final stage before
its Adeliver is issued.

In order to allow next conflicting transaction to process speculatively, we define a complete
buffer for each shared object. In addition to the last committed version, shared objects also
maintain a single memory slot (i.e., the complete buffer), which stores the version of the
object written by the last completely executed optimistic transaction. The complete buffer
could be empty if no transactions wrote a new version of that object after the previous
version became committed. We do not store multiple completed versions because, executing
transactions serially needs only one uncommitted version per object. When an Odelivered
transaction performs a read operation, it checks the complete buffer for the presence of a
version. If the buffer is empty, the last committed version is considered; otherwise, the version
in the complete buffer is accessed. When a write operation is executed, the complete buffer
is immediately overwritten with the new version. This early publication of written data in
memory is safe because of serial execution. In fact, there are no other write transactions
that can access this version before the current transaction completes.

After executing all its operations, an optimistically delivered transaction waits until Adeliver
is received. In the meanwhile, the next Odelivered transaction starts to execute. When an
Adeliver is notified by OS-Paxos, a handler is executed by the same thread that is responsible
for speculatively processing transactions. This approach avoids interleaving with transac-
tion execution (which causes additional synchronization overhead). When a transaction is
Adelivered, if it is completely executed, then it is validated for detecting the equivalence
between its actual serialization order and the final order. The validation consists of compar-
ing the versions read during the execution. If they correspond with the actual committed
version of the objects accessed, then the transaction is valid, certifying that the serialization
order is equivalent to the final order. If the versions do not match, the transaction is aborted
and restarted. A transaction Adelivered and aborted during its validation can re-execute
and commit without validation due to the advantage of having only one thread executing
write transactions.

The commit of write transactions involves moving the written objects from transaction local
buffer to the objects’ last committed version. In addition, each object maintains also a list
of previously committed versions, which is exploited by read-only transactions to execute in-
dependently from the write transactions. In terms of synchronization required, the complete
buffer can be managed without it because only one write transaction is active at a time.
On the other hand, installing a new version as committed requires synchronization because
of the presence of multiple readers (i.e., read-only transactions) while the write transaction
could (possibly) update the list.

Sachin Hirve Chapter 5. HiperTM 37

5.2.2 Read-Only Transaction Processing

Read-only transactions are marked by programmers and they are not broadcast using OS-
Paxos, because they do not need to be totally ordered. When a client invokes a read-only
transaction, it is locally delivered and executed in parallel to write transactions by a separate
pool of threads. In order to support this parallel processing, we define a timestamp for each
replica, called replica-timestamp, which represents a monotonically increasing integer, incre-
mented each time a write transaction commits. When a write transaction enters its commit
phase, it assigns the replica-timestamp to a local variable, called c-timestamp, represent-
ing the committing timestamp, increases the c-timestamp, and tags the newly committed
versions with this number. Finally, it updates the replica-timestamp with the c-timestamp.

When a read-only transaction performs its first operation, the replica-timestamp becomes the
transaction’s timestamp (or r-timestamp). Subsequent operations are processed according
to the r -timestamp: when an object is accessed, its list of committed versions is traversed in
order to find the most recent version with a timestamp lower or equal to the r -timestamp.
After completing execution, a read-only transaction is committed without validation. The
rationale for doing so is as follows. Suppose TR is the committing read-only transaction and
TW is the parallel write transaction. TR’s r -timestamp allows TR to be serialized a) after all
the write transactions with a c-timestamp lower or equal to TR’s r -timestamp; and b) before
TW ’s c-timestamp and all the write transactions committed after TW . TR’s operations access
versions consistent with TR’s r -timestamp. This subset of versions cannot change during TR’s
execution, and therefore TR can commit safely without validation.

Whenever a transaction commits, the thread managing the commit wakes-up the client that
previously submitted the request and provides the appropriate response.

5.3 Speculative Concurrency Control

In HiperTM, each replica is equipped with a local speculative concurrency control, called
SCC, for executing and committing transactions enforcing the order notified by OS-Paxos.
In order to overlap the transaction coordination phase with transaction execution, write
transactions are processed speculatively as soon as they are optimistically delivered. The
main purpose of the SCC is to completely execute a transaction, according to the opt-order,
before its Adeliver is issued. As shown in Figure 5.2, the time available for this execution is
limited.

Motivated by this observation, we designed SCC. SCC exploits multi-versioned memory for
activating read-only transactions in parallel to write transactions that are, on the contrary,
executed on a single thread. The reason for single-thread processing is to avoid the over-
head for detecting and resolving conflicts according to the opt-order while transactions are
executing. During experiments on the standalone version of SCC, we found it to be capable

Sachin Hirve Chapter 5. HiperTM 38

of processing ≈95K write transactions per second, while ≈250K read-only transactions in
parallel on different cores (we collected these results using Bank benchmark on experimental
test-bed’s machine). This throughput is higher than HiperTM’s total number of optimisti-
cally delivered transactions speculatively processed per second, illustrating the effectiveness
of single-thread processing.

Single-thread processing ensures that when a transaction completes its execution, all the
previous transactions are executed in a known order. Additionally, no atomic operations are
needed for managing locks or critical sections. As a result, write transactions are processed
faster and read-only transactions (executed in parallel) do not suffer from otherwise over-
loaded hardware bus (due to CAS operations and cache invalidations caused by spinning on
locks) and they are also never stopped.

Transactions log the return values of their read operations and written versions in private
read- and write-set, respectively. The write-set is used when a transaction is Adelivered
for committing its written versions in memory. However, for each object, there is only one
uncommitted version available in memory at a time, and it corresponds to the version written
by the last optimistically delivered and executed transaction. If more than one speculative
transaction wrote to the same object, both are logged in their write-sets, but only the last
one is stored in memory in the object’s complete buffer. We do not need to record a list
of speculative versions, because transactions are processed serially and only the last can be
accessed by the current executing transaction.

Algorithm 1 Read Operation of Transaction Ti on Object X.
1: if Ti.readOnly = FALSE then
2: if ∃ version ∈ X.completeBuffer then
3: Ti.ReadSet.add(X.completeBuffer)
4: return X.completeBuffer.value
5: else
6: Ti.ReadSet.add(X.lastCommittedVersion)
7: return X.lastCommittedVersion.value
8: end if
9: else
10: if r-timestamp = 0 then
11: r-timestamp ← X.lastCommittedVersion.timestamp
12: return X.lastCommittedVersion.value
13: end if
14: P ← {set of versions V ∈ X.committedVersions s.t. V .timestamp ≤ r-timestamp
15: if P 6= ∅ then
16: Vcx ← ∃ version Vk ∈ P s.t. ∀ Vq ∈ P ⇒ Vk.timestamp ≥ Vq .timestamp . Vcx has the maximum timestamp in P
17: return Vcx.value
18: else
19: return X.lastCommittedVersion.value
20: end if
21: end if

Algorithm 2 Write Operation of Transaction Ti on Object X writing the Value v.
1: Version Vx ← createNewVersion(X,v)
2: X.completeBuffer ← Vx

3: Ti.WriteSet.add(Vx)

Sachin Hirve Chapter 5. HiperTM 39

The read-set is used for validation. Validation is performed by simply verifying that all
the objects accessed correspond to the last committed versions in memory. When the opti-
mistic order matches the final order, validation is redundant, because serially executing write
transactions ensures that all the objects accessed are the last committed versions in memory.
Conversely, if an out-of-order occurs, validation detects the wrong speculative serialization
order.

Consider three transactions, and let {T1,T2, T3} be their opt-order and {T2,T1, T3} be their
final order. Let T1 and T2 write a new version of object X and let T3 reads X. When
T3 is speculatively executed, it accesses the version generated by T2. But this version does
not correspond to the last committed version of X when T3 is Adelivered. Even though
T3’s optimistic and final orders are the same, it must be validated to detect the wrong
read version. When a transaction TA is aborted, we do not abort transactions that read
from TA (cascading abort), because doing so will entail tracking transaction dependencies,
which has a non-trivial overhead. Moreover, a restarted transaction is still executed on the
same processing thread. That is equivalent to SCC’s behavior, which aborts and restarts a
transaction when its commit validation fails.

Algorithm 3 Validation Operation of Transaction Ti.
1: for all Vx ∈ Ti.ReadSet do
2: if Vx 6= X.lastCommittedVersion then
3: return FALSE
4: end if
5: end for
6: return TRUE

Algorithm 4 Commit Operation of Transaction Ti.
1: if Validation(Ti) = FALSE then
2: return Ti.abort&restart
3: end if
4: c-timesamp ← replica-timestamp
5: c-timesamp gets c-timesamp + 1
6: for all Vx ∈ Ti.WriteSet do
7: Vx.timestamp ← c-timestamp
8: X.lastCommittedVersion ← Vx

9: end for
10: replica-timestamp = c-timesamp

A task queue is responsible for scheduling jobs executed by the main thread (processing
write transactions). Whenever an event such as Odeliver or Adeliver occurs, a new task is
appended to the queue and is executed by the thread after the completion of the previous
tasks. This allows the events’ handlers to execute in parallel without slowing down the
executor thread, which is the SCC’s performance-critical path.

As mentioned, read-only transactions are processed in parallel to write transactions, exploit-
ing the list of committed versions available for each object to build a consistent serialization
order. The growing core count of current and emerging multicore architectures allows such
transactions to execute on different cores, without interfering with the write transactions.

Sachin Hirve Chapter 5. HiperTM 40

One synchronization point is present between write and read transactions, i.e., the list of
committed versions is updated when a transaction commits. In order to minimize its impact
on performance, we use a concurrent sorted Skip-List for storing the committed versions.

The pseudo code of SCC is shown in Algorithms 1-4. We show the core steps of the con-
currency control protocol such as reading a shared object (Algorithm 1), writing a shared
object (Algorithm 2), validating a write transaction (Algorithm 3) and committing a write
transaction (Algorithm 4).

5.4 Properties

HipertTM satisfies a set of properties that can be classified as local to each replica and
global to the replicated system as a whole. For what concern the former, each replica has a
concurrency control that operates isolated, without interactions with other nodes. For this
reason, we can infer properties that hold for non distributed interactions. On the other side,
a client of HiperTM system does not see specific properties local to each replica because the
system is hidden by the semantic of API exposed (i.e., invoke).

We name a property as global if it holds for the distributed system as a whole. Specifically, a
property is global if there is no execution involving distributed events such that the property
is not ensured. In other words, the property should work for transactions executing within
the bounds of single node, as well as involving transactions (concurrent or not) executing or
executed on other nodes.

5.4.1 Formalism

We now introduce the formalism that will be used for proving HiperTM’s correctness prop-
erties.

According to the definition in [1], an history H is a partial order on the sequence of operations
Op executed by the transactions, whereOp’s values are in the set {begin, read, write, commit, abort}.
When a transaction Ti performs the above operations, we name them as bi, ci, ai respectively.
In addition, a write operation of Ti on a the version k of the shared object x is denoted as
wi(xk); and we refer a read operation the corresponding read operation as ri(xk). In addition
H implicitly induces a total order � on committed object versions [1].

We now use a direct graph as a representation of an history H where committed transaction
in H are the graph’s vertexes and there exists a directed edge between two vertexes if the
respective transactions are conflicting. We name this graph as Direct Serialization Graph (or
DSG(H)). More formally, a vertex in DSG is denoted as VTi

and represents the committed
transaction Ti in H. Two vertexes VTi

and VTj
are connected with an edge if Ti and Tj are

conflicting transactions, namely there are two operations Opi and Opj in H, performed by

Sachin Hirve Chapter 5. HiperTM 41

Ti and Tj respectively, on a common shared object, such that at least one of them is a write
operation.

We distinguish three types of edges depending on the type of conflicts between Ti and Tj:

- Direct read-dependency edge if there exists an object x such that both wi(xi) and
rj(xi) are in H. We say that Tj directly read-depends on Ti and we use the notation

VTi

wr−→ VTj
.

- Direct write-dependency edge if there exists an object x such that both wi(xi) and
wj(xj) are in H and xj immediately follows xi in the total order defined by �. We

say that Tj directly write-depends on Ti and we use the notation VTi

ww−−→ VTj
.

- Direct anti-dependency edge if there exists an object x and a committed transaction
Tk in H, with k 6= i and k 6= j, such that both ri(xk) and wj(xj) are in H and
xj immediately follows xk in the total order defined by �. We say that Tj directly
anti-depends on Ti and we use the notation VTi

rw
� VTj

.

Finally, it is worth to recall two important aspects of HiperTM that will be used in the proof.

- (SeqEx). HiperTM processes write transactions serially, without interleaving their
executions. This means that for any pair of operations Op1

i and Op2
i performed by

a transaction Ti such that Op1
i is executed before Op2

i , there is no operation Opj,
invoked by a write transaction Tj, that can be executed in between Op1

i and Op2
i by

the HiperTM’s local concurrency control.

- (ParRO). The second aspect is related to the read-only transactions. When such a
transaction starts, it cannot observe objects written by write transactions committed
after the starting time of the read-only transaction. Intuitively, the read-only trans-
action, thanks to the multi-versioning, could read in the past. This mechanism allows
read-only transactions to fix the set of available versions to read at the beginning of
their execution, without taking into account concurrent commits.

5.4.2 Global Properties

For the purpose of the following proofs, we scope out the speculative execution when the
transactions are optimistically delivered. In fact, this execution is only an anticipation of
the execution that happens when a transaction is final delivered. For the sake of clarity, we
assume that a transaction T is activated as soon as the final delivery for T is received. This
assumption does not limit the generality of the proofs because any transaction speculative
executed is validated when the relative final delivery is received (Algorithm 4, Line 1). If
the speculative order does not match the final order, then the transaction is re-executed

Sachin Hirve Chapter 5. HiperTM 42

(Algorithm 4, Line 2). Thus the speculative execution can be seen only for improving
performance, but in terms of correctness, only the execution after the final delivery matters.
In fact, speculative transactions are not committed. The validation (Algorithm 3) performs
a comparison between the read versions of the speculative execution with actual committed
versions in memory. Due to (SeqEx), there are no concurrent transactions validating at
the same time, thus if, the validation succeeds, then the transaction does not need the
re-execution, otherwise it is re-executed from the very beginning.

Theorem 1. HiperTM guarantees 1-copy serializability (1CS) [6], namely for each run of
the protocol the set of committed transactions appear as they are executed sequentially, i.e.
whichever pair of committed transactions Ti, Tj, serialized in this order, every operation of
Ti precedes in time all the operations of Tj as executed on a single copy of the shared state.

Proof. We conduct this proof relying on the DSG. In particular, as also stated in [6], a history
H with a version order � is 1-copy serializable if the DSG(H) on H does not contain any
oriented cycle.

To show the acyclicity of the DSG(H) graph, we first prove that for each history H, every
transaction committed by the protocol appears as instantaneously executed in a unique point
in time t (Part1); subsequently we rely on those t values to show a mathematical absurd
confirming that DSG(H) cannot contain any cycle (Part2).

In order to prove Part1 of the proof, we assign to each transaction T committed in H a
commit timestamp, called CommitOrd(T,H). CommitOrd(T,H) defines the time where the
transaction T appears committed in H. We distinguish two cases, namely when T is a write
transaction or a read-only transaction.

- If T is a write transaction, CommitOrd(T,H) is the commit timestamp of T in H
(Algorithm 4 Line 4) , which matches also the final order that OS-Paxos assigned to
T . This is because: i) OS-Paxos defines a total order among all write transactions and,
ii), (SeqEx) does not allow interleaving of operations’ executions. This way, given a
history H, CommitOrd(T,H) is the time when T commits its execution in H and no
other write transaction executes concurrently.

- If T is a read-only transaction, CommitOrd(T,H) is the node’s timestamp (Algo-
rithm 1 Line 11) when T starts in H (read-only transactions are delivered and exe-
cuted locally to one node, without remote interactions). In fact, (ParRO) prevents the
read-only transaction to interfere with executing write transaction, implicitly serializ-
ing the transaction before those write transactions. In this case, CommitOrd(T,H)
is the timestamp that precedes any other commit made by write transactions after T
started.

According to the definition of DSG(H), there is an edge between two vertexes VTi
and VTj

when Ti and Tj are conflicting transaction in H. We now show that, if such an edge exists,

Sachin Hirve Chapter 5. HiperTM 43

then CommitOrd(Ti, H) ≤ CommitOrd(Tj, H). We do this considering the scenarios where
H is only composed of write transactions (WOnly), then we extend it integrating read-only
transaction (RW).

(WOnly).

- If there is a direct read-dependency between Ti and Tj (i.e., VTi

wr−→ VTj
), then it means

that there exists an object version xi that has been written by Ti and read by Tj via
rj(xi). Since (SeqEx), Ti and Tj cannot interleave their executions thus all the object
versions accessed by Tj have been already committed by Ti before Tj starts its execu-
tion. If Tj starts after Ti means also that CommitOrd(Ti, H) < CommitOrd(Tj, H).

- Similar argument can be made if Tj directly write-depends on Ti (VTi

ww−−→ VTj
). Here

both Ti and Tj write a version of object x, following the order Ti, Tj (i.e., Tj over-
writes the version written by Ti). As before, through (SeqEx) we can infer that
CommitOrd(Ti, H) < CommitOrd(Tj, H).

- If Tj directly anti-depends on Ti (VTi

rw
� VTj

), it means that there exists an object x
such that Ti reads some object version xi and Tj writes a new version of x, namely xj,
after Ti. By the definition of directly anti-dependency and given that the transaction
execution is serial (SeqEx), it follows that, if Tj creates a new version of x after Ti
read x, then Ti committed its execution before activating Tj, thus CommitOrd(Ti, H)
< CommitOrd(Tj, H).

(RW).
If we enrich a history H with read-only transactions, the resulting DSG(H) contains at
least a vertex VTr , corresponding to the read-only transaction Tr, such that, due to (ParRO),
the only type of outgoing edge that is allowed to connect VTr to any other vertex, namely
an edge where VTr is the source vertex, is a directly anti-dependency edge. In fact, no
other transaction can have any direct read-dependency or direct write-dependency with
Tr, because Tr does not create new object versions. In this case, say Tr the transaction
reading the object version xr and Tw the transaction writing a new version of x, called xw.
Due to (ParRO), any concurrent write transaction (such as Tw), that commits after Tr’s
begin, acquires a timestamp that is greater than Tr’s timestamp, thus also the new versions
committed by Tw(such as xw) are tagged with a higher timestamp. This prevents read-only
transactions to access those new versions. In other words, Tr cannot see the modifications
made by Tw after its commit. This serializes Tw’s commit operation after Tr’s execution,
thus CommitOrd(Tr, H) < CommitOrd(Tw, H).

Nevertheless, VTr is clearly connected with edges from other vertexes corresponding to write
transactions (Tw) previously committed. In this case, due to (ParRO), CommitOrd(Tr, H) is
not strictly greater than CommitOrd(Tw, H) but CommitOrd(Tw, H)≤ CommitOrd(Tr, H)
because otherwise Tr is always forced to read in the past even having fresher object versions
committed before Tr’s starting. However this does not represent a limitation because, if
a cycle on DSG involves a vertex that represents a read-only transaction (VTr), then all

Sachin Hirve Chapter 5. HiperTM 44

its outgoing edges will connect to vertexes with a CommitOrd strictly greater than the
CommitOrd(Tr, H).

We have proved that for each DSG(H) on H and for each VTi
−→ VTj

edge in DSG(H),
CommitOrd(Ti, H) ≤ CommitOrd(Tj, H) holds. In order to prove Part2, we now show
that DSG(H) cannot contain any oriented cycle. To do that, we observe that, if DSG(H) is
composed of only write transactions, then CommitOrd(Ti, H) < CommitOrd(Tj, H). In ad-
dition, if there is a path in DSG(H) that is: TW0, TW1 . . . TWi, TR, TWi+1, . . . TWn where TWi

is the i -th write transaction and TR is the read-only transaction, then CommitOrd(TR, H)
< CommitOrd(TWi+1, H). Having said that, we can now show why DSG(H) cannot have
cycles involving only write transactions or read-only transactions. This is because, if such
a cycle existed it would lead to the following absurd: for each VTi

in the cycle we have
CommitOrd(Ti, H) < CommitOrd(Ti, H).

Theorem 2. HiperTM guarantees wait freedom of read-only transactions [43], namely that
any process can complete a read-only transaction in a finite number of steps, regardless of
the execution speeds of the other processes.

Proof. Due to (ParRO) and the (SeqEx), the proof is straightforward. In fact, with (SeqEx)
there are no locks on shared objects [35] (one transaction processes and commits at a time).
The only synchronization point between a read-only transaction and a write transaction is the
access to the version list of objects. However, those lists are implemented as wait-free [44],
thus concurrent operations on the shared list always complete. This prevents the thread
executing write transactions to possibly stop (or slow-down) the execution of a read-only
transaction.

In addition, read-only transactions cannot abort. Before issuing the first operation, a read-
only transaction saves the replica-timestamp in its local r -timestamp and use it for selecting
the proper committed versions to read. The acquisition of the replica-timestamp always com-
pletes despite any behavior of other threads because the increment of the replica-timestamp
does not involve any lock acquisition, rather we use atomic-increment operations. The sub-
set of all the versions that the read-only transaction can access during its execution is fixed
when the transaction defines its r -timestamp. Only one write transaction, TW , is execut-
ing when a read-only transaction, TRO acquires the r -timestamp. Due to the atomicity of
replica-timestamp’s update, the acquisition of the r -timestamp can only happen before or
after the atomic increment.

i) If TW updates the replica-timestamp before TRO acquires the r -timestamp, TRO is
serialized after TW , but before the next write transaction that will commit.

ii) On the contrary, if the replica-timestamp’s update happens after, TRO is serialized
before TW and cannot access the new versions that TW just committed.

Sachin Hirve Chapter 5. HiperTM 45

In both cases, the subset of versions that TRO can access is defined and cannot change due
to future commits. For this reason, when a read-only transaction completes its execution, it
returns the values to its client without validation.

5.4.3 Local Properties

HiperTM guarantees a variant of opacity [34] locally to each replica. It cannot ensure Opacity
as defined in [34] because of the speculative execution.

In fact, even if such execution is serial, data written by a committed transaction are made
available to the next speculative execution. This usually happens before the actual commit of
the transaction, which occurs only after its final order is notified. Opacity can be summarized
as follow: a protocol ensures opacity if it guarantees three properties: (Op.1) committed and
aborted transactions appear as if they are executed serially, in an order equivalent to their
real-time order; (Op.2) no transaction accesses a snapshot generated by a live (i.e., still
executing) or aborted transaction.

As an example, say H an history of transactions {T1, T2, T3} reading and writing the
same shared objects (i.e., T1=T2=T3=[read(x); write(x)]). The optimistic order defines the
following execution: T1, T2, T3. We now assume that the final order for those transactions
is not yet defined.

T1 starts as soon as it is optimistic delivered. It completes its two operations and, according
to the serial speculative execution, T2 starts. Clearly T2 accesses to the version of object x
written by T1 before T1 actually commits (that will happen when the final order of T1 will
be delivered), breaking (Op.2).

However, we can still say that HiperTM guarantees a variant of opacity if we assume one of
these two scenarios.

a) The speculative execution is just an anticipation of the real execution that happens
when a transaction is final delivered. The validation procedure is responsible for de-
coupling speculative and non-speculative execution. This way, we can scope out the
speculative execution and analyze only the execution after the final delivery of trans-
actions.

b) We can enrich the type of operations admitted by opacity with the speculative com-
mit. Given that, when a transaction completes its speculative execution, it does the
speculative commit, exposing new versions to only other speculative transactions.

We show this by addressing all the above clauses of opacity and, considering that this is a
local property (i.e., valid within the bound of a replica), we will refer to HiperTM as SCC.

Sachin Hirve Chapter 5. HiperTM 46

SCC satisfies (Op.1) because each write transaction is validated before commit, in order
to certify that its serialization order is equivalent to the optimistic atomic broadcast order,
which reflects the order of the client’s requests. When a transaction is aborted, it is only
because its serialization order is not equivalent to the final delivery order (due to network
reordering). However that serialization order has been realized by a serial execution. There-
fore, the transaction’s observed state is always consistent. Read-only transactions perform
their operations according to the r -timestamp recorded from the replica-timestamp before
their first read. They access only the committed versions written by transactions with
the highest c-timestamp lower or equal to the r -timestamp. Read-only transactions with
the same r -timestamp have the same serialization order with respect to write transactions.
Conversely, if they have different r -timestamps, then they access only objects committed by
transactions serialized before.

(Op.2) is guaranteed for write transactions because they are executed serially in the same
thread. Therefore, a transaction cannot start if the previous one has not completed, pre-
venting it from accessing modifications made by non-completed transactions. Under SCC,
optimistically delivered transactions can access objects written by previous optimistically
(and not yet finally) delivered transactions. However, due to serial execution, transactions
cannot access objects written by non-completed transactions. (Op.2) is also ensured for
read-only transactions because they only access committed versions.

5.5 Implementation and Evaluation

HiperTM’s architecture consists of two layers: network layer (OS-Paxos) and replica specula-
tive concurrency control (SCC). We implemented both in Java: OS-Paxos as an extension of
S-Paxos, and SCC from scratch. To evaluate performance, we used two benchmarks: Bank
and TPC-C [20]. Bank emulates a monetary application and is typically used in TM works
for benchmarking performance [117, 87, 21]. TPC-C [20] is a well known benchmark that is
representative of on-line transaction processing workloads.

We used PaxosSTM [117, 55] as a competitor. PaxosSTM implements the deferred update
replication scheme and relies on a non-blocking transaction certification protocol, which is
based on atomic broadcast (provided by JPaxos).

We used the PRObE testbed [32], a public cluster that is available for evaluating systems
research. Our experiments were conducted using 19 nodes in the cluster. Each node is a
physical machine equipped with a quad socket, where each socket hosts an AMD Opteron
6272, 64-bit, 16-core, 2.1 GHz CPU (total 64-cores). The memory available is 128GB, and
the network connection is a 40 Gigabits Ethernet.

HiperTM is configured with a pool of 20 threads serving read-only transactions while a
single thread is reserved for processing write transactions delivered by OS-Paxos. Clients
are balanced on all the replicas. They inject transactions for the benchmark and wait for

Sachin Hirve Chapter 5. HiperTM 47

the reply. We configured PaxosSTM for working with the same configuration used in [55]:
160 parallel threads per nodes are responsible to execute transactions while JPaxos (i.e., the
total order layer) leads their global certification. Data points plotted are the average of 6
repeated experiments.

5.5.1 Bank Benchmark

Bank benchmark is characterized by short transactions with few objects accessed (i.e., in
the range of 2-4 objects), resulting in small transactions’ read-set and write-set. A sanity
check is implemented to test the correctness of the execution. The nature of this benchmark
causes very high performance.

In order to conduct an exhaustive evaluation, we changed the application workload such that
strengths and weaknesses of HiperTM are highlighted. Specifically, we varied the percentage
of read-only transactions in the range of 10%, 50%, 90% and the contention level in the
system by decreasing the total number of shared objects (i.e., accounts in Bank benchmark)
available. This way we defined three contention level: low, with 5000 objects, medium, with
2000 objects, and high, with 500 objects. During the experiments we collected transactional
throughput (Figure 5.3) and latency (Figure 5.4). In addition, for what concerns PaxosSTM,
we gathered also the percentage of remote aborts. This information is available only for
PaxosSTM because HiperTM does not certify transactions globally thus it cannot end up in
aborting transactions. Only if the optimistic order does not match the final order and the
transaction’s read-set is not valid, then a transaction can be aborted in HiperTM. However,
each transaction is aborted only once (at most) because it immediately restarts and commits
without any possible further invalidation.

Figure 5.3 shows the throughput of Bank benchmark. For each workload configuration (i.e.,
low,medium,high conflict) we reported the observed abort percentage of PaxosSTM. The
trend is clear from the analysis of the plots, PaxosSTM has a great performance compared
with HiperTM because it is able to exploit the massive multi threading (i.e., 160 threads)
for the transaction processing when the system is characterized by few conflicts. When con-
tention becomes greater, namely when number of nodes increases or the amount of shared
objects decreases, the certification phase of PaxosSTM hampers its scalability. On the con-
trary, HiperTM suffers from the single thread processing when the system has low contention,
but outperforms PaxosSTM when the contention starts to increase. As a result, HiperTM
scales better than PaxosSTM when the number of nodes increases.

Sachin Hirve Chapter 5. HiperTM 48

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM 10%
HiperTM 50%

HiperTM 90%
PaxosSTM 10%

PaxosSTM 50%
PaxosSTM 90%

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e
c

Replicas

(a) Throughput high conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o
rt

e
d
 T

x
Replicas

(b) Abort high conflict

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e
c

Replicas

(c) Throughput medium conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o
rt

e
d
 T

x

Replicas

(d) Abort medium conflict

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e
c

Replicas

(e) Throughput low conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o
rt

e
d
 T

x

Replicas

(f) Abort low conflict

Figure 5.3: Throughput and abort percentage of HiperTM and PaxosSTM for Bank bench-
mark.

Sachin Hirve Chapter 5. HiperTM 49

In all plots, even where the absolute performance is better than HiperTM, the PaxosSTM’s
trend highlights its lack of scalability. This is mainly because, when a huge number of threads
flood the system with transactional requests (where each request is the transaction’s read-set
and write-set), the certification phase is not able to commit transactions as fast as clients
would inject requests. In addition, with higher contention, remote aborts play an important
role as scalability bottleneck. As an example, with 11 nodes and high conflict scenario,
PaxosSTM aborts 80% of transactions when configured with 50% of read-only workload.

Increasing the percentage of read-only workload increases performance of both competitors
due to local multi-versioning concurrency control. However, HiperTM always scales when
the size of the system increases. This is because HiperTM does not saturate the total order
layer since messages are very small (i.e., the id of the transaction to invoke and parameters)
and it does not require any certification phase. After an initial ordering phase, transactions
are always committed suffering from at most one abort which, anyway, is not propagated
through the network but it is handled locally by the concurrency control.

It is worth to notice the trend of PaxosSTM for low node count in the plot in Figure 5.3(a).
Here, even though the number of shared objects is low, with such few replicas, the over-
all contention is not high, thus PaxosSTM behaves as in medium contention scenario (see
Figure 5.3(c) when the percentage of abort is around 20% and with 90% of read-only transac-
tions). However, after 9 nodes, HiperTM starts outperforming PaxosSTM and keeps scaling,
reaching its peak performance improvement, that is 2.35× at 19 nodes.

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM 10%
HiperTM 50%

HiperTM 90%
PaxosSTM 10%

PaxosSTM 50%
PaxosSTM 90%

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16 18 20

L
a
te

n
c
y
 (

m
s
)

Replicas

(a) High conflict

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

L
a
te

n
c
y
 (

m
s
)

Replicas

(b) Low conflict

Figure 5.4: Latency of HiperTM and PaxosSTM for Bank benchmark.

Figure 5.4 shows the latency measured in the same experiments reported in Figure 5.3. As
expected, it follows the inverse trend of the throughput and for this reason we decided not to
show the case of medium contention but the two extreme cases with high and low contention.

Sachin Hirve Chapter 5. HiperTM 50

Both PaxosSTM and HiperTM rely on batching as a way to improve performance of the
total order layer. Waiting for the creation of a batch consumes the most part of the reported
latency. In addition for PaxosSTM, when a transaction aborts, client has to reprocess the
transaction and issue a new certification phase through the total order layer. For this reason,
PaxosSTM’s latency starts increasing for high conflict scenarios.

5.5.2 TPC-C Benchmark

TPC-C [20] is a real application benchmark composed of five transaction profiles, each either
read-only (i.e., Order Status, Stock Level) or read-write (i.e., Delivery, Payment, New
Order) . Transactions are longer than Bank benchmark, with high computation and several
objects accessed. The specification of the benchmark suggests a mix of those transaction
profiles (i.e., 4% Order Status, 4% Stock Level, 4% Delivery, 43% Payment, 45% New

Order), resulting in a write intensive scenario. In order to wide the space of tested configu-
rations, we measured the performance with a read intensive workload (i.e., 90% read-only)
by changing the above mix (i.e., 45% Order Status, 45% Stock Level, 3.3% Delivery,
3.3% Payment, 3.3% New Order).

In terms of application contention, TPC-C defines a hierarchy of dependencies among de-
fined objects, however the base object that controls the overall contention is the warehouse.
Increasing the number of shared warehouses results in lower contention. The suggested con-
figuration of TPC-C is to use as warehouses as the total number of nodes in the system.
Therefore for the purpose of this test, we ran the benchmark with 19 warehouses and also
with 50 warehouses in order to generate a low conflict scenario. We collected the same
information as in Bank benchmark.

Figure 5.5 reports the throughput of HiperTM and PaxosSTM, together with the abort rate
observed for PaxosSTM. PaxosSTM’s abort rate results confirm that the contention in the
system is much higher than in Bank benchmark. In addition, the certification phase of
PaxosSTM now represents the protocol’s bottleneck because read-set and write-set of trans-
actions are large, thus each batch of network messages does not record many transactions and
this limits the throughput of the certification phase. Both these factors hamper PaxosSTM’s
scalability and high performance. On the other hand, HiperTM orders transactions before
their execution and it leverages OS-Paxos just for broadcasting transactional requests, thus
it is independent from the application and from the contention in the system. This allows
HiperTM to scale while increasing nodes and resulting in performance by as much as 3.5×
better in case of standard configuration of TPC-C, and by more than one order of magni-
tude for the 10% read-only scenario. HiperTM’s performance in Figures 5.5(a) and 5.5(c) are
almost the same, this confirms how HiperTM, and the active replication paradigm, is inde-
pendent from application’s contention. Unfortunately, with long transactions as in TPC-C,
HiperTM cannot match the performance of Bank benchmark because of the single thread
processing.

Sachin Hirve Chapter 5. HiperTM 51

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM Std
HiperTM 90%

PaxosSTM Std
PaxosSTM 90%

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e
c

Replicas

(a) Throughput standard conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o
rt

e
d
 T

x

Replicas

(b) Abort standard conflict

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e
c

Replicas

(c) Throughput low conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o
rt

e
d
 T

x

Replicas

(d) Abort low conflict

Figure 5.5: Throughput and abort percentage of HiperTM and PaxosSTM for TPC-C bench-
mark.

The Figure 5.6 shows the latency measured in the above experiments. Clearly, lower through-
put and longer transactions caused higher latency.

5.6 Summary

At its core, our work shows that optimism pays off: speculative transaction execution, started
as soon as transactions are optimistically delivered, allows hiding the total ordering latency,
and yields performance gain. Single-communication step is mandatory for fine-grain transac-
tions. Complex concurrency control algorithms are sometimes not feasible when the available

Sachin Hirve Chapter 5. HiperTM 52

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM Std
HiperTM 90%

PaxosSTM Std
PaxosSTM 90%

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16 18 20

L
a
te

n
c
y
 (

m
s
)

Replicas

(a) Standard conflict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2 4 6 8 10 12 14 16 18 20

L
a
te

n
c
y
 (

m
s
)

Replicas

(b) Low conflict

Figure 5.6: Latency of HiperTM and PaxosSTM for TPC-C benchmark.

processing time is limited.

Implementation matters. Avoiding atomic operations, batching messages, and optimizations
to counter network non-determinism are important for high performance.

Chapter 6

Archie

From the experience with HiperTM, we identified few possible improvements in our system.
Firstly, assuming that optimistic-order matches final-order, any transactional processing
happening after arrival of final-order could be avoided, which could result in a lower latency
and better performance. Second one was overcoming the limitation of serial execution of
transactions by a high-performance concurrent one. Last improvement was to enhance the
optimistic-delivery mechanism to keep pace with the improved transaction processing.

We present Archie, a State Machine Approach (SMA) based transactional scheme that incor-
porates these protocol and system innovations that extensively use speculation for removing
any non-trivial task after the delivery of the transaction’s order. The main goal of Archie is
to avoid the time-consuming operations (e.g., the entire transaction’s execution or iterations
over transaction’s read and written objects) performed after this notification, such that a
transaction can be immediately committed.

In order to accomplish the above goal, we designed MiMoX, an optimized sequencer-based
total order layer which inherits the advantages of two well-known mechanisms: the opti-
mistic notification [52, 71], issued to nodes prior to the establishment of the total order; and
batching [98, 30], as a means for improving the throughput of the global ordering process.
MiMoX proposes an architecture that mixes these two mechanisms, thus allowing the antic-
ipation (thanks to the optimistic notification) of a big amount of work (thanks to batching)
before the total order is finalized. Nodes take advantage of the time needed for assembling
a batch to compute a significant amount of work before the delivery of the order is issued.
This anticipation is mandatory in order to minimize (and possibly eliminate the need for)
the transaction’s serial phase. As originally proposed in [71], MiMoX guarantees that if the
sequencer node (leader) is not replaced during the ordering process (i.e., either suspected or
crashed), the sequence of optimistic notifications matches the sequence of final notifications.
As a distinguishing point, the solution in [71] relies on a ring topology as a means for deliv-
ering transactions optimistically, whereas MiMoX does not assume any specific topology.

53

Sachin Hirve Chapter 6. Archie 54

At the core of Archie there is a novel speculative parallel concurrency control, named ParSpec,
that processes/certifies transactions upon their optimistic notification and enforces the same
order as the sequence of optimistic notifications. The key enabling point for guaranteeing
the effectiveness of ParSpec is that the majority of transactions speculatively commit before
the total order is delivered. This goal is reached by minimizing the overhead caused by the
enforcement of a predefined order on the speculative executions. ParSpec achieves this goal
by the following steps:

- Executing speculative transactions in parallel, but allowing them to speculative commit
only in-order, thus reducing the cost of detecting possible out-of-order executions;

- Dividing the speculative transaction execution into two stages: the first, where the trans-
action is entirely speculatively executed and its modifications are made visible to the
following speculative transactions; the second, where a ready-to-commit snapshot of the
transaction’s modifications is pre-installed into the shared data-set, but not yet made
available to non-speculative transactions.

A transaction starts its speculative commit phase only when its previous transaction, ac-
cording to the optimistic order, becomes speculatively-committed and its modifications are
visible to other successive speculative transactions. The purpose of the second stage concerns
only the non-speculative commit, thus it can be removed from the speculative transaction’s
critical path and executed in parallel. This approach increases the probability of specula-
tively committing a transaction before the total order is notified. The final commit of an
already speculatively-committed transaction consists of making the pre-installed snapshot
available to all. In case the MiMoX’s leader is stable during the execution, ParSpec re-
alizes this task without iterating over all transaction’s written objects but, rather, it just
increases one local timestamp. Clients are informed about their transactions’ outcome while
other speculative transactions execute. As a result, transaction latency is minimized and
ParSpec’s high throughput allows more clients to submit requests.

The principles at the base of Archie can be applied in both DUR- and DER-based systems.
For the purpose of this work, we optimized Archie to cope with the DER model. This is
because DER has three main benefits over DUR. First, it makes application behavior inde-
pendent of failures. When a node in the system crashes or stops serving incoming requests,
other nodes are able to transparently service the same request, process the transaction, and
respond back to the application. Second, it does not suffer from aborts due to contention
on shared remote objects because a common serialization order is defined prior to start-
ing transaction (local) execution, thus yielding high performance and better scalability in
medium/high contention scenarios [56]. Third, with DER, the size of network messages
exchanged for establishing the common order does not depend on the transaction’s logic
(i.e., the number of objects accessed). Rather, it is limited to the name of the transaction
and, possibly, its input parameters, which reduces network usage and increases the ordering
protocol’s performance.

As commonly adopted in several SMA-based transactional systems [56, 48, 80] and thanks to

Sachin Hirve Chapter 6. Archie 55

the full replication model, Archie does not broadcast read-only workloads through MiMoX;
read-only requests are handled locally, in parallel with the speculative execution. Processing
write transactions (both conflicting and not conflicting) in the same order on all nodes allows
Archie to guarantee 1-copy-serializability [7].

We implemented Archie in Java and we conducted a comprehensive experimental study
using benchmarks including TPC-C [20], Bank and a distributed version of Vacation [13].
As competitors, we selected one DUR-based: PaxosSTM [117] – a high-performance open
source transactional system; and two DER-based: one non-speculative (SM-DER [101]) and
one speculative (HiperTM [48]) transactional system.

Our experiments on PRObE [32], a state-of-the-art public cluster, reveal Archie’s high-
performance and scalability. On up to 19 nodes, Archie outperforms all competitors in most
of the tested scenarios. As expected, when the contention is very low, PaxosSTM behaves
better than Archie.

The work makes the following contributions:

- Archie is the first fully-implemented DER-based transactional system that eliminates costly
operations during the serial phase by anticipating the work through speculative parallel
execution.

- MiMoX is the first total order layer that guarantees a reliable optimistic delivery order
(i.e., the optimistic order matches the total order) without any assumption on the network
topology, and maximizes the overlapping time (i.e., the time between the optimistic and
relative total order notifications) when the sequencer node is not replaced (e.g,. due to a
crash).

- ParSpec is the first parallel speculative concurrency control that removes from the transac-
tion’s critical path the task to install written objects and implements a lightweight commit
procedure to make them visible.

6.1 MiMoX

MiMoX is a network system that ensures total order of messages across remote nodes. It
relies on Multi-Paxos [60], an algorithm of the Paxos family, which guarantees agreement on
a sequence of values in the presence of faults (i.e., total order). MiMoX is sequencer-based
– i.e., one elected node in the system, called the leader, is responsible for defining the order
of the messages.

MiMoX provides the APIs of Optimistic Atomic Broadcast [52]: broadcast(m), which is used
by clients to broadcast a message m to all nodes; final-delivery(m), which is used for noti-
fying each replica on the delivery of a message m (or a batch of them); and opt-delivery(m),
which is used for early-delivering a previously broadcast message m (or a batch of them)
before the final-delivery(m) is issued.

Sachin Hirve Chapter 6. Archie 56

Each MiMoX message that is delivered is a container of either a single transaction request or a
batch of transaction requests (when batching is used). The sequence of final-delivery(m)
events, called final order, defines the transaction serialization order, which is the same for all
the nodes in the system. The sequence of opt-delivery(m) events, called optimistic order,
defines the optimistic transaction serialization order. Since only the final order is the result
of a distributed agreement, the optimistic order may differ from the final order and may also
differ among nodes (i.e., each node may have its own optimistic order). As we will show
later, MiMox guarantees the match between the optimistic and final order when the leader
is not replaced (i.e., stable) during the ordering phase.

6.1.1 Ordering Process

MiMoX defines two types of batches: opt-batch, which groups messages from the clients,
and final-batch, which stores the identification of multiple opt-batches. Each final-batch is
identified by an unique instance ID. Each opt-batch is identified by a pair <instance ID,
#Seq>.

When a client broadcasts a request using MiMoX, this request is delivered to the leader
which aggregates it into a batch (the opt-batch). In order to preserve the order of these
steps, and for avoiding synchronization points that may degrade performance, we rely on
single-thread processing for the following tasks. For each opt-batch, MiMoX creates the pair
<instance ID, #Seq>, where instance ID is the identifier of the current final-batch that
will wrap the opt-batch, and #Seq is the position of the opt-batch in the final-batch. When
the pair is defined, it is appended to the final-batch. At this stage, instead of waiting for
the completion of the final-batch and before creating the next opt-batch, MiMoX sends the
current opt-batch to all the nodes, waiting for the relative acknowledgments. Using this
mechanism, the leader informs nodes about the existence of a new batch while the final-
batch is still accumulating requests. This way, MiMoX maximizes the overlap between the
time needed for creating the final-batch with the local processing of opt-batches; and enables
nodes to effectively process messages, thanks to the reliable optimistic order.

Each node, upon receiving the opt-batch, immediately triggers the optimistic delivery for
it. As in [71], we believe that within a data-center the scenarios where the leader crashes or
becomes suspected are rare. If the leader is stable for at least the duration of the final-batch’s
agreement, then even if the opt-batch is received out-of-order with respect to other opt-
batches sent by the leader, this possible reordering is still nullified by the ordering information
(i.e., #Seq) stored within each opt-batch.

After sending the opt-batch, MiMoX loops again serving the next opt-batch, until the com-
pletion of the final-batch. When ready, MiMoX uses the Multi-Paxos algorithm for estab-
lishing an agreement among nodes on the final-batch. The leader proposes an order for the
final-batches, to which the other replicas reply with their agreement – i.e., accept messages.
When a majority of agreement for a proposed order is reached, each replica considers it as

Sachin Hirve Chapter 6. Archie 57

decided.

The message size of the final-batch is very limited because it contains only the identifiers of
opt-batches that have already been delivered to nodes. This makes the agreement process
fast and includes a high number of client messages.

6.1.2 Handling Faults and Re-transmissions

MiMoX ensures that, on each node, an accept is triggered for a proposed message (or batch)
m only if all the opt-batches belonging to m have been received. Enforcing this property
prevents loss of messages belonging to already decided messages (or batches).

As an example, consider three nodes {N1,N2,N3}, where N1 is the leader. The final-batch
(FB) is composed of three opt-batches: OB1, OB2, OB3. N1 sends OB1 to N2 and N3.
Then it does the same for OB2 and OB3. But N2 and N3 do not receive both messages.
After sending OB3, the FB is complete, and N1 sends the propose message for FB. Nodes
N2 and N3 send the accept message to the other nodes, recognizing that there are unknown
opt-batches (i.e., OB2 and OB3). The only node having all the batches is N1. Therefore, N2

and N3 request N1 for the re-transmission of the missing batches. In the meanwhile, each
node receives the majority of accept messages from other nodes and triggers the decide for
FB. At this stage, if N1 crashes, even though FB has been agreed, OB2 and OB3 are lost,
and both N2 and N3 cannot retrieve their content anymore.

We solve this problem using a dedicated service at each node, which is responsible for re-
transmitting lost messages (or batches). Each node, before sending the accept for an FB,
must receive all the opt-batches. The FB is composed of the identification of all the expected
opt-batches. Thus, each node is easily able to recognize the missing batches. Assuming that
the majority of nodes are non-faulty, the re-transmission request for one or multiple opt-
batches is broadcast to all the nodes such that, eventually the entire sequence of opt-batches
belonging to FB is rebuilt and the accept message is sent.

Nodes can detect a missing batch before the propose message for the FB is issued. Exploiting
the sequence number and the FB’s ID used for identifying opt-batches, each node can easily
find a gap in the sequence of the opt-batches received, that belong to the same FB (e.g.,
if OB1 and OB3 are received, then, clearly, OB2 is missing). Thus, the re-transmission can
be executed in parallel with the ordering, without additional delay. The worst case happens
when the missing opt-batch is the last in the sequence. In this case, the propose message of
FB is needed to detect the gap.

Sachin Hirve Chapter 6. Archie 58

6.1.3 Evaluation

We evaluated MiMoX’s performance by an experimental study. We focused on MiMoX’s
scalability in terms of the system size, the average time between optimistic and final delivery,
the number of requests in opt-batch and final-batch, and the size of client requests. We used
the PRObE testbed [32], a public cluster that is available for evaluating systems research.
Our experiments were conducted using 19 nodes (tolerating up to 9 failures) in the cluster.
Each node is equipped with a quad socket, where each socket hosts an AMD Opteron 6272,
64-bit, 16-core, 2.1 GHz CPU (total 64-cores). The memory available is 128GB, and the
network connection is a high performance 40 Gigabit Ethernet.

For the purpose of the study, we decided to finalize an opt-batch when it reaches the max-
imum size of 12K bytes and a final-batch when it reaches 5 opt-batches, or when the time
needed for building them exceeds 10 msec, whichever occurs first. All data points reported
are the average of six repeated measurements.

 90
 95

 100
 105
 110
 115
 120
 125
 130

 4 6 8 10 12 14 16 18 20

10
00

x
m

sg
s

pe
r s

ec

Nodes

10 bytes
20 bytes
50 bytes

Figure 6.1: MiMoX’s message throughput.

Figure 6.1 shows MiMoX’s throughput in requests ordered per second. For this experiment,
we varied the number of nodes participating in the agreement and the size of each request.
Clearly, the maximum throughput (122K requests ordered per second) is reached when the
node count is low (3 nodes). However, the percentage of degradation in performance is
limited when the system size is increased: with 19 nodes and request size of 10 bytes, the
performance decreases by only 11%.

Figure 6.1 shows also the results for request sizes of 20 and 50 bytes. Recall that Archie’s
transaction execution process leverages the ordering layer only for broadcasting the trans-
action ID (e.g., method or store-procedure name), along with its parameters (if any), and
not the entire transaction business logic. Other solutions, such as the DUR scheme, use the
total order layer for broadcasting the transaction read- and write-set after a transaction’s
completion, resulting in larger request size than Archie’s. In fact, our evaluations with Bank
and TPC-C benchmarks revealed that almost all the transaction requests can be compacted
between 8 and 14 bytes. MiMoX’s performance for a request size of 20 bytes is quite close to
that for 10 byte request size. We observe a slightly larger gap with 19 nodes and 50 byte re-
quest size, where the throughput obtained is 104K. This is a performance degradation lesser

Sachin Hirve Chapter 6. Archie 59

than 15% with respect to the maximum throughput. This is because, with smaller requests
(10 or 20 bytes), opt-batches do not get filled to the maximum size allowed, resulting in
smaller network messages. On the other hand, larger requests (50 bytes) tend to fill batches
sooner, but these bigger network messages take more time to traverse.

 0

 2

 4

 6

 8

 10

 12

 14

3 5 7 9 11 13 15 17 19

m
ill

is
e
c
o
n
d
s
 (

m
s
e
c
)

Nodes

10 bytes
20 bytes
50 bytes

Figure 6.2: Time between optimistic/final delivery.

Figure 6.2 shows MiMoX’s delay between the optimistic and the relative final delivery, named
overlapping time. This experiment is the same as that reported in Figure 6.1. MiMoX
achieves a stable overlapping time, especially for a request size of 10 bytes, of ≈8 msec. This
delay is non-negligible if we consider that Archie processes transactions locally. Using bigger
requests, the final-batch becomes ready sooner because less requests fit in one final-batch.
As a result, the time between optimistic and final delivery decreases. This is particularly
evident with a request size of 50 bytes, where we observe an overlapping time that is, on
average, 4.6 msec.

The last results motivate our design choice to adopt DER as a replication scheme instead of
DUR.

Request Final-batch Opt-batch % Re NF % Re F
size (bytes) size size

10 4.91 230.59 0% 1.7%

20 4.98 166.45 0% 3.4%

50 5.12 90.11 0% 4.8%

Table 6.1: Size of requests, batches, and % reorders.

Table 6.1 shows other information collected from the previous experiments. It is interesting to
observe the number of opt-batches that makes up a final-batch (5 on average) and the number
of client requests in each opt-batch (varies from 90 to 230 depending on the request size).
This last information confirms the reason for the slight performance drop using requests of
50 bytes. In fact, in this case each opt-batch transfers ≈ 4500 bytes in payload, as compared
to ≈ 2300 bytes for request size of 10 bytes.

In these experiments, we used TCP connections for sending opt-batches. Since MiMoX uses
a single thread for sending opt-batches and for managing the final-batch, reorders between

Sachin Hirve Chapter 6. Archie 60

optimistic and final deliveries cannot happen except when the leader crashes or is suspected.
Table 6.1 supports this. It reports the maximum reordering percentages observed when
leader is stable (column Re NF) and when the leader is intentionally terminated after a
period of stable execution (column Re F), using 19 nodes.

6.2 PARSPEC

ParSpec is the concurrency control protocol that runs locally at each node. MiMoX delivers
each message or a batch of messages twice: once optimistically and once finally. These
two events are the triggers for activating ParSpec’s activities. Without loss of generality,
hereafter, we will refer to a message of MiMoX as a batch of messages.

Transactions are classified as speculative: i.e., those that are only optimistically delivered,
but their final order has not been defined yet; and non-speculative: i.e., those whose final
order has been established. Among speculative transactions, we can distinguish between
speculatively-committed (or x-committed hereafter): i.e., those that have completely executed
all their operations and cannot be aborted anymore by other speculative transactions; and
active: i.e., those that are still executing operations or that are not allowed to speculatively
commit yet. Moreover, each transaction T records its optimistic order in a field called T.OO.
T ’s optimistic order is the position of T within its opt-batch, along with the position of the
opt-batch in the (possible) final-batch.

ParSpec’s main goal is to activate in parallel a set of speculative transactions, as soon as
they are optimistically delivered, and to entirely complete their execution before their final
order is notified.

As a support for the speculative execution, the following meta-data are used: abort-array,
which is a bit-array that signals when a transaction must abort; LastX-committedTx, which
stores the ID of the last x-committed transaction; and SCTS, the speculative commit times-
tamp, which is a monotonically increasing integer that is incremented each time a transaction
x-commits. Also, each node is equipped with an additional timestamp, called CTS, which is
an integer incremented each time a non-speculative transaction commits.

For each shared object, a set of additional information is also maintained for supporting
ParSpec’s operations: (1) the list of committed and x-committed versions; (2) the version
written by the last x-committed transaction, called spec-version; (3) the boolean flag called
wait-flag, which indicates that a speculative active transaction wrote a new version of the
object, and wait-flag.OO, the optimistic order of that transaction; and (4) a bit-array
called readers-array, which tracks active transactions that already read the object during
their execution. Committed (or x-committed) versions contain VCTS, which is the CTS (or
the SCTS) of the transaction that committed (or x-committed) that version.

The size of the abort-array and readers-array is bounded by MaxSpec, which is an in-

Sachin Hirve Chapter 6. Archie 61

teger defining the maximum number of speculative transactions that can run concurrently.
MaxSpec is fixed and set a priori at system start-up. It can be tuned according to the
underlying hardware.

When an opt-batch is optimistically delivered, ParSpec extracts the transactions from the
opt-batch and processes them, activating MaxSpec transactions at a time. Once all these
speculative transactions finish their execution, the next set of MaxSpec transactions is acti-
vated. As it will be clear later, this approach allows a quick identification of those transac-
tions whose history is not compliant anymore with the optimistic order, thus they must be
aborted and restarted.

In the abort-array and readers-array, each transaction has its information stored in a
specific location such that, if two transactions Ta and Tb are optimistically ordered, say in
the order Ta > Tb, then they will be stored in these arrays respecting the invariant Ta > Tb.

Since the optimistic order is a monotonically increasing integer, for a transaction T , the posi-
tion i= T.OO mod MaxSpec stores T ’s information. When abort-array[i]=1, T must abort
because its execution order is not compliant anymore with the optimistic order. Similarly,
when an object obj has readers-array[i]=1, it means that the transaction T performed a
read operation on obj during its execution.

Speculative active transactions make available new versions of written objects only when they
x-commit. This way, other speculative transactions cannot access intermediate snapshots of
active transactions. However, when MaxSpec transactions are activated in parallel, multiple
concurrent writes on the same object could happen. When those transactions reach their x-
commit phase, different speculative versions of the same object could be available for readers.
As an example, consider four transactions {T1,T2,T3,T4} that are optimistically delivered in
this order. T1 and T3 write to the same object Oa, and T2 and T4 read from Oa. When T1 and
T3 reach the speculative commit phase, they make two speculative versions of Oa available:
OT1

a and OT3
a . According to the optimistic order, T2’s read should return OT1

a and T4’s read
should return OT3

a . Even though this approach maximizes concurrency, its implementation
requires traversing the shared lists of transactional meta-data, resulting in high transaction
execution time and low performance [5].

ParSpec finds an effective trade-off between performance and overhead for managing meta-
data. In order to avoid maintaining a list of speculative versions, ParSpec allows an active
transaction to x-commit only when the speculative transaction optimistically ordered just
before it is already x-committed. Formally, given two speculative transactions Tx and Ty
such that Ty.OO = {Tx.OO} + 1, Ty is allowed to x-commit only when Tx is x-committed.
Otherwise, Ty keeps spinning even when it has executed all of its operations. Ty easily
recognizes Tx’s status change by reading the shared field LastX-committedTx. We refer to
this property as rule-comp. By rule-comp, read and write operations become efficient. In fact,
when a transaction T reads an object, only one speculative version of the object is available.
Therefore, T ’s execution time is not significantly affected by the overhead of selecting the
appropriate version according to T ’s history. In addition, due to rule-comp, even though two

Sachin Hirve Chapter 6. Archie 62

transactions may write to the same object, they can x-commit and make available their new
versions only in-order, one after another. This policy prevents any x-committed transaction
to abort due to other speculative transactions.

In the following, ParSpec’s operations are detailed.

6.2.1 Transactional Read Operation

When a write transaction Ti performs a read operation on an object X, it checks whether
another active transaction Tj is writing a new version of X and Tj’s optimistic order is prior
to Ti’s. In this case, it is useless for Ti to access the spec-version of X because, eventually,
Tj will x-commit, and Ti will be aborted and restarted in order to access Tj’s version of X.
Aborting Ti ensures that its serialization order is compliant with the optimistic order. Ti is
made aware about the existence of another transaction that is currently writing X through
X.wait-flag, and about its order through X.wait-flag.OO. If X.wait-flag=1 and X.wait-
flag.OO < Ti.OO, then Ti waits until the previous condition is no longer satisfied. For the
other cases, namely when X.wait-flag=0 or X.wait-flag.OO > Ti.OO, Ti proceeds with the
read operation without waiting, accessing the spec-version. Specifically, if X.wait-flag.OO
> Ti.OO, then it means that another active transaction Tk is writing to X. But, according
to the optimistic order, Tk is serialized after Ti. Thus, Ti can simply ignore Tk’s concurrent
write.

After successfully retrievingX’s value, Ti stores it in its read-set, signals that a read operation
on X has been completed, and sets the flag corresponding to its entry in X.readers-array.
This notification is used by writing transactions to abort inconsistent read operations that
are performed before a previous write takes place.

6.2.2 Transactional Write Operation

The rule-comp prevents two or more speculative transactions from x-committing in par-
allel and in any order. Rather, they progressively x-commit, according to the optimistic
order. In ParSpec, transactional write operations are buffered locally in a transaction’s
write-set. Therefore, they are not available for concurrent reads before the writing transac-
tion x-commits. The write procedure has the main goal of aborting those speculative active
transactions that are serialized after (in the optimistic order) and a) wrote the same object,
and/or b) previously read the same object (but clearly a different version).

When a transaction Ti performs a write operation on an object X and finds that X.wait-flag
= 1, ParSpec checks the optimistic order of the speculative transaction Tj that wrote X. If
X.wait-flag.OO > Ti.OO, then it means that Tj is serialized after Ti. So, an abort for Tj is
triggered because Tj is a concurrent writer on X and only one X.spec-version is allowed for
X. On the contrary, if X.wait-flag.OO < Ti.OO (i.e., Tj is serialized before Ti according to

Sachin Hirve Chapter 6. Archie 63

the optimistic order) then Ti, before proceeding, loops until Tj x-commits.

Since a new version of X written by Ti will eventually become available, all speculative active
transactions optimistically delivered after Ti that read X must be aborted and restarted so
that they can obtain X’s new version. Identifying those speculative transactions that must
be aborted is a lightweight operation in ParSpec. When a speculative transaction x-commits,
its history is fixed and cannot change because all the speculative transactions serialized before
it have already x-committed. Thus, only active transactions can be aborted. Object X keeps
track of readers using the readers-array and ParSpec uses it for triggering an abort: all
active transactions that appear in the readers-array after Ti’s index and having an entry
of 1 are aborted. Finally, before including the new object version in Ti’s write-set, ParSpec
sets X.wait-flag = 1 and X.wait-flag.OO = Ti.OO.

Finally, if a write operation is executed on an object already written by the transaction, its
value is simply updated.

6.2.3 X-Commit

A speculative active transaction that finishes all of its operations enters the speculative
commit (x-commit) phase. This phase has three purposes: the first (A) is to allow next
speculative active transactions to access the new speculative versions of the written objects;
the second (B) is to allow subsequent speculative transactions to x-commit; the third (C)
is to prepare “future” committed versions (not yet visible) of the written objects such that,
when the transaction is eventually final delivered, those versions will be already available
and its commit will be straightforward. However, in order to accomplish (B), only (A) must
be completed while (C) can be executed later. This way, ParSpec anticipates the event that
triggers the x-commit of the next speculative active transactions, while executing (C) in
parallel with that.

Step (A). All the versions written by transaction Ti are moved from Ti’s write-set to the
spec-version field of the respective objects and the respective wait-flags are cleared. This
way, the new speculative versions can be accessed from other speculative active transactions.
At this time, a transaction Tj that accessed any object conflicting with Ti’s write-set objects
and is waiting on wait-flags can proceed.

In addition, due to rule-comp, an x-committed transaction cannot be aborted by any spec-
ulative active transaction. Therefore, all the meta-data assigned to Ti must be cleaned up
for allowing the next MaxSpec speculative transactions to execute from a clean state.

Step (B). This step is straightforward because it only consists of increasing SCTS, the spec-
ulative commit timestamp, which is incremented each time a transaction x-commits, as well
as increasing LastX-committedTx.

Step (C). This step is critical for avoiding the iteration on the transaction’s write-set to

Sachin Hirve Chapter 6. Archie 64

install the new committed versions during the serial phase. However, this step does not need
to be in the critical path of subsequent active transactions. For this reason (C) is executed
in parallel to subsequent active transactions after updating LastX-committedTx, such that
the chain of speculative transactions waiting for x-commit can evolve.

For each written object, a new committed, but not yet visible, version is added to the object’s
version list. The visibility of this version is implemented leveraging SCTS. Specifically,
SCTS is assigned to the VCTS of the version. SCTS is always greater than CTS because
the speculative execution always precedes the final commit. This way (as we will show in
Section 6.2.6) no non-speculative transaction can access that version until CTS is equal to
SCTS. If the MiMox’s leader is stable in the system (i.e., the optimistic order is reliable),
then when CTS reaches the value of SCTS, then the speculative transaction has already
been executed, validated and all of its versions are already available to non-speculative
transactions.

6.2.4 Commit

The commit event is invoked when a final-batch is delivered. At this stage, two scenarios
can happen: (A) the final-batch contains the same set of opt-batches already received in the
same order, or (B) the optimistic order is contradicted by the content of the final-batch.

Scenario (A) is the case when the MiMoX’s leader is not replaced while the ordering pro-
cess is running. This represents the normal case within a data-center, and the best case for
Archie because the speculative execution can be actually leveraged for committing transac-
tions without performing additional validation or re-execution. In fact, ParSpec’s rule-comp
guarantees that the speculative order always matches the optimistic order, thus if the latter
is also confirmed by the total order, it means that the speculative execution does not need
to be validated anymore.

In this scenario, the only duty of the commit phase is to increase CTS. Given that, when
CTS=Y , it means that the x-committed transaction with SCTS=Y has been finally com-
mitted. Non-speculative transactions that start after this increment of CTS will be able to
observe the new versions written during the step (C) of the x-commit of the transaction with
SCTS=Y .

Using this approach, ParSpec eliminates any complex operation during the commit phase
and, if most of the transactions x-commit before their notification of the total order, then
they are committed right away, paying only the delay of the total order. If the transaction
does not contain massive non-transactional computation, then the iteration on the write-set
for installing the new committed versions, and the iteration on the read-set for validating
the transaction, have almost the same cost as running the transaction from scratch after
the final delivery. This is because, once the total order is defined, transactions can execute
without any overhead, such as logging in the read-set or write-set.

Sachin Hirve Chapter 6. Archie 65

In scenarios like (B), transactions cannot be committed without being validated because
the optimistic order is not reliable anymore. For this reason, the commit is executed using
a single thread. Transaction validation consists of checking if all the versions of the read
objects during the speculative execution correspond to the last committed versions of the
respective objects. If the validation succeeds, then the commit phase is equivalent to the
one in scenario (A). When the validation fails, the transaction is aborted and restarted for
at most once. The re-execution happens on the same committing thread and accesses all the
last committed versions of the read objects.

In both the above scenarios, clients must be informed about transaction’s outcome. ParSpec
accomplishes this task asynchronously and in parallel, rather than burdening the commit
phase with expensive remote communications.

6.2.5 Abort

Only speculative active transactions and x-committed transactions whose total order has
already been notified can be aborted. In the first case, ParSpec uses the abort mechanism
for restarting speculative transactions with an execution history that is non-compliant with
the optimistic order. Forcing a transaction T to abort means simply to set the T ’s index
of the abort-array. However, the real work for annulling the transaction context and
restarting from the beginning is executed by T itself by checking the abort-array. This
check is made after executing any read or write operation and when Ti is waiting to enter
the x-commit phase. The abort of a speculative active transaction consists of clearing all of
its meta-data before restarting.

In the second case, the abort is needed because the speculative transaction x-committed
with a serialization order different from the total order. In this case, before restarting
the transaction as non-speculative, all the versions written by the x-committed transaction
must be deleted from the objects’ version lists. In fact, due to the snapshot-deterministic
execution, the new set of written versions can differ from the x-committed set, thus some
version could become incorrectly available after the increment of CTS.

6.2.6 Read-Only Transactions

When a read-only transaction is delivered to a node, it is immediately processed, accessing
only the committed versions of the read objects. This way, read-only workloads do not in-
terfere with the write workloads, thus limiting the synchronization points between them. A
pool of threads is reserved for executing read-only transactions. Before a read-only transac-
tion Ti performs its first read operation on an object, it retrieves the CTS of the local node
and assigns this value to its own timestamp (Ti.TS). After that, the set of versions available
to Ti is fixed and composed of all versions with VCTS ≤ Ti.TS – i.e., Ti cannot access new

Sachin Hirve Chapter 6. Archie 66

versions committed by any Tj ordered after Ti. Some object could have, inside its version
list, versions with a VCTS > Ti.TS. These versions are added from x-committed transac-
tions, but not yet finally committed, thus their access is prohibited to any non-speculative
transaction.

6.3 Consistency Guarantees

Archie ensures 1-Copy Serializability [7] as a global property, and it ensures also that any
speculative transaction (active, x-committed and aborted) always observes a serializable
history, as a local property.

1-Copy Serializability. Archie ensures 1-Copy Serializability. The main argument that
supports this claim is that transactions are validated and committed serially. We can dis-
tinguish two cases according to the reliability of the optimistic delivery order with respect
to the final delivery order: i) when the two orders match, and the final commit procedure
does not accomplish any validation procedure; ii) when the two orders do not match, thus
the validation and a possible re-execution are performed.

The case ii) is straightforward to prove because, even though transactions are activated and
executed speculatively, they are validated before being committed. The validation, as well
as the commit, process is sequential. This rule holds even for non-conflicting transactions.
Combining serial validation with the total order of transactions guarantees that all nodes
eventually validate and commit the same sequence of write transactions. The ordering layer
ensures the same sequence of delivery even in the presence of failures, therefore, all nodes
eventually reach the same state.

The case i) is more complicated because transactions are not validated after the notification
of the final order; rather, they directly commit after increasing the commit timestamp. For
this case we rely on MiMoX, which ensures that all final delivered transactions are always
optimistically delivered before. Given that, we can consider the speculative commit as the
final commit because, after that, the transaction is ensured to not abort anymore and even-
tually commit. The execution of a speculative transaction is necessarily serializable because
all of its read operations are done according to a predefined order. In case a read operation
accesses a version such that its execution becomes not compliant with the optimistic order
anymore, the reader transaction is aborted and restart. In addition, transactions cannot
speculatively commit in any order or concurrently. They are allowed to do so only serially,
thus reproducing the same behavior as the commit phase in case ii).

Read-only transactions are processed locally without a global order. They access only com-
mitted versions of objects, and their serialization point is defined when they start. At this
stage, if we consider the history composed of all the committed transactions, when a read-
only transaction starts, it defines a prefix of that history such that it cannot change over
time. Versions committed by transactions serialized after this prefix are not visible by the

Sachin Hirve Chapter 6. Archie 67

read-only transaction. Consider a history of committed write transactions, H={T1, . . . ,Ti,
. . . , Tn}. Without loss of generality, assume that T1 committed with timestamp 1; Ti com-
mitted with timestamp i; and Tn committed with timestamp n. All nodes in the system
eventually commit H. Different commit orders for these transactions are not allowed due
to the total order enforced by MiMoX. Suppose that two read-only transactions Ta and Tb,
executing on node Na and Nb, respectively, access the same shared objects. Let Ta perform
its first read operation on X accessing the last version of X committed at timestamp k, and
Tb at timestamp j. Let Pa and Pb be the prefixes of H defined by Ta and Tb, respectively.
Pa(H)={T1, . . . ,Tk} such that k ≤ i and Pb(H)= {T1, . . . ,Tj} such that j ≤ i. Pa and Pb

can be either coincident, or one is a prefix of the other because both are prefixes of H: i.e.,
if k < j, then Pa is a prefix of Pb; if k > j, then Pb is a prefix of Pa; if k = j, then Pa and
Pb coincide.

Let Pa be a prefix of Pb. Now, ∀ Tu, Tv ∈ Pa, Ta and Tb will observe Tu and Tv in the same
order (and for the same reason, it is true also for the other cases). In other words, due to
the total order of write transactions, there are no two read-only transactions, running on the
same node or different nodes, that can observe the same two write transactions serialized
differently.

Serializable history. In ParSpec, all speculative transactions (including those that will
abort) always observe a history that is serializable. This is because new speculative versions
are exposed only at the end of the transaction, when it cannot abort anymore; and because
each speculative transaction checks its abort bit after any operation. Assume three transac-
tions T1, T2 and T3, optimistically ordered in this way. T1 x-commits a new version of object
A, called A1 and T2 overwrites A producing A2. It also writes object B, creating B2. Both T2

and T3 run in parallel while T1 already x-committed. Now T3 reads A from T1 (i.e., A1) and
subsequently T2 starts to x-commit. T2 publishes the A2’s speculative version and flags T3

to abort because its execution is not compliant with the optimistic order anymore. Then T2

continues its x-commit phase exposing B2’s speculative version. In the meanwhile, T3 starts
a read operation on B before being flagged by T2, and it finds B2. Even though T3 is marked
as aborted, it already started the read operation on B before checking the abort-bit. For this
reason, this check is done after the read operation. In the example, when T3 finishes the read
operation on B, but before returning B2 to the executing thread, it checks the abort-bit and
it aborts due to the previous read on A. As a result, the history of a speculative transaction
is always (and at any point in time) compliant with the optimistic order, thus preventing
the violation of serializability.

6.4 Implementation and Evaluation

We implemented Archie in Java: MiMoX’s implementation inherited JPaxos’s [98, 57] soft-
ware architecture, while ParSpec has been built from scratch. As a testbed, we used
PRObE [32] as presented in Section 6.1. ParSpec does not commit versions on any sta-

Sachin Hirve Chapter 6. Archie 68

ble storage. The transaction processing is entirely executed in-memory while fault-tolerance
is ensured through replication.

We selected three competitors to compare against Archie. Two are state-of-the-art, open-
source, transactional systems based on state-machine replication. One, PaxosSTM [117]
implements the DUR model, while the other, HiperTM [48], complies with the DER model.
As the third competitor, we implemented the classical DER scheme (called SM-DER) [101],
where transactions are ordered through JPaxos [57] and processed in a single thread after
the total order is established.

PaxosSTM [117] processes transactions locally, and relies on JPaxos [57] as a total order layer
for their global certification across all nodes. On the other hand, HiperTM [48], as Archie,
exploits the optimistic delivery for anticipating the work before the notification of the final
order, but it processes transactions on single thread. In addition, HiperTM’s ordering layer
is not optimized for maximizing the time between optimistic and final delivery.

Each competitor provides its best performance under different workloads, thus they repre-
sent a comprehensive selection to evaluate Archie. Summarizing, PaxosSTM ensures high-
performance in workloads with very low contention, such that remote aborts do not kick-in.
HiperTM, as well as SM-DER, are independent from the contention because they process
transactions using a single thread but their performance is significantly affected by the length
of transactions (any operation is on the transaction’s critical path). This way, workloads
composed of short transactions represent their sweet spot. In addition, SM-DER excels for
workloads where contention is very high. Here the intuition is that, if only few objects are
shared, then executing transactions serially without any overhead is the best solution.

We provided two versions of Archie: one that exploits the optimistic delivery and one that
postpones the parallel execution until the transactions are final delivered. This way, we can
show the impact of the anticipation of the work, with respect to the parallel execution. The
version of Archie that does not use the optimistic delivery, called Archie-FD, replaces the
x-commit with the normal commit. In contrast with Archie, Archie-FD installs the written
objects during the commit. For the purpose of the study, we configured MaxSpec and the
size of the thread pool that serves read-only transactions as 12. This configuration resulted
in an effective trade-off between performance and scalability on our testbed. However, these
parameters can be tuned for exploring different trade-offs for the hardware and application
workload at hand.

The benchmarks adopted in this evaluation include Bank, a common benchmark that emu-
lates bank operations, TPC-C [20], a popular on-line transaction processing benchmark, and
Vacation, a distributed version of the famous application included in the STAMP suite [13].
We scaled the size of the system in the range of 3-19 nodes and we also changed the system’s
contention level by varying the total number of shared objects available. All the competitors
benefit from the execution of local read-only transactions. For this reason we scope out
read-only intensive workloads. Each node has a number of clients running on it. When we
increase the nodes in the system, we also slightly increase the number of clients accordingly.

Sachin Hirve Chapter 6. Archie 69

This also means that the concurrency and (possibly) the contention in the system moder-
ately increase. This is also why the throughput tends to increase for those competitors that
scale along with the size of the system. In practice, we used on average the following total
number of application threads balanced on all nodes: 1000 for TPC-C, 3000 for Bank, and
550 for Vacation.

6.4.1 Bank Benchmark

We configured the Bank benchmark for executing 10% and 50% of read-only transactions,
and we identified the high, medium and low contention scenarios by setting 500, 2000, and
5000 total bank accounts, respectively. We report only the results for high and medium
contention (Figure 6.3) because the trend in low contention scenario is very similar to the
medium contention though with higher throughput.

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
PaxosSTM

ALVIN-FD
ALVIN

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 20

 40

 60

 80

 100

 120

 140

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 T

ra
n

s
a

c
ti
o

n
 p

e
r

s
e

c

Replicas

(a) Throughput - High - 90%.

 40

 60

 80

 100

 120

 140

 160

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 T

ra
n

s
a

c
ti
o

n
 p

e
r

s
e

c

Replicas

(b) Throughput - Medium - 90%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 3 5 7 9 11 13 15 17 19

L
a

te
n

c
y
 (

m
s
)

Replicas

(c) Latency - High - 90%.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 T

ra
n

s
a

c
ti
o

n
 p

e
r

s
e

c

Replicas

(d) Throughput - High - 50%.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 T

ra
n

s
a

c
ti
o

n
 p

e
r

s
e

c

Replicas

(e) Throughput - Medium - 50%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 3 5 7 9 11 13 15 17 19

L
a

te
n

c
y
 (

m
s
)

Replicas

(f) Latency - High - 50%.

Figure 6.3: Performance of Bank benchmark varying nodes, contention and percentage of
write transactions.

Figure 6.3(a) plots the results of the high contention scenario. PaxosSTM suffers from a
massive amount of remote aborts (≈85%), thus its performance is worse than others and it
is not able to scale along with the size of the system. Interestingly, SM-DER behaves better
than HiperTM because HiperTM’s transaction execution time is higher than SM-DER’s
due to the overhead of operations’ instrumentation. This is particularly evident in Bank,
where transactions are short and SM-DER’s execution without any overhead provides better

Sachin Hirve Chapter 6. Archie 70

performance. In fact, even if HiperTM anticipates the execution leveraging the optimistic
delivery, its validation and commit after the total order nullify any previous gain. We
observed also the time between the optimistic and final delivery in HiperTM to be less than
1 msec, which limits the effectiveness of its optimistic execution.

The two versions of Archie perform better than others but still Archie-FD, without the
speculative execution, pays a penalty in performance around 14% against Archie. This is due
to the effective exploitation of the optimistic delivery. Consistently with the results reported
in Section 6.1, we observed an average time between optimistic and final delivery of 8.6 msec,
almost 9× longer than HiperTM. However, as showed in Figure 6.3(c), Archie’s average
transaction latency is still much lower than others. The peak throughput improvement over
the best competitor (i.e., SM-DER) is 54% for Archie and 41% for Archie-FD.

Figure 6.3(b) shows the results with an increased number of shared objects in the system.
In these experiments the contention is lower than before, thus PaxosSTM performs better.
With 3 nodes, its performance is comparable with Archie but, by increasing the nodes and
thus the contention, it degrades. Here Archie’s parallel execution has a significant benefit,
reaching a speed-up by as much as 95% over SM-DER. Due to the lower contention, also the
gap between Archie and Archie-FD increased up to 25%.

Figures 6.3(d), 6.3(e), 6.3(f) show the results with higher percentage of read-only transac-
tions (50%). Recall that all protocols exploit the advantage of local processing of read-only
transactions but absolute numbers are higher than before, as well as latency is reduced, but
the trends are still similar.

6.4.2 TPC-C Benchmark

TPC-C is characterized by transactions accessing several objects and the workload has a con-
tention level usually higher than other benchmarks (e.g., Bank). The mix of TPC-C profiles
is the same as the default configuration, thus generating 92% of write transactions. We eval-
uated three scenarios, varying the total number of shared warehouses (the most contented
object in TPC-C) in the range of {1,19,100}. With only one warehouse, all transactions
conflict each other (Figure 6.4(a)) thus SM-DER behaves better than other competitors. In
this case, the parallel execution of Archie is not exploited because transactions are always
waiting for the previous speculative transaction to x-commit and then start almost the en-
tire speculative execution from scratch. Increasing the number of nodes, HiperTM behaves
better than Archie because of minimal synchronization required due to the single thread
processing. However, when the contention decreases (Figure 6.4(b)), Archie becomes better
than SM-DER by as much as 44%. Further improvements can be seen in Figure 6.4(c) where
contention is much lower (96% of gain).

Archie is able to outperform SM-DER when 19 warehouses are deployed, because it bounds
the maximum number of speculative transactions that can conflict each other (i.e., MaxSpec).

Sachin Hirve Chapter 6. Archie 71

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
PaxosSTM

ALVIN-FD
ALVIN

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5

 10

 15

 20

 25

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 T

ra
n

s
a

c
ti
o

n
s
 p

e
r

s
e

c

Replicas

(a) #1 warehouse.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 T

ra
n

s
a

c
ti
o

n
s
 p

e
r

s
e

c

Replicas

(b) #19 warehouses.

 5

 10

 15

 20

 25

 30

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 T

ra
n

s
a

c
ti
o

n
s
 p

e
r

s
e

c

Replicas

(c) #100 warehouses.

Figure 6.4: Performance of TPC-C benchmark varying nodes and number of warehouses.

We used 12 as MaxSpec, thus the number of possible transactions that can conflict with each
other is less than the total number of shared objects, thus reducing the abort percentage
from 98% (1 warehouse) to 36% (19 warehouses) (see also Figure 6.6). Performance of SM-
DER worsens from Figure 6.4(a) to Figure 6.4(b). Although it seems counterintuitive, it
is because, with more objects, the cost of looking up a single object is less than with 19
objects.

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 19 100

%
 X

-c
o
m

m
it
te

d
 t
ra

n
s
a
c
ti
o
n
s

Number of warehouses

3 nodes

11 nodes

19 nodes

Figure 6.5: % of x-committed transactions before the notification of the total order.

Figure 6.5 shows an interesting parameter that helps to understand the source of Archie’s
gain: the percentage of speculative transactions x-committed before their total order is
notified. It is clear from the plot that, due to the high contention with only one warehouse,
Archie cannot exploit its parallelism thus almost all transactions x-commit after their final
delivery is issued. The trend changes by increasing the number of warehouses. In the
configuration with 100 warehouses, the percentage of x-committed transactions before their
final delivery is in the range of 75%-95%. The performance related to this data-point is
shown in Figure 6.4(c) where Archie is indeed the best, and the gap with respect to Archie-
FD increased up to 41%.

Figure 6.6 reports the percentage of aborted transactions of the only two competitors that
can abort: PaxosSTM and Archie. PaxosSTM invokes an abort when a transaction does
not pass the certification phase, while Archie aborts a transaction during the speculative

Sachin Hirve Chapter 6. Archie 72

 0
 20
 40
 60
 80

 100

3 7 15 19

%
 A

bo
rt

Nodes

PaxosSTM-1
ARCHIE-1

PaxosSTM-19

ARCHIE-19
PaxosSTM-100

ARCHIE-100

 0

 20

 40

 60

 80

 100

3 7 15 19

%
 A

bo
rt

Nodes

ARCHIE-100

 0
 20
 40
 60
 80

 100

3 7 15 19
%

 A
bo

rt

Nodes

PaxosSTM-1
ARCHIE-1

PaxosSTM-19

ARCHIE-19
PaxosSTM-100

ARCHIE-100

 0

 20

 40

 60

 80

 100

3 7 15 19

%
 A

bo
rt

Nodes

ARCHIE-19
PaxosSTM-100

ARCHIE-100

Figure 6.6: Abort % of PaxosSTM and Archie.

execution. Recall that, in PaxosSTM, the abort notification is delivered to the client, which
has to re-execute the transaction and start again a new global certification phase. On
the other hand, Archie’s abort is locally managed and the re-execution of the speculative
transaction does not involve any client operation, thus saving time and network load. In this
plot, we vary the number of nodes in the system and, for each node, we show the observed
abort percentage changing with the number of warehouses as before. The write intensive
workload generates a massive amount of aborted transactions in PaxosSTM while in Archie,
thanks to the speculative processing of MaxSpec transactions at a time, the contention does
not increase significantly. The only case where Archie reaches 98% is with only one shared
warehouse.

6.4.3 Vacation Benchmark

The Vacation Benchmark is an application originally proposed in the STAMP suite [13]
for testing centralized synchronization schemes and often adopted in distributed settings
(e.g., [117]). It reproduces the behavior of clients that submit booking requests for vacation
related items.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 100 250 500 750 1000

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c

Number of relations

SMR

HiperTM

PaxosSTM

ARCHIE-FD

ARCHIE

Figure 6.7: Throughput of Vacation benchmark.

Vacation generates longer transactions than the other considered benchmarks, thus also its
total throughput is lower. Figure 6.7 shows the results. In this experiment we varied the total

Sachin Hirve Chapter 6. Archie 73

number of relations (object used for defining the contention in the system) and we fixed the
number of nodes to 11. Vacation’s clients do not perform any read-only transaction, however
those transactions can still occur as a result of unsuccessful booking requests. However,
the actual number of read-only transactions counted is less than 3%, thus their impact on
performance is very limited.

With only 100 relations, SM-DER performs slightly better than the others, while increasing
objects, and thus decreasing contention, Archie is the best until 750 relations. After that, the
contention is so low that the certification-based approach of PaxosSTM prevails. From the
results it is clear how competitors based on single thread processing (SM-DER and HiperTM)
suffer in low contention scenarios because they cannot take advantage of any parallelism.

6.5 Summary

Most replicated transactional systems based on total order primitives suffer from the prob-
lem of single thread processing but they still represents one of the best solutions in scenarios
in which majority of transactions access few shared objects. Archie’s main goal is to allevi-
ate the transaction’s critical path by eliminating non-trivial operations performed after the
notification of the final order. In fact, if the sequencer node is stable in the system, Archie’s
commit procedure consists of just a timestamp increment. Results confirmed that Archie
outperformed competitors in write intensive workloads with medium/high contention.

Chapter 7

Caesar

The current technological trend in the area of network infrastructure (e.g., Amazon EC2 [2],
Google Cloud [33], RedHat OpenShift [91]) proposes a change in the way computational
resources are provisioned. Networks now are elastic, namely they can easily expand and
shrink according to the application needs and the expected workload. For this reason building
scalable services is considered a mandatory requirement for forthcoming solutions. This
aim becomes more challenging when the application involves transactional requirements
because: on one hand, logical contention among accessed objects likely hampers the system’s
scalability (i.e., adding resources to the system does not entail providing the same request’s
response time); and on the other hand, distributed transactional systems hardly give up
stringent fault-tolerance requirements, by enforcing data replication in order to cope failures
of nodes.

The widely used technique for building fault-tolerant transactional systems is providing a
global order among transactions spawned on all nodes so that their execution changes the
replicated shared state in the same way on all nodes (i.e., the so called State Machine Repli-
cation Approach [84]). Two major deployments of the State Machine Replication Approach
have been proposed in literature: one executes transactions optimistically on the originating
node and then a global “certification” is invoked to validate the optimistic execution against
other concurrent transactions in the system (e.g., [115, 103, 117, 84]); the other one orders
transactions before their execution and, once the global order is defined, transactions are
processed accordingly (e.g., [47, 70, 78]).

In this work we assume the latter approach because its execution model prevents transactions
from aborting (i.e., the order is defined before the execution) and the size of messages
exchanged among nodes is very small (i.e., the transaction’s footprint consists of only the
transaction’s name and its parameters), which is highly desirable for avoiding the saturation
of network bandwidth for high node count.

Up to a few years ago, a reasonable network size for such a system was in the range of 8 to 20

74

Sachin Hirve Chapter 7. CAESAR 75

nodes [70, 47, 78], however nowadays many dozens of nodes is the expected deployment. In
this scenario – i.e., when the system’s size increases and thus the load of the system is high –
the above replication model has two well-known drawbacks which may limit its effectiveness:
poor parallelism in the transaction execution and the existence of a single node (a.k.a.
leader), which defines the order on behalf of all nodes. Regarding the former, processing
transactions in accordance with a total order typically means processing them serially (see
Chapter 2 for alternative solutions which assume partitioned accesses). In addition, ordering
transactions in the same way on all nodes can be seen as an unnecessary overestimation
of the problem of transactional replication, because the outcome of the commits of two
non-conflicting transactions is independent from their commit order. Regarding the latter,
establishing a total order relying on one leader represents the de-facto solution since it
guarantees the delivery of a decision with the optimal number of communication steps [61].

The two mentioned problems are already addressed in literature. On one hand, more complex
ordering techniques have been proposed, which allow the coexistence of multiple leaders at
a time so that the work in the system is balanced among them, and the presence of a slow
leader cannot hamper the overall performance (as in the case of single leader) [69, 78]. On the
other hand, the problem of ordering transactions according to their actual conflicts has been
originally formalized by the Generalized Consensus [59] and Generic Broadcast [86] problems.
The core idea consists of avoiding a “blind” total order of all submitted transactions whereas
only those transactions that depend upon each other are totally ordered. This way each node
is allowed to deliver an order that differs from the one delivered by another node, while all of
them have in common the way conflicting transactions are ordered. The effort of classifying
conflicting transactions is then exploited during the processing phase because those non-
conflicting transactions can be activated in parallel without worrying about any form of
synchronization and therefore it enables the real parallelism (i.e., performance increases
along with the number of threads).

Combining the above design choices into a unique protocol that inherits the benefits from
all of them is the challenge we address in this work. Specifically, we show how existing
solutions, which provide leaderless Generalized Paxos-based protocols, suffer from serious
performance penalties when deployed in systems where general purpose transactions (i.e.,
transactions that perform both read and write operations) are assumed. Among the related
proposals (overviewed in Chapter 2), EPaxos [78] stands up due to its generality, low latency
and capability of reducing the number of nodes to contact during the ordering process1.

EPaxos [78] is a consensus algorithm that orders commands2 taking into account their content
(as Generalized Paxos) but allows multiple leaders to exist together, each with the assignment
of defining the order for a subset of sent commands. The major innovation of EPaxos is that
it is able to reply to the client as soon as the message is stable in the system , but before
its order is actually finalized. The actual delivery of the command to the processing layer is

1EPaxos decreases the quorum size by one as compared to Fast Paxos [64].
2A command is a general container of information and does not have any transactional semantic.

Sachin Hirve Chapter 7. CAESAR 76

delayed until some local computation is performed (e.g., analysis of a dependency graph for
computing the set of strongly connected components).

Thanks to this innovation, EPaxos is able to provide very high performance (e.g., throughput
in the range of a few, up to five, hundred-thousand commands delivered per second, and low
latency using 7 nodes) but it does not find its best case when deployed in a transactional
processing system where clients need to understand the result of a computation (e.g., the
result of a read transaction or the outcome of a transaction that invokes an explicit abort3)
before issuing the next transaction. In this scenario, all those operations needed for the
actual execution become part of the transactions critical path, significantly slowing down
the performance (as we will show in our evaluation study, Section 7.4.1).

The weakness of EPaxos derives from the way it avoids the usage of a single leader. It is
an egalitarian protocol where the “democracy” is the only form of government admitted
to regulate decisions. Therefore, the transaction execution order entirely depends on the
ballots, and the relevant cost paid to reach a decision is moved from the voting phase to the
counting of votes.

We present Caesar, a replicated transactional system that takes advantage of an innovative
multi-leader protocol implementing generalized consensus to enable high parallelism when
processing transactions. The core idea is enforcing a partial order on the execution of
transactions according to their conflicts, by leaving non-conflicting transactions to proceed in
parallel and without enforcing any synchronization during the execution (e.g., no locks). The
novelty of Caesar is in the way it is able to efficiently find a partial order among transactions
without relying on any designated single point of decision, i.e., leaderless, and overcoming the
limitations of recent democratic contributions in the field of distributed consensus (e.g., [78])
when applied to transactional processing.

Inspired by Mencius [69], each node in Caesar has a preassigned set of available positions
that can be associated with transactions activated on that node, and any two sets of two
different nodes have an empty intersection. In Caesar, a transaction T activated on node
N is executed on all nodes at position PT (chosen among the ones available for N) after
the execution of any other transaction conflicting with T and chosen at a position less
than PT . To do that, unlike Mencius, N does not need to gather information from all
nodes in the system to understand the status of all positions less than PT . Rather, Caesar
borrows the idea of exchanging quorums of dependencies from protocols like EPaxos [78],
thus guaranteeing high performance also in presence of failures or non-homogeneous nodes
(e.g., slow or temporarily unreachable nodes).

However, Caesar provides a set of innovations that make the proposed ordering protocol
well suited for On-Line Transactional Processing (OLTP) workloads, where the transac-
tion’s execution flow depends on the outcome of read operations. This kind of workload is
unquestionably the most diffused among common transactional applications.

3The business logic of the transaction calls an abort due to the results of some read operation.

Sachin Hirve Chapter 7. CAESAR 77

Besides the capability of being democratic like EPaxos, because the order of a transaction can
be decided upon the voting of a quorum of nodes, Caesar is also able to confine the democracy
in case the voting for a transaction does not provide a positive expected outcome. In that
case, in fact, the leader of that transaction autonomously decides the final order that will
be used to execute the transaction. This way, unlike EPaxos, deciding the final execution
order is not a process entailing the linearization of a conflict graph built using transactions
dependencies.

We implemented Caesar’s prototype in Java and conducted an extensive evaluation involving
three well-known transactional benchmarks like TPC-C [20] and the distributed version of
Vacation from the STAMP suite [13], and a Bank benchmark. In order to cover a wide
range of competitors, we contrasted Caesar against EPaxos [78], Generalized Paxos [59], and
a transactional system using MultiPaxos [60] for ordering transactions before the execution.
As a testbed, we used Amazon EC2 [2] and we scaled our deployment up to 43 nodes. To the
best of our knowledge, this is the first consensus-based transactional system evaluated with
such a large network scale. The results reveal that Caesar is able to outperform competitors
in almost all cases, reaching the highest gain of more than one order of magnitude using
Bank benchmark, and by as much as 8× running TPC-C.

7.1 Leaderless Transactions’ Ordering

7.1.1 Overview

The idea of enforcing an order only among conflicting commands has already been origi-
nally formalized by the Generalized Consensus [59] and Generic Broadcast [86] problems
and followed by a set of implementations and optimizations, e.g., Generalized Paxos [59],
EPaxos [78], and Alvin [115].

In contrast to them, Caesar offers an integrated solution for disseminating conflicting trans-
actions in a way that is prone to scalability. It avoids the usage of the designated leader,
as adopted by the classical Paxonian algorithms (e.g., [86, 59, 16, 110]), in order to either
define the outcome of the consensus for the delivery position of a transaction, or act as a
contention solver in case of multiple nodes do not agree on the delivery sequence of (depen-
dent) transactions. In addition, it differs from two recent implementations of generalized
consensus, i.e., EPaxos [78] and Alvin [115]. EPaxos relaxes the need of a designated leader
by moving the complexity of the protocol from the agreement phase (where nodes exchange
information with the aim of defining the delivery position of a transaction with respect to the
other dependent transactions) to the delivery phase. In fact, its delivery phase requires the
linearization of a conflict graph built by taking into account the transaction dependencies
collected during the agreement phase in order to produce the final partial order. Caesar
does not need any computation after the transaction’s delivery. Alvin does not require

Sachin Hirve Chapter 7. CAESAR 78

EPaxos’s graph processing but involves expensive rounds of communication for exchanging
the transaction dependencies missed by the leader during the ordering phases, thus keeping
the message footprint large. Caesar collects dependencies only once during the ordering
phase, thus it reduces the network utilization.

The core idea behind Caesar is to define a deterministic scheme for the assignment of delivery
positions (i.e., positions in the final order that are associated with positive integers) to
submitted transactions, by following the general design of communication history-based total
order broadcast protocols [25, 69] where message delivery order is determined by the senders.

In Caesar, for each transaction T we define a unique transaction leader LT that is responsible
for establishing the final delivery position of T . LT is either the node that broadcast T , or
any other elected node if the latter is crashed or has been suspected by the failure detector.
Assuming Ni as LT , the final delivery position of T can only be an unused position PT such
that PT mod |Π| = i.

Caesar delivers a transaction T in position PT if and only if T ∈ depsT ′ for each directly
dependent transaction T ′ delivered in position PT ′ > PT , where depsT ′ is the set of transac-
tions which T ′ directly depends on. We say that two transactions are directly dependent, or
also conflicting, if they both access a common object and at least one of them writes on that
object. Thanks to this property, T ′ can be executed without any additional synchronization
mechanisms (e.g., locks) as soon as T commits because, this way, once T ′ starts its execution,
its accessed objects cannot be requested by any other concurrent transaction.

Therefore, when node LT has to define a delivery position for T , it selects the next available
position among the unused ones as defined above, and it tries to “convince” the other nodes
to accept T at that position issuing a proposal phase. A generic node Nj can accept T at a
certain position in case no other transaction T ′, which conflicts with T , will be delivered on
Nj at a later position without having observed T , i.e., T ′ does not have T in its dependency
set depsT ′ . In fact, if that was the case, a transaction T ′, which is ready to be executed on
node Ni, would have no clue about a possible later delivery of T , which should actually be
executed before T ′. The replies collected by LT in this phase are also used for building the
final dependency set depsT of T .

In case LT receives at least one negative acknowledgement about the acceptance of T during
the proposal phase, it executes a retry phase under no democracy in order to force a new po-
sition. Subsequently, LT broadcasts the final agreed position PT to all, whether the position
is the result of the proposal phase or the retry phase, together with the final dependency set
depsT . Finally, once depsT is delivered to a node, T can be processed on that node as soon
as all transactions in its depsT have committed on that node.

It is worth to note that, in both EPaxos and Alvin, when a leader collects discordant depen-
dencies in the proposal phase, it has to go through an additional phase (similar to Caesar’s
retry phase) in order to finalize the order of a transaction. This is not the case for Caesar,
in which a leader collecting discordant dependencies decides without undergoing the retry

Sachin Hirve Chapter 7. CAESAR 79

phase, as far as the position proposed in the proposal phase is accepted by other nodes.

Besides the general intuition of Caesar illustrated above, there are a number of key aspects
the protocol takes into account in order to provide the system’s liveness, high-performance
and scalability guarantee. First, since a leader needs to retry a proposal phase for a trans-
action in case a proposed position has been refused by some node, one might think that the
ordering process is prone to execute a potentially infinite number of proposal phases for a
certain transaction. However, as we will see in the section discussing the correctness of the
protocol (Section 7.3), Caesar’s design guarantees that the retry of a proposal is executed at
most once per transaction. This is fundamental because it ensures that, given a transaction
T and T ’s non-faulty leader LT , the decision process for T will always converge in a finite
and known sequence of steps.

The second critical aspect regards the number of replies a node should wait for before moving
forward in its ordering process. In Caesar, a node does not need to sense all the other nodes
before taking any decision (unlike Mencius [69]), in fact the proposal for a transaction can
be accepted by the transaction’s leader if it is acknowledged by at least a quorum of nodes.
As it will be clear later, waiting for the replies from a quorum of nodes is enough to consider
a proposed position as accepted. The actual size of the quorums used by Caesar depends
on the possibility of having the so called fast decision, namely the capability of deciding a
transaction in two communication delays when an initial proposal receives a confirmation
from a quorum of nodes.

7.1.2 Unfolding the Idea

Before moving into all the details of the protocol (Section 7.2), it is important to explain
how the core idea of Caesar, shown in the previous subsection, has been unfolded in order to
obtain the final working protocol. Here we illustrate how the rules executed by the protocol
have been inferred, along with an intuition on the correctness of those rules.

The main flow of the decision process about the position of execution of a transaction T
goes through the following four steps: (1) the leader LT selects an initial proposal for T (i.e.,
EST); (2) LT requests to a quorum QF of nodes the confirmation of EST ; (3) in case the
replying quorum does not unanimously confirm EST , LT issues a retry for T with a new
position RET , and waits for the acceptance of the new proposal by a quorum QC of nodes;
(4) LT broadcasts the final position PT of execution of T as either EST or RET , depending
on whether the initial proposal has been confirmed or not. In the process of confirming a
proposal for T (step (2)), LT and the other nodes also agree on the set of transactions that
should precede T in the partial order and that are conflicting with T (i.e., depsT). depsT is
the only information used locally by a node to determine when T can be delivered for the
execution, and it is therefore broadcast with the final position PT . Given the above steps,
we now show why a node may not confirm a proposal, and how the protocol behaves in this
case.

Sachin Hirve Chapter 7. CAESAR 80

(a) Wrong scenario where T ′′ does not wait for the
retry of T . T has to recompute dependencies by
restarting a proposal phase.

(b) Correct scenario where T ′′ waits for the retry of
T .

Figure 7.1: Acceptance rule Acc2 on denied positions.

Acceptance rule 1: looking at the future

Intuitively, since a transaction T ′ can be delivered for the execution only when all transactions
in depsT ′ have already been executed, the position accepted for any transaction in depsT ′

should be less than the position accepted for T ′. Therefore, let us consider a nodeNj receiving
an initial proposal EST for a transaction T . Caesar defines the following acceptance rule
for the tuple [Nj, EST , T].

- Acc1[Nj, EST , T]. Nj can confirm the position EST only if there is no transaction T ′

conflicting with T and accepted with a position greater than EST , such that T does not
belong to depsT ′ .

In case Acc1[Nj, EST , T] is true, Nj can send a confirmation to LT with the set of
transactions conflicting with T and that are known by Nj to be possibly accepted in a
position less than EST , i.e., depsjT . Note that this set will be used by LT to compute the
final depsT .

On the contrary, in case Acc1[Nj, EST , T] is false, Nj cannot confirm T at position EST ,
and therefore it sends a negative acknowledgement Nack to LT , by notifying the maximum
position that denied EST for T . This information is used by LT to choose a new position,
i.e., RET , such that Acc1[Nj, RET , T] must be true. In addition, Nj stores the result of
the failed proposal for T at position EST as denied until LT actually sends the new proposal
for T .

Acceptance rule 2: looking at the past

Remembering the denied proposals is the key aspect that allows Caesar to avoid recomput-
ing and re-exchanging dependencies while LT retries a new position for T . In particular, let
us consider the scenario depicted in Figure 7.1(a), where node Nj sends a negative acknowl-
edgement Nack for the proposal EST of T (in steps 1-3 because Acc1[Nj, EST , T] is

Sachin Hirve Chapter 7. CAESAR 81

false). We assume that this is because Nj has already accepted a transaction T ′ at position
EST + 1, such that T ′ conflicts with T , and T is not contained in depsT ′ . In case the Nack
from Nj is in the quorum of replies received by LT , LT is forced to select a new proposal
for T that has to be greater than EST + 1 (i.e., RET = EST + 3 in the example). In the
meanwhile, Nj could accept another transaction T ′′ at position EST + 2 and such that T ′′

and T are conflicting, and T is contained in depsT ′′ (step 4 in Figure 7.1(a)). Afterwards,
T is received by Nj with the retry at the new position RET = EST + 3, and it finds T ′′

as conflicting and accepted at position EST + 2 (which is clearly less than RET). As a
consequence, Nj should include T ′′ in the dependencies of T and notify LT , which on its side
has to build again depsT as part of a new restarted proposal phase for T .

To solve this problem Caesar uses information about denied proposals in order to guarantee
that a retry always succeeds without the need of re-exchanging dependencies. Intuitively, if
a node Nj receives a proposal EST for a transaction T , it blocks the agreement process for
T in case there is a transaction T ′ such that T and T ′ are conflicting and Nj previously sent
a Nack for a position EST ′ of T ′ that is less than EST . This way we derive the following
acceptance rule for the tuple [Nj, EST , T].

- Acc2[Nj, EST , T]. Nj stops processing T until there is no transaction T ′ such that T
and T ′ are conflicting and Nj previously sent a Nack for a position EST ′ of T ′ less than
EST , i.e., T ′ was denied at position EST ′.

Therefore, by using the rule in the scenario depicted in Figure 7.1(a), we force transaction
T ′′ to wait for the arrival of T at a new position. We depict the example of the new behavior
in Figure 7.1(b). When T ′′ is received by Nj (step 4), rule Acc2[Nj, EST + 2, T ′′] blocks
the processing of T ′′ because there is a conflicting transaction T at a denied position EST ,
where EST is clearly less than EST + 2. After the arrival of T at the new position RET ,
T ′′ can be resumed.

7.2 Protocol Details

Given the description of the main idea behind the design of Caesar and the explanation on
how the idea is supported by the acceptance rules Acc1 and Acc2, in this section we provide
all details of the protocol. An execution of a transaction T in Caesar goes throughout three
phases, named Proposal phase, Retry phase and Processing phase.

7.2.1 Proposal Phase

The Proposal phase starts when T is submitted by a client to a node Ni in the system.
Ni becomes T ’s transaction leader LT and it becomes responsible for finding a serialization
order of T ’s execution against other concurrent transactions that are conflicting with T .

Sachin Hirve Chapter 7. CAESAR 82

To do that, Ni selects its estimated execution order of T (i.e., EST), and it broadcasts a
Convince message containing T , EST and depsiT to all nodes4. EST is a position greater
than any other position observed by Ni so far and such that EST mod |Π| = i; depsiT is the
set of all transactions conflicting with T and that have been observed by Ni with a position
less than EST .

By doing that, Ni tries to convince at least a quorum of nodes to serialize the processing of
T at position EST . After that, it simply waits for QF replies in order to decide whether
EST is the final position for T or not. If all the replies in the quorum of size QF are Ack
messages, Ni can confirm the processing order of T as EST , otherwise if the quorum contains
at least a Nack message, T needs to undergo the additional Retry phase.

As we explained in the overview of the protocol, the final delivery for processing a transaction
T relies on the set of conflicting transactions which T depends on. Therefore, in the case
EST is confirmed, Ni needs to also determine the final set of conflicting transactions that
have to be executed at positions less than EST . In practice, an Ack message from a node
Nj also contains the set of transactions depsjT known by Nj and that are going to be possibly
delivered at a position less than EST . In this case, Ni receives QF Ack messages for T
at position EST and therefore it can broadcast an Exec message with parameters PT and
depsT to confirm that T has to be executed at position PT after transactions in depsT . In
this case, PT is clearly equal to EST and depsT is computed as the union of the sets depsjT ,
where depsjT is contained in the Ack message from Nj.

Before analyzing the case where Ni receives at least a Nack message in the quorum of
replies, let us understand how a node Nj, receiving a Convince message from Ni, computes
its reply. As a precondition, Nj first needs to execute the acceptance rule Acc2[Nj, EST ,
T]. Therefore, Nj stops executing steps for T in case Nj stores a transaction T ′ such that
T and T ′ are conflicting and Nj previously sent a Nack message for a position EST ′ of T ′

that is less than EST . In fact, in this case T ′ is a transaction denied at a smaller position
EST ′ (see example of Figure 7.1).

If that is not the case, Nj can send an Ack message if Acc1[Nj, EST , T] is true, namely
there is no transaction T ′ conflicting with T and accepted with a position greater than EST,
such that T is not in depsT ′ . As we will also clarify later on, a transaction T ′ is accepted
on Nj if Nj received either an Exec message or a Retry message for T ′; otherwise we say
that T ′ is pending on Nj.

Therefore, Nj executes the following steps for T : (i) it waits for the set watchSet of all
transactions conflicting with T and having a position greater than EST to be accepted; (ii)
if Acc1[Nj, EST , T] is true, Nj sends an Ack message to Ni, where depsjT is the set with
all transactions conflicting with T and that are either pending or accepted on Nj with a
position less than EST ; (iii) if Acc1[Nj, EST , T] is false, then Nj sends a Nack message

4We always assume that the destinations of a broadcast are all nodes in the system, including the node
broadcasting the message.

Sachin Hirve Chapter 7. CAESAR 83

to Ni by specifying the greatest position in watchSet (i.e., maxWatch), and again the depsjT
computed as the set of all transactions conflicting with T and either pending or accepted on
Nj with a position less than or equal to maxWatch.

The intuition here is the following. If Nj confirms the position EST , it informs Ni about the
transactions that it knows should be executed before T . Otherwise, if Nj cannot confirm the
position EST because there exist other transactions (i.e., watchSet) that will be executed
at positions greater than EST and that are not aware about the existence of T at position
EST , then Ni has to retry with a position greater than the ones of transactions in watchSet.

7.2.2 Retry Phase

In case Ni receives at least a Nack message in the quorum of replies, it has to retry with a
new position for T . It selects as new available position RET , which is the position that is
greater than any other position both contained in the Nack messages and ever observed by
Ni so far. Clearly RET has to be admissible forNi and therefore such that RET mod |Π| = i.
In addition, Ni also computes depsT at this stage, as it would have done at the end of a
successful proposal phase, i.e., by considering the union of all sets depsjT contained in the
Ack/Nack messages of the received quorum. Afterwards, Ni broadcasts a Retry message
with the pair RET and depsT in order to inform all the other nodes about its decision on T .

This decision, i.e., RET and depsT , is the final of Ni for T because of the twofold motivation:
(i) as it will be clarified in Section 7.3, at this stage there cannot exist a node Nj receiving
RET from Ni such that Acc1[Nj, RET , T] is false, therefore forcing to change the position;
(ii) as previously explained in the example of Figure 7.1, there cannot exist a node Nj

proposing to further update depsT upon the reception of RET on a retry.

However, the decision process for T cannot stop here because we have to be sure that what
Ni decided survives even in case Ni becomes faulty later on. For this reason, in this phase
Ni waits for a quorum of QC replies for acknowledging the reception of the message Retry.
After that, its decision can be sent to all nodes by broadcasting the Exec message, along
with the final position PT = RET and depsT .

A node Nj receiving a Retry message for T at position RET and dependencies depsT
updates the status of T as accepted and sends an acknowledgement back to Ni. In addition,
Nj deletes any information (if any) about an old proposal for T so that any transaction T ′,
which experienced a false Acc2[Nj, EST

′, T ′] due to T , will be unblocked.

7.2.3 Execution Phase

A node Nj receiving an Exec message for T at position PT and dependencies depsT updates
the status of T as accepted (if it was still pending) and it marks T as ready to be executed.

Sachin Hirve Chapter 7. CAESAR 84

The execution phase of Caesar is really lightweight because any transaction T marked as
ready can be executed as soon as all transactions belonging to its dependency set, i.e.,
depsT , commit. Furthermore, the actual execution of a transaction can proceed without
any instrumentation because it does not require any synchronization while accessing shared
objects. In fact, any other transaction that could have developed a direct or transitive
dependency with T has been either executed before T or it will execute after the completion
of T .

In order to support such an execution, ready transactions should not create circular depen-
dencies. This problem can be trivially solved by removing every transaction T ′ from depsT
if T ′ is ready at a position greater than the one of T . It is worth noticing that this operation
does not entail missing the dependency between T and T ′, because the protocol guarantees
that in this scenario T is always contained in depsT ′ , since T is ordered before T ′.

Finally, the client requesting the execution of T receives a reply with the transaction’s
outcome when the execution of T completes on T ’s current leader.

7.2.4 Size of the Quorums and Handling of Failures

The way we select the values of QF and QC , i.e., fast and classic quorums, affects the
behavior of Caesar in how it guarantees correctness even in the presence of failures. As
a general scheme, if a node Ni suspects a node Nj, Ni tries to become the leader of any
pending transaction T whose leader is currently Nj, so that T can be finalized. This way
we have to guarantee that, if there exists at least one node that already decided to execute
T at a certain position, Ni cannot choose to execute T at a different position. As a result,
the size of the quorums should be such that when Ni caches up and decides to finalize the
execution of T , it is able to gather enough information from the other correct nodes in order
to avoid mistakes.

To accomplish this recovery, Ni gets information about T and T ’s dependencies from a
quorum of QC nodes and it explores a set of cases to find out the final position of T . The
trivial cases are the ones where there exists at least one node in the quorum that already
accepted T , i.e., it received either an Exec message or a Retry message for T . In those
cases, in fact, Ni needs only to force that decision by re-executing a retry phase followed by
an execution phase.

In the other cases, T was at most pending at all nodes in the quorum that replied to Ni.
Thus these QC nodes only observed at most the Convince message for T that was sent
in the proposal phase from T ’s old leader Nj. Therefore we choose the size of QF in the
proposal phase such that if Nj decided after having received QF Ack messages in the proposal
phase, then the QC replies gathered by Ni would contain a majority of Ack messages for T .
Equivalently, we say that the number of gathered Nack messages, which is at most equal

Sachin Hirve Chapter 7. CAESAR 85

to |Π| −QF , has to be less then QC

2
:

|Π| −QF <
QC

2
(7.1)

Actually we can do better than that, because in case T is conflicting with another transaction
T ′, and Ni received information from the leader of T ′ during T ’s recovery, Ni can just
understand the relative position of T by looking at the decision for T ′, i.e., if T is not in
depsT ′ then T ′ has to be in depsT ; and, vice-versa, if T is in depsT ′ then T ′ should not be
inserted in depsT . We can then adjust Eq. 7.1 by saying that the number of gathered Nack
messages has to be less then QC

2
, only in case we do not gather information from a leader of

a transaction conflicting with T :

|Π| −QF − 1 <
QC

2
(7.2)

Ni’s recovery proceeds by choosing the position confirmed by a possible majority of Ack
messages in the quorum of QC replies that are gathered before. If that majority does not
exist, Ni can decide the position of T by looking at the decisions made by the leaders of all
transactions reported by the QC replies as conflicting with T .

Since the number of nodes |Π| is known, we need an additional equation to obtain the values
of QF and QC . In particular we have to avoid that two new leaders of two conflicting and
concurrent transactions T and T ′, here called opponents, both believe that the old leaders of
T and T ′ respectively had both decided in the proposal phase (hence after having collected
QF Ack messages) and such that T 6∈ depsT ′ and T ′ 6∈ depsT (which is clearly impossible).
After f failures and ignoring the reply from the other opponent, each opponent cannot collect
a sufficient number of replies (|Π|−f

2
) in the recovery phase which totaled up to f is greater

than or equal to QF :
|Π| − f

2
+ f − 1 < QF (7.3)

If we minimize the ratio |Π|
f

by considering |Π| = 2f + 1, we obtain the following sizes for
the classic and fast quorums, respectively:

QC = f + 1 (7.4)

QF = f +

⌊
f + 1

2

⌋
(7.5)

Note that these are the same quorum sizes adopted by EPaxos [78] and the recovery phase
we are applying follows the one in EPaxos.

Sachin Hirve Chapter 7. CAESAR 86

7.3 Correctness

Due to space constraints we do not provide the formal proof on the correctness of Caesar even
thought we gave some hints on why the protocol works in Sections 7.1.2 and 7.2. However
in this section we provide informal arguments on how Caesar is able to guarantee One-Copy
Strict Serializability (1CSS) on the history of the committed transactions.

A transaction T is executed and committed on a nodeNi only after all transactions conflicting
with T and contained in depsT have been executed and committed on Ni. So, by iterating
the reasoning for the transactions in depsT , we can then conclude that any two transactions
T and T ′ ready to execute on a node Ni are processed and committed sequentially (i.e.,
one after the other) on Ni if there is an either direct or transitive dependency between the
two. This is enough to guarantee that there always exists a serial history of committed
transactions S (where all transactions are executed sequentially) that is equivalent to the
historyH of the transactions committed on Ni. In particular S is the serial history containing
all and only transactions committed in H and it is obtained from H as follows:

- The order of execution of any pair of transactions that are executed sequentially in H is
preserved in S.

- The order of execution of any pair of transactions that are executed concurrently in H is
any of the two possible ones.

For the formal definition of histories, equivalence of two histories and Strict Serializability
we refer to [7, 1]. However, intuitively since S is serial, and the two histories have the same
return values for the executed read operations and produce the same transactional state, H
is Serializable. In addition H is also Strict because the equivalent serial history S does not
revert the order of execution of non-concurrent dependent transactions.

To show that any history H committed by Caesar (here we are not referring to a particular
node anymore) is 1CSS, we need to show that it is equivalent to a serial history S as it was
executed over a single logical non-replicated copy of the transactional state. This is trivially
verified in Caesar because the partial order of transactions is the same on all nodes and S
can be built as shown above by starting from the history H committed on any of the nodes
(all nodes execute and commit exactly the same history).

We have shown that Caesar guarantees One-Copy Strict Serializability thanks to two prop-
erties of the ordering protocol: i) the partial order of transactions is the same on all nodes
and ii) if two transactions T and T ′ are conflicting and they are decided at positions PT and
PT ′ respectively, where PT < PT ′ , then T is contained in depsT ′ .

In a failure-free execution the former property is verified since the decision on the order of a
transaction T , i.e., position PT and dependencies depsT , is taken by a unique node, namely
T ’s leader LT , which broadcasts the decision to all the other nodes. Further, in a scenario
with failures, even though T ’s leader fails before all nodes have learnt its decision about T ,
but after the decision has been learnt by at least one node in the system, Caesar guarantees

Sachin Hirve Chapter 7. CAESAR 87

that T ’s new leader does not enforce any decision different from the one already taken by
T ’s old leader (see Section 7.2.4).

Concerning the latter property, we can show that if we suppose that the property is not
guaranteed by contradiction, we can obtain an absurd. In particular we can suppose that
there are two conflicting transactions T and T ′ that are decided at positions PT and PT ′

respectively, where PT < PT ′ , and such that T is not contained in depsT ′ . We have to
distinguish two different scenarios depending on whether T ′ executes a retry phase or not.
T ′ executes a retry. We suppose that T ′ first selects a position EST ′ < PT (because T is
not in depsT ′) and then it retries with position PT ′ due to a Nack received in the proposal
phase. Thanks to the acceptance rule Acc1 (Section 7.1.2), if there is a node sending a
Nack for T ′, then there are at least QC nodes that do the same (because a Nack is sent
due to an accepted transaction). Therefore, there is at least a node Nj where the proposal
phase for T waits till the reception of T ′ at new position PT ′ due to the acceptance rule
Acc2 (Section 7.1.2). Furthermore, since T ′ is accepted without T in depsT ′ , then Nj forces
T to retry at a new position PT > PT ′ , due to the acceptance Acc1, by contradicting the
hypothesis PT < PT ′ .
T ′ does not execute a retry. We suppose that the first proposal EST ′ by T ′ is the final
one PT ′ . Since T ′ has been accepted without T in its depsT ′ , there exists at least one node
Nj that forces a retry phase for T at position PT > PT ′ . And clearly that contradicts the
hypothesis PT < PT ′ .

As a last note we show that the retry phase for a transaction T cannot be executed multiple
times in Caesar. In fact, there cannot exist a node Nj replying in the retry phase of T and
such that Acc1[Nj, PT , T] due to a conflicting transaction T ′. This is because the only two
admissible cases are the following: (i) PT is greater than the position PT ′ of T ′ because T
observed T ′ before the retry ; (ii) T is in the dependency set of T ′, namely depsT ′ , because
T ′ observed T during its proposal phase.

7.4 Implementation and Evaluation

We implemented a prototype of Caesar in Java and we contrasted it with the three most
related competitors in literature: EPaxos, Generalized Paxos (called GenPaxos), and a trans-
actional system based on the State Machine Replication Approach [84] where transactions are
ordered before executions using the MultiPaxos protocol [60] (called TSMR). This selection
allows us to identify strengths and weaknesses of Caesar because each of these competitors
performs well in a particular scenario and suffers in others. The main goal of this evaluation
is showing how Caesar scales up along with the size of the system, while all competitors
(especially those based on single leader) slow down after a certain amount of nodes. We
did not include Alvin in this evaluation because Alvin adopts a different replication scheme
where transactions are executed locally at the originating node before being globally ordered.
This approach has advantages and disadvantages when compared with Caesar’s model, thus

Sachin Hirve Chapter 7. CAESAR 88

 0

 20000

 40000

 60000

 80000

 100000

 120000

 3 7 11 15 19 23 27 31 35 39 43 47 51
10

00
x

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

TSMR
GenPaxos

EPaxos
TIM

 0

 20000

 40000

 60000

 80000

 100000

 120000

 3 7 11 15 19 23 27 31 35 39 43 47 51

10
00

x
Tr

an
sa

ct
io

ns
 p

er
 s

ec

Replicas

TSMR
GenPaxos

EPaxos
TIM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 3 7 11 15 19 23 27 31 35 39 43
T

ra
n
sa

ct
io

n
s

p
e
r

se
c

Replicas

TSMR

GenPaxos

EPaxos

Caesar

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 3 7 11 15 19 23 27 31 35 39 43

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c

Nodes

(a) Throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 3 7 11 15 19 23 27 31 35 39 43

L
a

te
n

c
y
 (

m
s
)

Nodes

(b) Latency.

 0

 20

 40

 60

 80

 100

3 7 11 15 19 23 27 31 35 39 43

%
 o

f
F

a
s
t
D

e
c
is

io
n
s

Number of Nodes

EPaxos Caesar

(c) % Fast Decisions.

Figure 7.2: Performance of TPC-C benchmark.

a system comparison would be misleading.

In order to conduct a fair comparison, all competitors have been re-implemented using the
same programming language and the same runtime framework developed for Caesar. This
way, all take advantage of the same low level mechanisms applied to Caesar, e.g., batching
network messages in a single but bigger message.

In order to pursue this goal, we used the Amazon EC2 infrastructure reserving 43 nodes
within the category c3.8xlarge. To the best of our knowledge, this is the first evaluation
showing a Paxos-based transactional system with such a large network. Each machine has
32 CPU cores and 60GB of memory. All nodes are located on the same Amazon datacenter
and interconnected through a 10Gbps network. All results are the average of 5 samples.

The evaluation study goes through three well-known benchmarks: two of them are real
applications (i.e., TPC-C [20] and Vacation [13]), and one is the lightweight Bank benchmark.
For each benchmark we identified certain contention levels by changing the total number of
shared objects. This way we analyze scenarios where few objects are shared, thus total
order (as TSMR) should pay off more than others, or scenarios where the shared dataset is
large, thus the probability to access common objects is lower and conflicting-aware ordering
protocols (such as GenPaxos, EPaxos and Caesar) should gain more. All configurations do
not include the classical optimization of running read-only transactions locally using a multi-
versioning concurrency control because this way we can clearly compare the rules used by
the different competitors for ordering (and processing) transactions. In all the experiments
we set a fixed amount of clients per node. This way, increasing the nodes also means increase
the load of the system.

7.4.1 TPC-C and Vacation Benchmarks

TPC-C and Vacation perform a non trivial amount of work per transaction. TPC-C is the
popular on-line transaction processing benchmark, and Vacation is the distributed version

Sachin Hirve Chapter 7. CAESAR 89

 0

 20000

 40000

 60000

 80000

 100000

 120000

 3 7 11 15 19 23 27 31 35 39 43 47 51
10

00
x

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

TSMR
GenPaxos

EPaxos
TIM

 0

 20000

 40000

 60000

 80000

 100000

 120000

 3 7 11 15 19 23 27 31 35 39 43 47 51

10
00

x
Tr

an
sa

ct
io

ns
 p

er
 s

ec

Replicas

TSMR
GenPaxos

EPaxos
TIM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 3 7 11 15 19 23 27 31 35 39 43
T

ra
n
sa

ct
io

n
s

p
e
r

se
c

Replicas

TSMR

GenPaxos

EPaxos

Caesar

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3 7 11 15 19 23 27 31 35 39 43

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c

Nodes

(a) Throughput.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 50 150 300 450 600 750 900

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c

Clients per node

(b) Throughput varying clients
using 19 nodes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 20 30 40 50 60 70

L
a

te
n

c
y
 (

m
s
)

x1000 transactions per sec

(c) Throughput Vs Latency using
19 nodes.

Figure 7.3: Performance of Vacation benchmark.

of the famous application included in the STAMP suite [13] that reproduces the behavior of
clients that submit booking requests for vacation related items.

Figure 7.2 shows the performance collected running TPC-C. The benchmark has been con-
figured using the classical configuration, which suggests to deploy as many warehouses (the
most contented object) as the total number of nodes in the system, thus we deployed 43
of them. Most TPC-C transactions perform an operation to a warehouse before to execute
other operations. Given this access pattern, TPC-C’s workload is notoriously considered
very conflicting. This is clear also from Figure 7.2(a) where the best competitor is TSMR
due to the presence of a single leader which orders all transactions indiscriminately, without
looking into their conflicts. However, after 27 nodes, TSMR leader’s resources saturate, thus
slowing down its ordering process.

On the other side, Caesar is slower than TSMR for low node count (due to also the lower
number of clients in the system), but it starts being very effective where TSMR shows scal-
ability issues because of the exploitation of multiple leaders and its fast decision rule, which
allows the delivery of an ordered transaction even if the dependency sets collected for that
transaction are discordant. Interestingly, EPaxos is not able to exploit the fast decision
properly because, with few shared objects, the probability to collect different dependency
sets during the proposal phase is high. This causes a second phase, which involves further
communication steps, and thus it explains EPaxos’s low throughput. Figure 7.2(c) confirms
this intuition, showing that Caesar is able to deliver an ordered and ready-to-process trans-
action with the fast decision in at least 80% of the cases. We do not include GenPaxos in this
plot because it uses the same conditions as EPaxos for fast delivering an ordered transaction
so their performance would be very similar (we also increased the readability of the plot).
As overall improvement, Caesar gains up to 8× better than EPaxos at high node count, and
almost one order of magnitude against TSMR.

Figure 7.2(b) reports the latency measured during the previous experiment. If follows the
same (inverse) trend of the throughput, thus EPaxos shows the worst client perceived latency.

Sachin Hirve Chapter 7. CAESAR 90

This can be explained considering the number of operations that EPaxos needs to perform
before replying to the client, which includes the analysis of the dependency graph and the
breakage of strongly connected components. Those operations are not taken into account if
transactions do not read any object but they only write. In this case EPaxos can actually
reply to the client before the accomplishment of the above operations. However such a
workload is not representative of usual transactional applications such as TPC-C.

GenPaxos is consistently slower than EPaxos, especially after 11 nodes. Interestingly, from
the analysis of the plot in Figure 7.2(b), GenPaxos provides latency up to 40% lower than
EPaxos in the range of 3-15 nodes. This is because within a high performance network infras-
tructure and without an overloaded leader, solving conflicting proposals using a designated
leader, as GenPaxos, helps to reduce latency.

Table 7.1 reports some further performance statistics related to EPaxos and the impact of
local computation before starting the execution of a transaction. We report for three network
deployments (11,19 and 31 nodes): the average size of the dependency graph, found every
time the analyzing procedure starts; the percentage of strongly connected components (SCC)
having more than one node involved against all the SCC found (including the trivial ones
with only one nodes); the average number of nodes within a SCC. Clearly, increasing the
size of the system, and thus the contention, the number of SCC grows, along with its size.

Nodes Average % SCC % Average size
size of graph >1 of SCC

11 2.91 4% 1.27

19 26.36 17% 4.25

31 44.91 47% 9.65

Table 7.1: Costs of EPaxos’s graph analysis using TPC-C.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 3 7 11 15 19 23 27 31 35 39 43 47 51

10
00

x
Tr

an
sa

ct
io

ns
 p

er
 s

ec

Replicas

TSMR
GenPaxos

EPaxos
TIM

 0

 20000

 40000

 60000

 80000

 100000

 120000

 3 7 11 15 19 23 27 31 35 39 43 47 51

10
00

x
Tr

an
sa

ct
io

ns
 p

er
 s

ec

Replicas

TSMR
GenPaxos

EPaxos
TIM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 3 7 11 15 19 23 27 31 35 39 43

T
ra

n
sa

ct
io

n
s

p
e
r

se
c

Replicas

TSMR

GenPaxos

EPaxos

Caesar

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 3 7 11 15 19 23 27 31 35 39 43

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c

Nodes

(a) Throughput - High (5k ac-
counts).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 3 7 11 15 19 23 27 31 35 39 43

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c

Nodes

(b) Throughput - Low (50k ac-
counts).

 0

 20

 40

 60

 80

 100

3 7 11 15 19 23 27 31 35 39 43

%
 o

f
F

a
s
t
D

e
c
is

io
n
s

Number of Nodes

EPaxos-high
Caesar-high

EPaxos-low
Caesar-low

(c) % Fast Decisions.

Figure 7.4: Performance of Bank benchmark.

The performance of Vacation’s benchmark is reported in Figure 7.3. We configured it to share
2000 relations (the key object type of Vacation). The trend of all competitors is similar to the

Sachin Hirve Chapter 7. CAESAR 91

one showed before but Vacation produces in general a less conflicting workload than TPC-C,
thus EPaxos is exposing better performance than others until 19 nodes, then Caesar takes
over and sustains its performance while increasing the system’s size. Interestingly, TSMR
is constantly slower than other multi-leader protocols even for low node count. The reason
is related to the network message size, which is high in Vacation thus reducing the benefit
of leader’s batching. We recall that batching in case of TSMR is the key component for
providing high performance.

The performance of GenPaxos clearly shows its capability to exploit the fast decision even
in case the leader is close to its saturation point, thus outperforming TSMR but still being
slower than EPaxos. The inverse situation happens when EPaxos degrades and GenPaxos
places its performance again in between TSMR and EPaxos (but this time performing better
than EPaxos).

Figure 7.3(b) reports the throughput varying the number of clients in the range of 50 to 900
and fixing the number of nodes as 19. This plot shows how the competitors react when the
load of the system is progressively increased. All our experiments assume a constant number
of clients per node, thus there could be cases where the overall system is not properly loaded
(especially in the left part of the plots). Figure 7.3(b) covers this case. Despite TSMR,
which does not increase its performance along with the number of clients, both EPaxos and
Caesar scale up until 600 clients per node, and then sustain.

In Figure 7.3(c) we integrated the results showed in Figure 7.3(b) with the client perceived
latency. Specifically, for each competitor we report the latency measured when the system
was providing a certain throughput (using 19 nodes). Given that not all competitors provide
all the plotted throughput, some data points are not shown. The plot shows an interesting
aspect of TSMR, high latency with low throughput. This is mainly because the system is not
properly loaded, thus the batching mechanism has to wait a certain amount of time before
sending out the batch. This timeout is never reached in other cases where the batch is sent
due to space depletion.

7.4.2 Bank Benchmark

The Bank benchmark is an application that mimics the operations of a monetary system.
Each transaction accesses two objects (i.e., accounts) and move a certain amount of money
from one account to another. This benchmark is widely used because it is configurable and
the transaction execution time is very limited, thus pointing out other predominant costs
in the system (e.g., the way transactions are ordered). Given that, Bank represents a good
scenario for TSMR because the serial execution after the delivery does not have a big impact.
However, after a certain amount of nodes we expect TSMR’s performance go down due to
saturation of leader’s resources.

Figure 7.4 shows the transactional throughput varying the number of nodes and the con-

Sachin Hirve Chapter 7. CAESAR 92

tention level. We managed to change it by increasing the number of shared accounts in the
system (i.e., more account means less contention). We identified 5000 and 50000 as high
and low contention level, respectively. Each transaction accesses two accounts uniformly
distributed across all available. TSMR is not affected by the different contention levels be-
cause it processes totally ordered transactions serially, thus the only impact of having more
shared objects is in the management of the data repository, which is slightly more expen-
sive. However, in both the tested scenarios (Figures 7.4(a) and 7.4(b)) after 15 nodes, the
performance of the leader goes down significantly.

EPaxos performs better than Caesar until 19 nodes, then the contention starts increasing
and this entails reducing the probability of delivering transactions using a fast decision (Fig-
ure 7.4(c)) and a bigger graph to analyze for EPaxos. Both these overheads push EPaxos’s
performance down. Caesar is not affected by such a overhead, thus it sustains its performance
even in presence of high contention (Figure 7.4(a)), or increases it in the lower contention
scenario (Figure 7.4(b)). Figure 7.4(c) highlights the impact of delivering with a fast deci-
sion also in presence of discordant dependencies (but with a confirmed order). EPaxos’s fast
decision probability suddenly drops increasing the contention whereas Caesar still exploits
this important feature.

GenPaxos’s performance is in between TSMR and EPaxos in almost in all data points. In
the scenario with 5k accounts, GenPaxos is able to move the saturation point of TSMR a bit
further, but it still saturates before EPaxos, which does not rely on a centralized leader for
executing the second phase after an unsuccessful proposal phase. The same happens at lower
contention level, where the fast decision and a still non-overloaded leader allow GenPaxos
to behave better than others until 15 nodes. From the analysis of the plot in Figures 7.4(a)
and 7.4(b) we can deduct that EPaxos outperforms Caesar by as much as 28% using 11
nodes, and TSMR performs better than Caesar by as much as 29% using 7 nodes. However,
when the system’s size increases, Caesar finds its sweet spot and outperforms both EPaxos
and TSMR by more than one order of magnitude.

7.5 Conclusion

Caesar shows that having egalitarian multi-leaders in a high node count replicated trans-
actional system does not pay off in presence of interactive workload, where transaction’s
outcome can be delivered to the client only after the actual transaction’s processing. How-
ever, single-leader replication protocols do not scale along with the size of the system, thus
the presence of multiple leaders is still desirable. Caesar proposes a solution for accomplish-
ing this goal: enabling high performance and scalability of strongly consistent transactional
systems. Results confirmed the claim by outperforming competitors on almost all tested
cases.

Chapter 8

Dexter

Past work has shown that AR-based solutions outperform competitor approaches [48, 80, 54],
especially on high-contention workloads (i.e., where transactions are mostly conflicting) and
those with a higher percentage of read-only requests. However, AR-based solutions suffer
from poor scalability.

AR exploits the ordering layer for reproducing the same transactional state on multiple nodes
such that read-only workloads can be executed quickly without remote interactions. This
technique scales: with increasing number of nodes, more read-only requests can be locally
served on those nodes, increasing the overall performance. However, the ordering layer is
expensive in terms of the number of messages exchanged for reaching agreement among the
nodes (number of messages exchanged typically increase quadratically with the number of
participant nodes). Thus, when the system size increases, the overall performance increases
up to a certain point, after which the ordering layer becomes the performance bottleneck,
significantly hampering further scalability.

In this work, we overcome AR’s non-scalability. We present Dexter, an an AR-based trans-
actional system that scales beyond the ordering layer’s performance bottleneck. Our key
idea is to exploit application specifics to achieve high scalability.

AR solutions usually exploit local concurrency control protocols that rely on multi-versioned
objects. In particular, when a read-only transaction is delivered on a node, the transaction
uses the local timestamp to determine the set of shared objects that can be seen during the
transaction’s execution, preserving serializability. As an example, when a write transaction
Tw commits its writing on an object Ow, it appends a new version of Ow, called Ow2. This
way, if a read-only transaction Tr that started before Tw’s commit wants to read Ow, then
Tr will not access Ow2; otherwise, Tr’s transactional history could become non-serializable.
Instead, Tr will access a previous version of Ow that is compliant with its previously acquired
timestamp. As a result, read-only transactions are executed in parallel, without conflicting
with on-going write transactions, and their execution cannot be aborted. Abort-freedom of

93

Sachin Hirve Chapter 8. DEXTER 94

read-only transactions is a highly desirable property, because it allows read-only workload –
the common case – to be processed quickly even though the objects read are not always the
latest copy available in the system.

Dexter leverages the abort-freedom property for serving those class of transactions that
do not necessarily require access to the latest object versions. As an example, many online
vendors (e.g., Amazon, Walmart, Ebay) keep inventory of various items at different locations.
A customer who is planning to buy an item needs to know about the available inventory
(in addition to price and other information) to make a timely decision. Sometimes, it is not
necessary (from the vendor’s standpoint) to respond with the most up-to-date information
if the item has a large inventory and is not sold that often. This is because, from the
customer’s standpoint, it is irrelevant whether the inventory that is displayed about the item’s
availability is up-to-date or stale if the inventory is significantly larger than the maximum
amount that a single customer would usually buy.

Dexter’s architecture divides nodes into one synchronous group and a set of asynchronous
groups. Nodes in the synchronous group process write-transactions according to the classical
AR paradigm. Nodes in the asynchronous groups are lazily updated, and only serve read-
only transactions with different requirements on data freshness. The asynchronous groups
are logically organized as a set of levels, with each group maintaining objects with a certain
degree of freshness. The synchronous group stores the latest versions of the objects, and
thereby serves those read-only requests that need access to the latest object versions. The
asynchronous group at the first level manages read-only requests on objects that are not
the latest, but at the same time, are not too old as well. At the second level, as well as at
further levels, the expected freshness of objects decreases accordingly. The main advantage
of this architecture is that write transactions yield AR’s traditional high performance, while
at the same time, nodes can scale up for serving additional read-only workloads, exploiting
the various level of freshness that is available or expected.

For exploiting the aforementioned architecture, obviously, the application must specify the
needed level of freshness guarantees. For this reason, Dexter provides a framework for
inferring rules that are used for characterizing the freshness of a read-only transaction when
it starts in the system. Using this framework, the programmer can describe the application’s
requirements. Rules can be defined based on the elapsed time since the last update on an
object was triggered, as well as based on the content of the object (as well as the type of
the object). Using this framework, the programmer defines rules in content-based style, e.g.,
“when the field F1 of an object O is in the range of α and β, then a read-only request can
be handled at the level L,” or in time-based style, e.g., “the version of object O that is ε old
is stored at the level M .”

Dexter also provides a more explicit API to the application such that the programmer can
directly force the desired level for read-only requests. If the application has a specific class
of queries that must access the latest versions of the objects, then the programmer can mark
those requests with level 0, which corresponds to the synchronous group, and the request

Sachin Hirve Chapter 8. DEXTER 95

will be directly delivered and managed by the synchronous group.

Dexter processes transactions to match application rules. It distinguishes between the ex-
ecution flows of read and write transactions. Write transactions submitted by application
threads are delivered and processed in the synchronous group using a high-performance
active replication protocol, without interfering with the asynchronous groups. In contrast,
read-only transactions that are not tagged by the application to be handled at a specific level
are not delivered to the synchronous group, but rather to the asynchronous group at the last
level (i.e., with the greatest index according to the previous definition). Each asynchronous
group accepts a transaction request and selects one node for its processing. If the node,
during the transaction execution, recognizes that at least one rule is not satisfied, then the
read-only request is propagated to one level up. This way, the asynchronous group that is
able to satisfy all the rules will reply to the application, without consuming resources in the
synchronous group, thereby allowing it to process write workloads without any slow-down.

The downside of this architecture is that, read-only transactions may not be processed com-
pletely locally, potentially increasing their latency. However, the number of expected levels
in the system is limited, thus limiting the maximum number of hops that a read-only trans-
action has to perform. In addition, not all the read-only requests traverse all the levels (oth-
erwise the application is not actually designed for exploiting Dexter’s architecture). Thus,
the architecture is particularly effective when the majority of the requests can be served by
asynchronous groups with the lower levels of data freshness.

As we argued before, in many e-commerce-like applications, most of the queries do not need
to access the latest object versions; older versions are likely sufficient. In particular, the
perception of time between the system and the user is different. When the number of items
available in the stock for a needed purchase is very high, a refresh time of 10 seconds is
negligible from the user’s perception. From the system’s perception, making asynchronous
updates every 10 seconds could help offload a number of read-only transactions from the
synchronous group to the asynchronous groups, which reduces interference to read-write
transactions, improving write transactions’ throughput and, in general, overall performance.

We implemented Dexter in Java. We used HiperTM [48], an AR-based transactional protocol
and system for implementing the synchronous group, directly leveraging its implementation.
The rest of the infrastructure was built from scratch. We conducted an extensive evaluation
study aimed at testing the scalability of the system. Our experiments on PRObE [32], an
high-performance public cluster, reveal that Dexter improves throughput by as much as 2×
against HiperTM using Bank, and 2.1× using TPC-C.

8.1 System Model and Assumptions

As the system setup demands of Dexter are different than the previous works, we need to
refine the system model presented in Chapter 4. Since Dexter requires bounds on network

Sachin Hirve Chapter 8. DEXTER 96

communication delays a synchronous network [67], rather than a partially synchronous one.

Dexter’s architecture divides nodes into one synchronous group and a set of asynchronous
groups. Nodes in the synchronous group process write-transactions according to the classical
AR paradigm, thus they require a consensus algorithm for ordering incoming transactions.
In this group, the usual assumption is having 2f + 1 correct nodes, where at most f nodes
are faulty.

Nodes in the asynchronous groups are lazily updated, and only serve read-only transactions
with different requirements on data freshness. In the asynchronous groups, we do not globally
order transactions, because updates from the synchronous group are already ordered. In
these groups we assume a number of correct nodes and a �S failure detector [15], sufficient
for supporting the desired leader-election algorithm (Dexter’s solution is independent from
the specific leader-election algorithm actually used).

Nodes share a synchronized clocks running a clock synchronization protocol, such as Network
Time Protocol (NTP) [76]. In our dedicated test-bed we measured a maximum skew of 1
msec. We also assume that all the delays configured in Dexter are longer than this time.

8.2 Architecture Overview

Dexter groups nodes according to different levels of freshness guarantees. We define the
freshness of a shared object based on two factors: time and number of updates received.
Focusing only on time-based freshness can be misleading. For example, if the last update on
an object was received ∆ time units ago, we cannot say that the object is ∆ time units old,
because it is possible that no other updates could have happened during ∆ and therefore
the object is still fresh. In contrast, if several updates occur on the object during ∆, then it
should be considered old, having a lower level of freshness.

As previously mentioned, Dexter defines two group types: the synchronous group and the
asynchronous group. The synchronous group is defined as the set of nodes that serve both
read-only and write transactions, and there is only one such group in the system. Overall
system progress cannot be guaranteed without this group. Read-only transactions running
on the synchronous group always operate on the most recent versions of the accessed objects.

The protocol for executing transactions in the synchronous group is based on active replica-
tion [102, 80, 48, 79]. This design choice is made not only for obtaining high-performance,
but also because, in active replication, each node is aware of all the write transactions sub-
mitted by any client. This means that, each correct node can reproduce the same state of
the whole shared data-set independently from the others. This property is fundamental to
Dexter, because one of the tasks of the synchronous group is to propagate recent updates
to the asynchronous groups. In addition, by keeping the size of the synchronous group
small, we also inherit AR’s key benefits including faster execution of write transactions and

Sachin Hirve Chapter 8. DEXTER 97

Write
Request

AR-Leader

Sequencer

Concurrency
Control

Update Data

Replica

Replica

Replica

Replica

Synchronous Group
(Active Replication)

Asynchronous
Group 1

Asynchronous Group 2

Update
backups

Service
Read Req

Update
data

Replica

Replica

Read Request Read Request

Replica
Update
backups

Service
Read Req

Read
Requests

Lo
ad

 b
al

an
ce

r

Request
forwarding

Update
Leader Update

Leader

Figure 8.1: Dexter’s architecture.

high-throughput of the ordering layer [8].

Recall that, in active replication, write transactions are executed in order. Therefore, the
impact of transactions’ conflicts is also minimal. In addition, each node is equipped with
a multi-versioned concurrency control protocol for serving read-only transactions without
incurring abort costs due to logical contention with concurrently executing write transac-
tions [48, 54].

Dexter defines multiple asynchronous groups. Each of them is responsible for serving read-
only transactions issued by clients. Write transactions are never delivered to asynchronous
groups; instead, they get deferred updates from the synchronous group. The process of dis-
seminating updates across the asynchronous groups is optimized for the size of the updates.
If the synchronous group is able to process ≈100K write transactions per second, then each
node produces a large amount of data to be propagated per second 1. 2.

The synchronous group contains two leaders: one for ordering the write transaction requests
received from the clients, called the AR-leader, and another for transferring the updates to
the asynchronous groups, called the update-leader. The AR-leader [8, 60] is elected (in the
presence of failures) using a classical leader election algorithm [60]; the update-leader is simi-
larly elected. Moreover, we transition the role of the update-leader among the different nodes
during the evolution of the system, because the process of pushing updates to asynchronous
nodes requires computational resources that are also needed for executing the active repli-
cation protocol. If the same node ends up as both the update-leader and the AR-leader,
then that node’s performance will likely decrease. If the AR-leader slows down, it degrades
the ordering layer’s performance, and as a consequence, degrades the performance of write

1Consider an integer object of 4 bytes. Let transactions access two such objects. If 50% of the transactions
access different objects, then a node generates 400K bytes of new data each second.

2As an example, if the transfer unit per transaction is 4 bytes then each second a node generates 400K
bytes of new data to transfer.

Sachin Hirve Chapter 8. DEXTER 98

transactions. Any other correct node within the synchronous group is a good candidate for
being an update-leader, because every node has the entire shared data-set consistent and
updated (due to the active replication protocol). For this reason, we exclude the AR-leader
from the set of possible new update-leaders.

The performance of the update-leader could be affected during the processing of the deferred
updates. However, ordering layers usually base their decision on the majority of the replies
collected. During the time needed for deferring all the updates, the update-leader will
unlikely end up in this majority. As a result, this likely will not affect the performance of
the ordering protocol.

Each asynchronous group also elects an update-leader using the same algorithm as the syn-
chronous group. This node is responsible for managing incoming updates.

Groups are logically organized as a chain. Let SG denote the synchronous group and AGn

denote the asynchronous group located at position n of the chain. The whole system can
be logically viewed as a chain of updates e.g., SG → AG1 → AG2 → . . .→ AGn. The syn-
chronous group, through the update-leader, forwards the updates to the first asynchronous
group (i.e., AG1). AG1’s update-leader receives those updates and broadcasts them to other
nodes in the same group. AG1’s update-leader also propagates updates to AG2. Generaliz-
ing, the asynchronous group AGi elects an update-leader that receives updates from group
AGi−1 and forwards new updates to AGi+1. We name each position in the chain as level :
level 0 corresponds to SG; level i represents AGi.

We define three parameters (also called system parameters in the rest of the chapter) that
can trigger the event of forwarding updates from level 0 to level 1:

- δ, which represents the time between two updates. When the update-leader finishes push-
ing updates to the next level, it triggers the next update forwarding process after time
δ;

- λ, which is the number of object updates seen by a replica since the last forwarding. It
corresponds to the sum of the size of the write-sets of committed transactions (i.e.,

∑
|Tx.writeset|);

- Λ, which is the maximum number of updates observed by a replica per object.

If one of these parameters exceed a predefined threshold, the update-leader starts forwarding
updates to level 1 of the chain (i.e., AG1). The δ parameter is useful when the workload is
uniform, which means that objects are almost updated with the same probability. However,
considering only this parameter for triggering updates could be misleading if the workload
becomes more write-intensive. In fact, committing a significantly higher number of write
transactions results in several object versions in the SG, which also makes the objects stored
in AG1 much older (and less fresher) than expected. In this scenario, the λ parameter is
fundamental. When λ becomes greater than a threshold, updates are computed and pushed
to level 1 such that the desired freshness of objects stored at that level is still maintained.
The Λ parameter is similar to λ but it is defined over each object. Λ is needed to cope

Sachin Hirve Chapter 8. DEXTER 99

with “hot spot” objects (i.e., objects with frequent updates). If the number of updates is
less than λ, but the great majority of those affect few objects, a new forwarding process
towards AG1 is triggered (for the same reason as that with λ). All of these thresholds are
application-specific and could be changed by the programmer according to application needs.

The update-leader of level 0 sends all the updates to the update-leader of level 1. It does
not broadcast to all the nodes in level 1; otherwise, given the size of the data transfer, the
increased network utilization could potentially degrade overall performance. The level 1’s
update-leader disseminates the collected updates from level 0 among its group’s nodes and
also propagates older updates to level 2.

This architecture is optimized for deployment scenarios where the network infrastructure
between levels are configured such that sending an intra-level message does not interfere
with other inter-level messages. However, the performance of our solution are equivalent
to broadcasting updates from the update-leader to all the nodes in the next group with a
completely shared network infrastructure.

When the level 0 pushes updates to level 1, it tags the message with the time elapsed, ε,
since the previous transfer. This time is used by the update-leader of level 1 as a timeout for
propagating those updates to level 2. This approach allows to reproduce the same schedule
of updates triggered by SG. If the application workload is stable, then an update U1, sent
from SG to AG1 at time T1, will be propagated from AG1 to AG2 at time T2=T1 + δ. It
will arrive at the third level at time T3=T2 + δ. In this scenario, ε = δ. However, if after
sending U1, SG’s update-leader receives a number of write transaction requests such that
either the λ or Λ threshold is exceeded, then SG propagates a new update U2 to the first
level of the chain. In this case, the elapsed time ε between U1 and U2 is smaller than δ. In
order to avoid significantly stale object versions at subsequent levels, the update-leader of
level 1 will only wait for ε, rather than δ.

Due to the active replication paradigm, the synchronized clock among nodes, and the as-
sumption that any of the update intervals are larger than the nodes’ clock synchronization
skew, each node can calculate all the aforementioned parameters and end up with the same
decision as the others (see Section 8.4.2). This is particularly important if the update-leader
crashes; a new node is then easily elected as the next update-leader.

In order to exploit the proposed architecture, read-only transactions are delivered from
application threads to the last level of the chain, and, according to the fulfillment of rules,
they are either served from the outermost level, or sent to the previous level. Eventually,
a read-only transaction is executed either at the level where all its applicable rules have
been satisfied, or in the synchronous group. Within each level, read-only transactions are
balanced on all the nodes of the group.

The proposed architecture allows fast execution of write transactions, minimizing their inter-
ference with read-only workloads, which are mostly processed externally at the other levels.
Groups AG1, . . . , AGn can be seen as an extension of SG, and they allow the system to

Sachin Hirve Chapter 8. DEXTER 100

scale up performance with size increases, exploiting application characteristics.

Clearly, this framework has limitations. For example, if the transactional application is
mission-critical, then having only the synchronous group (and no asynchronous groups) is
likely a better design choice. This is because, if the application is not able to exploit the
asynchronous groups, then the overhead for checking the various rules and computing the
additional parameters does not payoff.

8.3 Rule-based framework

Dexter provides a framework for defining application-specific rules such that the chain for
executing read-only transactions, as described in Section 8.2, can be exploited. For easy
programmability, Dexter minimizes programmer interventions and also provides specific APIs
that enable specification of more complex requirements.

We define δ, λ, and ∆ (described in Section 8.2) as system parameters.

A transaction can specify the desired execution level of the chain by using a version of the
invoke API (described in Section 8.1 that explicitly provides the level (i.e., invoke(type

par1, type par2, ..., levelN)). In addition, to be consistent with the classical active
replication programming model [48, 80], the invoke(type par1, type par2, ...)) API of
a read-only transaction delivers the transaction request to the synchronous group. Therefore,
if the programmer does not specify any system parameters, Dexter will default to classical
active replication, processing all transactions (read and write) in the synchronous group.
Otherwise, there are two execution configurations that the programmer can use for exploiting
different levels of object freshness: exclusively time-based (TB) or time/content-based (CB).

With the TB configuration, the time between pushing updates between levels (i.e., δ) is the
only mandatory system parameter. At the application side, the API for invoking a read-only
transaction is extended with a new parameter, called δApp, that describes the maximum time
since the objects accessed by the transaction has been updated. This way, the previous invoke
API becomes invoke(type par1, type par2, ..., δApp). When a read-only transaction
traverses the chain, δApp is used for selecting the appropriate level (see Section 8.4.3 for
complete discussion).

Dexter offers another execution configuration for inferring more complex rules based on both
the content and the freshness of objects accessed. The framework allows to define groups of
rules. Each group is identified by an ID such that a transaction can specify which group of
rules should be applied while it is processed. To exploit this feature, the programmer should
use another version of the invoke API that is overloaded with the corresponding group’s ID.

As an example, let RG1 and RG2 be two groups of rules. Let Tp1 and Tp2 be two application

Sachin Hirve Chapter 8. DEXTER 101

transaction profiles. When the programmer needs to invoke Tp1, she3 can decide whether
RG1 or RG2 or none of them can be applied. The same happens with Tp2. In this case, the
invoking command will change as Tp2(type par1, type par2, ..., RG1) or Tp1(type

par1, type par2, ..., RG2) accordingly.

Each rule, named <, is classified as:

- time-based, called <T ; or
- content-based, called <C .

< can be applied to an entity Ψ that can either be an object field (e.g., warehouse.zip code)
or an object type (e.g., warehouse). < is logically defined as a triple [Ψ, expression, level]
where:

- Ψ is the entity (i.e., object field or type) accessed by the read-only transaction;
- expression is either an expression that can be evaluated using logical (and, or, not) and/or

mathematical (<,≤,>,≥, =) operators, if <C is the rule’s type; or it represents the maxi-
mum elapsed time since Ψ was refreshed, if <T is the rule’s type; and

- lev is the level in the chain that can serve the read-only transaction.

Let TR be the read-only transaction currently processing at node NR. The semantics of a
rule < depends on the rule’s type:

- Rule <C . If the entity Ψ has a value in NR that satisfies expression, then TR is executed
at the level lev in the chain.

- Rule <T . If the last time that the entity Ψ has been refreshed is less than expression, then
TR is executed at the level level in the chain.

In other words, a rule represents a programmer’s hint. By exploiting rules, a programmer
provides a hint to Dexter on how to recognize if a read-only transaction can be executed at
a certain level in the chain, according to application needs.

Rules belonging to the same group are evaluated as or. When a read-only transaction is
processed, if at least one rule is not satisfied, the transaction is not executed at the current
level and is forwarded to the previous level.

For the sake of simplicity and for faster processing of rules, we scope out equations involving
multiple entities.

Rules are known to all the nodes in the system, but they do not apply to nodes of the
synchronous group. Here, read-only transactions access the freshest data available in the
system, thus there is no fall back plan.

3We assume the programmer is a woman.

Sachin Hirve Chapter 8. DEXTER 102

8.4 Processing transactions in Dexter

We now describe the three main steps involved in transaction processing in Dexter. We first
describe how transactions (raed-only and write) are processed in the synchronous group. We
then discuss the mechanisms for propagating updates from the synchronous to asynchronous
levels. Finally, the execution flow of read-only transactions in the asynchronous groups, as
well as the mechanism for checking rules, are detailed.

8.4.1 Handling Transactions In The Synchronous Level

Write transactions are executed in the synchronous group according to the active replication
paradigm. This paradigm requires two main building blocks for handling a write transac-
tion. The first is a total order protocol (e.g., Atomic Broadcast [52]) that defines a global
order among write transactions issued by clients. The second is a local concurrency control
protocol responsible for processing those transactions according to the already defined order.
This determinism on transaction processing is mandatory. Otherwise, nodes will end up in
different states, violating the nature of state-machine replication and preventing the local
execution of read-only transactions without global synchronization. Another advantage of
deterministic, in-order commit is that, it ensures one-copy-serializability [7].

Application threads (i.e., clients) use the appropriate invoke API for invoking a write trans-
action (i.e., tagged with a flag signaling that the transaction is write). After that, a thread
waits until the transaction is successfully processed by the replicated system and its out-
come becomes available. Each client has a reference node for issuing requests. When that
node becomes unreachable, or a timeout expires after the request’s submission, the reference
node is changed and the request is re-submitted to another node. Duplication of requests
is handled by tagging messages with unique keys composed of the client ID and the local
sequence number.

Dexter relies on the HiperTM [48] active replication system for processing transactions in
the synchronous group. Within the AR paradigm, HiperTM speculatively processes trans-
actions for maximizing the overlap between the global coordination of transactions and the
local transaction execution. HiperTM uses Optimistic S-Paxos (or OS-Paxos), an imple-
mentation of optimistic atomic broadcast (OAB) [85, 52], built on top of S-Paxos [8], for
defining the global order of write transactions. OAB enriches classical Atomic Broadcast
with an additional delivery, called optimistic delivery, which is sent to nodes prior to the
establishment of message’s global order. This new delivery is used by local concurrency
control to start transaction execution speculatively, while guessing the final commit order.
If the guessed order matches the final order, the transaction is already totally (or partially)
executed and can be committed. OS-Paxos shows good scalability (for up to 20 nodes) and
high-performance [48]. The HiperTM implementation is open-source.

Sachin Hirve Chapter 8. DEXTER 103

IIn HiperTM, each replica is equipped with a local speculative concurrency control protocol
for executing and committing write transactions, enforcing the order notified by OS-Paxos.
In order to overlap the transaction coordination phase with transaction execution, write
transactions are processed speculatively, as soon as they are optimistically delivered, on a
single thread. The reason for single-thread processing is to avoid the overhead for detect-
ing and resolving conflicts according to the optimistic delivery order while transactions are
executing. Additionally, no atomic operations are needed for managing locks on critical
sections.

The speculative concurrency control uses a multi-versioned model, wherein an object version
has two fields: obj-timestamp, which defines the time when the transaction that wrote the
version committed; and value, which is the value of the object. Each shared object includes
the last committed version and a list of previously committed versions.

Read-only transactions are not broadcast using the ordering layer, because they do not
need to be totally ordered. When a client invokes a read-only transaction, it is locally
delivered and executed in parallel to write transactions by a separate pool of threads. In
order to support this parallel processing, we define a logical timestamp for each node, called
node-timestamp, which represents a monotonically increasing integer, incremented each time
a write transaction commits. When a write transaction commits, it increases the node-
timestamp and tags the newly committed versions with this the increased node-timestamp.

When a read-only transaction performs its first operation, the node-timestamp becomes the
transaction timestamp, called transaction-timestamp). Subsequent operations are processed
according to this value: when an object is accessed, its list of committed versions is tra-
versed in order to find the most recent version with a obj-timestamp lower or equal to the
transaction-timestamp.

One synchronization point is present between write and read-only transactions, i.e., the list
of committed versions is updated when a transaction commits. On one hand, when the
read-only workload is intensive, write transactions get delayed because of multiple threads
traversing the same concurrent data-structure. On the other hand, with a write intensive
workload where the contention level is not minimal, read-only transactions suffer from write
load.

8.4.2 Propagating updates

The mechanism for propagating updates (forwarding hereafter) from level 0 to the first level
of the chain is computed asynchronously by the update-leader. There are two modes of
forwarding. In the first, the update-leader creates a batch of all the latest versions of written
(shared) objects since the last forwarding. In the second, the update-leader prepares a batch
of all the transactional requests, rather than objects, received since the last forwarding. The
decision about adopting the first or the second solution is a trade-off.

Sachin Hirve Chapter 8. DEXTER 104

On the one hand, with the first mode, there is no duplication of objects that were written
multiple times since the last forwarding, but usually, the size of shared objects is large. On
the other hand, batching requests means that, transferring a smaller batch, at the cost of re-
executing transactions, including those that have write-write conflicts, results in overwritten
objects. This trade-off can be explored depending on the application workload characteris-
tics. If the write transactions are mostly conflicting on a restricted data-set, then forwarding
objects is the best solution. On the contrary, workloads with very large data-sets and few
conflicts are good candidates for forwarding transactions.

As already discussed in Section 8.2, the update-leader decides when updates are pushed
according to the system’s execution configuration (i.e., TB or CB) and the setting of system
parameters (i.e., δ, λ, ∆).

When the system works in exclusively time-based mode (i.e., TB), the only system parameter
that determines when to begin pushing the updates from the synchronous group to level 1 is
δ. When a time δ since the last forwarding is elapsed, the update-leader collects all the issued
requests (or all the latest versions of written objects) and creates the forwarding batch. This
batch is sent to the update-leader of level 14. Each batch is tagged with ε, which represents
the time elapsed since the last forwarding. In the TB mode, ε always equals δ.

In the time/content-based mode, the forwarding mechanism is more complex. Here, two
other system parameters are also taken into account. In this mode, δ represents the maximum
time between two forwardings. If higher than λ number of objects has been written since
the last forwarding, the update-leader will not wait δ, but it will immediately trigger a new
forwarding. The same happens if the update-leader’s concurrency control protocol observes
higher than ∆ number of writes on the same type of object. As a consequence, when the
system is in the CB mode, ε associated with each batch can differ from δ.

Whichever mode the system is configured, the local concurrency control protocol needs to be
adapted for tracking object modifications. However, this overhead can seriously slow-down
the execution of the committing thread of write transactions. This thread should avoid any
overhead because it represents the concurrency control’s critical path. For this reason, we
rely on an additional thread, the forwarding thread, for monitoring updated objects, which
is not synchronized with the committing thread.

Three data structures are needed for implementing the monitoring system. One is a hash
map, called objTrack, where key is the ID of the written object and value is the reference to
the last written version of that object since the last forwarding. The second one is also a
hash map, called tyTrack, where key is the type of the written object and value is a counter
that tracks the number of writes occurred on that type of object since the last forwarding.
The third is a counter that tracks the number of objects written since the last forwarding.

The concurrency control protocol reserves a thread for committing transactions in order.

4We avoid low-level mechanisms for recognizing and caching next level’s update-leader. Briefly, if the
next level update-leader has changed since the last forwarding, the old update-leader notifies the change.

Sachin Hirve Chapter 8. DEXTER 105

The transactions are maintained in a queue with the committing thread as the queue’s
server. When a transaction is committed, it is inserted into another queue that is managed
by the forwarding thread. As an example, let T be a committed transaction accessing two
objects (x,y) of the same type (T) (i.e., T={OT

x , OT
y }). The forwarding thread i) updates

two buckets of objTrack (keys=x,y) with references to Ox and Oy; ii) increases the counter
associated with the key T of tyTrack; and iii) increases the counter for tracking new writes
by 2. After that, the forwarding thread simply checks whether any of the system parameters’
threshold has been exceeded, and if so, creates the batch to forward.

The aforementioned process can be done only in a single thread because, otherwise, the
sequence of updates is lost and the references to the last committed version of the objectS
can point to a wrong object.

The forwarding thread runs on all the nodes of the synchronous group, and not just on the
update-leader. This is because, if the update-leader crashes, another node can take over
(i.e., the new update-leader) and correctly complete the forwarding process. (Recall that
node clocks are synchronized, and that we assume that δ is much higher than the maximum
clock skew).

When the update-leader of level 2 receives the updates (either objects or transactions),
it broadcasts them to other nodes at the same level. The update-leader also schedules a
forwarding of updates to level 3 after the time ε specified in the batch just received from
level 1 elapses. This way, batches are propagated to other asynchronous levels.

When a node receives a batch, it writes the new objects or executes the new requests. In
the former case, all the objects are first made permanent on the shared-data. Only after
all the objects are installed, the node timestamp is updated with the maximum timestamp
associated with the new objects. In the latter case, transactions are executed in the order
defined by the batch (that corresponds to the execution order in the synchronous group),
and the node timestamp is updated only when the last transaction commits. As a result,
only the read-only transactions that start after updating the node timestamp are allowed to
access those versions.

8.4.3 Handling read-only transactions

Read-only transactions delivered directly to the synchronous group are processed as previ-
ously described in Section 8.4.1. They do not need to check rules while processing because
the synchronous group already maintains the freshest data available. The asynchronous
groups also execute read-only transactions in the same way, but, in addition, they pay the
cost for checking rules.

Dexter also allows a read-only transaction to execute directly at a level specified by the
programmer. In this case, the transaction’s behavior is similar to the previous case. The
concurrency control protocol does not check any rules while processing the transaction; the

Sachin Hirve Chapter 8. DEXTER 106

transaction simply accesses the most recent versions of the objects stored at that level.

In contrast, when a read-only transaction is not bound to a specific level, it is delivered to
the last level in the chain of asynchronous groups. When a transaction arrives at a level, it
is delivered to a node through a router, which implements the classical round-robin-based
load-balancing approach. The core idea is to run the read-only transaction in the last level
of the chain. If the transaction satisfies all the rules, then the node at that level replies to
the client; otherwise, the transaction is forwarded back to the previous level. The process
ends when the transaction detects that it cannot run at level 1, and is finally forwarded to
the synchronous group where it will be successfully processed.

It is unlikely that a read-only transaction will traverse the entire chain. If it does, then it
means that either the application is not designed for exploiting Dexter’s architecture, or the
system parameters have been misconfigured for the workload at hand (e.g., δ is much smaller
than what is necessary).

If the system is configured in exclusively time-based mode, then a read-only transaction
starts at the latest level and traverses the chain, until it reaches the level whose time of
last forwarding is lower than δApp. That level has been last updated, which is prior to the
maximum time required by the transaction (i.e., δApp) and therefore can serve the transac-
tion. Similar to the previous scenarios, this transaction also does not need to check for the
satisfaction of all the rules, as it only needs to check for the last time when the node, and
thus the level, has been updated.

When the specification and enforcement of rules is enabled in the system (i.e., time/content-
based mode), then read-only transactions will incur some overhead for rule checking. Rules
are stored on all the nodes as a hash map, called ruleMap, where key is the type of the
object and value is the list of rules associated with that object type. As an example, if a
programmer wants to infer a rule on the type warehouse in the TPC-C [20] benchmark, then
the rule is stored at key=warehouse in the hash map. Similarly, if the programmer wants
to infer a rule on the field zip code of a warehouse (i.e., warehouse.zip code), then the
rule will be appended to the same entry of the hash map as before, because both affect the
type of the object warehouse.

A read-only transaction that runs when the rules are enabled must check whether its rules
are satisfied for each accessed object. When a read operation completes, the concurrency
control protocol looks-up in ruleMap to check whether rules have been defined for the entry
associated with the type of the accessed object. If rules exist, the protocol checks whether
there exists at least one rule that is not satisfied. If a rule is not satisfied, the read-only
transaction is aborted and forwarded to the previous level. The checking of rules is done
at object encounter-time instead of at commit time, because, this way, part of the useless
computation is saved – e.g., if one rule of the first accessed object is not satisfied, it is useless
to continue to process the transaction.

The overhead of checking rules on the transaction’s critical path is not minimal when the

Sachin Hirve Chapter 8. DEXTER 107

number of rules per object type significantly increases. This overhead can be mitigated by
deploying more nodes at each level. However, the rules must be defined (by the programmer)
with the goal of improving performance, and not degrading it.

8.5 Correctness

Dexter guarantees 1-copy serializability [7] and opacity [34]. This is simply because, all
modifications made by Dexter do not violate these same properties of HyperTM, which
is the underlying active replication protocol used by Dexter for processing read and write
transactions. We demonstrate our claim by analyzing the behavior of read-only and write
transactions executed at the synchronous level, as well as, at the asynchronous levels. (We
skip a formal proof due to space constraints.)

In the synchronous group, read-only and write transactions follow the same protocol rules
as HiperTM. 1-copy serializability is easily ensured because each node commits the same set
of write transactions in the same order notified by the optimistic atomic broadcast layer.
In addition, those transactions are also processed and committed in a single thread, with-
out concurrency. Read-only transactions activated on different nodes cannot observe any
two write transactions that are serialized differently on those nodes, because the ordering
layer provides a total order among conflicting and non-conflicting transactions, without any
discrimination.

HiperTM ensures opacity [34] because, in addition to single thread processing and using a
predefined total order of write transactions, read-only transactions perform their operations
according to the snapshot of the node-timestamp taken when the transactions begin. During
their execution, they access only the committed versions written by transactions with the
highest object-timestamp that is lower or equal to the transaction-timestamp.

In any asynchronous group, updates are applied while read-only transactions are being pro-
cessed, but the node-timestamp is updated with the maximum value among all the new
object-timestamps only at the end of the updates. This means that, those objects are in-
visible for ongoing and new read-only transactions started before the modification of the
node-timestamp. Only when the updates are finally set, the newly activated read-only
transactions will be able to observe these new objects.

The only difference between the processing of read-only transactions in the synchronous
group and an asynchronous group is abort-freedom. When executed at level 0, read-only
transactions cannot abort because the subset of all the accessible object versions is fixed when
the transactions define their transaction-timestamp, and it cannot change. In contrast, in
the asynchronous groups, they can be aborted due to rule checking. Such aborts are not due
to contention, but can be seen as due to external factors. Thus, in the asynchronous levels,
the abort-freedom property cannot be ensured.

Sachin Hirve Chapter 8. DEXTER 108

However, we can provide an upper bound on the number of retries of read-only transactions.
Since a read-only transaction aborts not because of contention but because of violation of
rules, it can restart only as many times as the number of asynchronous groups. After that,
the transaction will be successfully served in the synchronous group.

8.6 Evaluation

We implemented Dexter in java, extending the implementation of HiperTM [48], publicly
available as open-source project. We used the PRObE testbed [32], a public cluster that is
available for evaluating systems research. Our experiments were conducted using 48 nodes
in the cluster. Each node is a physical machine equipped with 8 cores. The network connec-
tion is a dedicated InfiniBand 40Gbps. As benchmarks we use two typical applications for
assessing performance of transactional systems such as Bank benchmark and TPC-C [20].
The former mimics the operations of a bank monetary application; the latter is a well known
benchmark that is representative of on-line transaction processing workloads.

Our architecture is composed of the synchronous group with 20 nodes running HiperTM, and
3 asynchronous groups, each with 8 nodes, for serving read-only transactions with different
levels of objects’ freshness. For the purpose of these experiments, we configured Dexter for
forwarding transactions instead of objects.

All the results reported are the average of 5 samples.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

0 10 20 30 40 50 60 70 80 90 100

10
00

x
Tx

s
pe

r s
ec

on
d

% Read

Read
Write

Figure 8.2: Throughput with Bank and different % of read-only transactions at synchronous
node.

The first part of our experimental study regards the impact of read-only workload on write
workload in a node deployed at the synchronous level. In Figures 8.2 and 8.3 we report the
performance of read-only and write transactions running Bank and TPC-C respectively. In
these plots we vary the percentage of read-only transactions (stock-level and order-status)
while write transactions are continuously injected in the system. In Bank, the performance

Sachin Hirve Chapter 8. DEXTER 109

of write transactions drop from ≈120K to ≈60K when the read-only are 40%. This is because
of contention on the shared lists for storing objects versions5. Similar trend is for TPC-C but
this benchmark is much more processing-intensive than Bank, thus the general throughput
of read-only transactions is lower than Bank. This is why the performance improvement of
read-only transactions between having 50% of write transactions and 0% is around 35% while
in Bank it is 77%. These results confirm the need for offloading the nodes of the synchronous
group from the burden of processing all the read-only transactions in the system. The cost
to pay is reducing the performance of write transactions.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0 10 20 30 40 50 60 70 80 90100

10
00

x
Tx

s
pe

r s
ec

on
d

% Read

Read
Write

Figure 8.3: Throughput with TPC-C and different % of read-only transactions at syn-
chronous node.

 100

 110

 120

 130

 140

 150

 160

 170

 20 40 60 80 100 120 140 160 180 200 220 240

10
00

x
Tx

s
pe

r s
ec

Update size (1000x tx per second)

No rules
10 rules
20 rules
50 rules

Figure 8.4: Throughput of read-only transactions with Bank, varying the update size at
asynchronous node.

We now test the performance of an asynchronous node deployed in a generic level of the
chain, when updates are pushed from the previous level. The amount of work to perform
depends on the write workload of the system. For this reason, in these experiments we
measured the throughput of read-only transactions (the only type of transaction that such

5HiperTM uses concurrent Skip-List for this purpose.

Sachin Hirve Chapter 8. DEXTER 110

node is allowed to process) as a function of the size of update messages. This size is reported
in terms of transactions per second. In case the update time since the last forwarding is δ,
then the total number of transactions to apply will be δ times the throughput reported in
the x-axes.

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120 140 160 180 200 220 240

10
00

x
Tx

s
pe

r s
ec

Update size (1000x tx per second)

No rules
10 rules
20 rules
50 rules

Figure 8.5: Throughput of read-only transactions with TPC-C, varying the update size at
asynchronous node.

Figures 8.4 and 8.5 reports the results for Bank and TPC-C. Each plot shows 4 lines cor-
responding to the number of rules per object that the node checks while processing the
read-only transaction. We tested with {0,10,20,50} where 0 represents the execution in
purely time-based and the others emulate different configurations. Clearly checking 50 rules
per object degrades significantly the performance, especially in TPC-C where transactions
are long. Interesting, using Bank, the performance of 0 rules and 10 rules are very similar.
The reason is related to the amount of type of objects in the system. Bank has very few
different types of object while TPC-C is more complex.

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30

10
00

x
Tx

s
pe

r s
ec

Time (seconds)

Bank low
Bank high

Figure 8.6: Throughout of read transactions at asynchronous node, pushing updates every
12 seconds.

In Figure 8.6, we report the throughput (read-only transactions) of an asynchronous node

Sachin Hirve Chapter 8. DEXTER 111

as function of time. We report only Bank benchmark because we found the same behavior
in TPC-C. Updates are pushed every 12 seconds. For each benchmark we have two configu-
rations: low and high. Low means that updates contain around 80K transaction per second,
while for high is 200K. Each object type has 10 rules associated. The results clearly reveal
how the performance of asynchronous nodes is affected by installing updates from previous
levels. However, performance is still reasonably high even when updates arrive.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

10
00

00
0x

 T
xs

 p
er

 s
ec

Time (seconds)

Dexter
HiperTM

Figure 8.7: Throughput of Dexter with 48 nodes and 3 levels in the chain using Bank.

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25 30

10
00

00
0x

 T
xs

 p
er

 s
ec

Time (seconds)

Dexter
HiperTM

Figure 8.8: Throughput of Dexter with 48 nodes and 3 levels in the chain using TPC-C.

Finally we measure the performance of the entire system, and compare it with the perfor-
mance of HiperTM. As already said, we ran HiperTM on our test-bed and its performance
does not scale after 20 nodes. After that, the load of the ordering layer is so high that
write transactions execution time is delayed significantly. In this scenario, read-only trans-
actions could access very old versions of data because the progresso of the whole system
is hampered. Dexter, instead, exploiting application rules, can be configured for running
with much higher number of nodes. In this experiments we deployed Dexter with a chain
of 3 levels, each with 8 nodes, in addition to the synchronous level that is composed of 20
nodes. Read-only transactions are injected continuously in the system. The parameter δ is

Sachin Hirve Chapter 8. DEXTER 112

set as 5 seconds and the system configuration model is time/content-based. For each object
type we define 10 rules to check while processing the read-only transaction. These rules are
logical expressions based on the values of the object fields. We designed the rules such that
transactions can be balanced among levels of the chain. Figure 8.7 shows the results. As
expected, the speed-up is reasonable high, up to 1.3 Million transactions per second served,
with improvement up to 2× with respect to HiperTM. Clearly, the major contribution of this
really high throughput is made by read-only transactions, while write transactions sustain
their performance around 100K.

Figure 8.8 shows TPC-C performance under the same configuration as Bank. Here absolute
numbers are lower than before but the speed-up of Dexter against HiperTM is still up to
2.1×.

8.7 Summary

Active replication is a powerful technique for obtaining high transactional performance with
full-failure masking. However, it suffers from poor scalability, as it relies on a consensus-based
algorithm for ensuring global consistency of the replicated state.

Our work shows that, it is possible to overcome this scalability bottleneck by exploiting
application characteristics. Our key insight is that, not all read-only transactions need to
access the latest data; for many, “sufficiently fresh” data suffice. By enabling the application
to specify the level of data freshness that it needs, the shared data-set can be maintained at
different levels of freshness, avoiding costly global synchronization. Read-only transactions
access progressively fresh data, scaling up performance. The cost of enforcing the appli-
cation’s data freshness rules can be mitigated through careful design and implementation
choices.

In some sense, our result can be viewed as a generalization of multi-version concurrency
control (CC), where read-only transactions commit in “the past” by reading older versions.
Multi-version CC does not specify data freshness (we do), but mostly guarantees abort-
freedom for read-only workloads (we do not, though retries are bounded). Taken together,
our work illustrates how scalability can be achieved by exploiting multi-version CC’s insight
(of reading old data), with full-failure masking.

Chapter 9

Conclusions

In this dissertation proposal, we have made several contributions aimed at improving the
performance of replicated transactional systems. We analysed the different aspects of such
systems e.g., ordering layer, transaction execution model, and application requirement char-
acteristics etc., and tried to find the opportunities to optimize them in different ways. With
HiperTM, we exploited the time between the client request is known to replicas and the
time its order is finalized to process it speculatively. In Archie, we further optimized this
parameter and improved the concurrent execution of requests to get high performance. With
Caesar, we designed a new transaction ordering protocol to benefit from relaxed lock-free
execution for non-conflicting transactions. Lastly, in Dexter we exploit the application char-
acteristics to scale the read-only loads, which usually comprise the majority of transactional
load.

At its core, HiperTM shows that optimism pays off: speculative transaction execution,
started as soon as transactions are optimistically delivered, allows hiding the total ordering
latency, and yields performance gain. Experimental evaluation and comparison with Pax-
osSTM [54] revealed the performance benefits achieved from optimistic delivery and serial
processing over DUR model, especially in high contention workloads. While DUR model
of PaxosSTM suffers from remote aborts due to conflicting transactions, HiperTM achieves
zero aborts when the leader is not faulty or not suspected.

We presented Archie, which further optimizes the optimistic delivery, exploits parallelism
for concurrent transactions and alleviates the transaction’s critical path by eliminating non-
trivial operations performed after the notification of the final order. Exhaustive evaluation
against multiple competitors [54, 48] on well known benchmarks [20, 13] showed that Archie
outperforms its competitors specially in medium to low conflict scenarios. Archie limits the
number of visible conflicts by spawning a predefined number of worker threads and achieves
higher throughput and lower abort rates for all benchmarks.

In Caesar, we tackle the problems associated with single sequencer based total order and

113

Sachin Hirve Chapter 9. Conclusions 114

propose a novel message ordering protocol which enables high performance and scalabil-
ity of strongly consistent transactional systems. Caesar allows lock-free execution of non-
conflicting transactions. Experimental study revealed that transactional systems based on
competitors [60, 59, 78] do not scale as the number of replicas increase beyond 19.

Active replication faces a scalability limit as it relies on a consensus-based algorithm for
ensuring global consistency of the replicated state. In Dexter, we overcome this scalability
bottleneck by exploiting application characteristics. Our key insight is that, not all read-
only transactions need to access the latest data; for many, “sufficiently fresh” data suffice.
We provide the application an ability to specify the level of data freshness that it needs,
while shared data-set is maintained at different levels of freshness. Read-only transactions
access progressively fresh data, scaling up performance. By evaluation study we show that
exploiting staleness of shared data, system throughput could scale further together with
increasing system size.

9.1 Proposed Post-Prelim Work

In the pre-prelim work we have focused mainly on solving the problems in building high
performance fault-tolerant DER systems. Moving forward we plan to apply similar opti-
mizations in DUR systems. In addition to it, considering the efficient transaction execution
model of HTM, we plan to incorporate it in our future work for building replicated transac-
tional systems. We elaborate our future proposals in the following sections.

9.1.1 Ordering Transactions in DUR

The deferred update replication (DUR) [84] is a well-known scheme where transactions ex-
ecute locally and their commit phase (including the transaction validation procedure) is
deferred until a total order [60] among all nodes is established. This total order is required
because it imposes a common serialization order among all transactions in the system, which
is used to verify the global correctness of transactions’ execution. In fact before commit,
each transaction has to undergo a certification phase where the transaction validates the
consistency of its read operations, performed during the execution, against write operations
done by other concurrent transactions in the system. To accomplish this task, a total order
is leveraged so that all nodes know a unique order to follow while performing the certifi-
cation. If the snapshot observed is still consistent, then the transaction can safely commit
by updating the shared state with its written objects. The sequence of commit necessarily
matches the global total order.

DUR-based protocols find their best scenario in terms of performance when transactions
running on different nodes (remote transactions) rarely conflict with each other (e.g., well-
partitioned accesses across nodes). This way an executed transaction, which is waiting

Sachin Hirve Chapter 9. Conclusions 115

for its global certification, is likely to commit because all its read operations cannot be
invalidated by remote transactions due to the well-partitioned accesses. In such an execution
environment, the DUR scheme allows the (massive) parallelization of application threads
running locally at each node, therefore ensuring high performance. However, even if the
application exposes well-partitioned accesses across different nodes, the local parallelism is
effectively exploited only in case local concurrent transactions hardly request same objects.

As an example, consider TPC-C [20], the classical transactional benchmark widely used
for evaluating distributed synchronization protocols. Most TPC-C transactions access a
warehouse before performing other operations. The usual deployment of TPC-C is to pin
one (or a set of) warehouse to each node and let transactions generated on that node to likely
request that warehouse. This configuration, which is representative of several applications
with well-partitioned accesses, matches DUR’s needs in terms of few remote aborts, but it
also reduces the parallelism of local application threads due to conflicts. As a result, even if
application threads do not suffer remote aborts, they are still highly prone to aborts due to
contention within local application threads.

We plan to propose solution for reducing the local conflicts in DUR system by introducing the
notion of an order for local transactions and then by propagating the state changes made by
one transaction execution to another along the chain of subsequent conflicting transactions,
according to the defined order. It should be noted that this order is not necessarily known
(or pre-determined) before starting the transaction execution, rather it could be determined
while transactions are executing taking into account their actual conflicts. Later transactions
from one node would be submitted to the global certification layer in the same order as
their optimistic execution order. This way, the local transaction ordering would be always
compliant with the final commit order, thereby resulting in fewer aborts.

9.1.2 Executing Distributed Transactions on HTM

With our previous works i.e., HiperTM and Archie, we used software transactional mem-
ory for local transactional execution. Though this approach resulted in high performance,
maintaining each component of STM e.g., read-set, write-set, and multi-versioning etc. has
non-negligible overheads. On the other hand, Hardware Transaction Memory (HTM) is well
known to yield high performance as it exploits the underlying hardware capabilities to man-
age contention while providing transactional (ACI) properties similar to STM. There is also
a renewed interest in HTM in the light of recent transactional synchronization extensions of
IntelrHaswell chips.

HTM transactions are best effort transaction i.e. there is no guarantee that HTM trans-
actions will eventually commit. For example, a transaction on Intel’s Haswell chip could
fail due to other reasons such as capacity failure, page faults, system calls etc., apart from
conflicts with other concurrent HTM transactions. As a result, usually HTM transactions
have a fall-back software path, which helps to commit these transactions in software. Even

Sachin Hirve Chapter 9. Conclusions 116

with this added complexity and overhead, HTM transactions are found to be at least at par
with their software counterparts. On the other hand, in favourable conditions, HTM yields
much higher performance than STM.

Considering the performance benefits, we propose to incorporate HTM transactions in total
order based DER systems. Since HTM transactions do not have any notion of order among
transactions, we plan to introduce an order aware transaction execution engine above HTM
to ensure that the HTM transactions follow the total order. This work will also include a
fall-back software path for the transaction which could not commit in HTM due to repet-
itive failures due to variety of reasons. We expect that HTM transactions together with
order aware execution engine will further boost the performance of replicated transactional
systems.

9.1.3 Multi-leader Partial Order Ring-based Transactional Sys-
tem

Reaching a fast decision in a consensus protocol is highly desirable, as it reduces the latency
perceived by clients. The same thought was the motivation for designing Fast Paxos [64]
which ensures two communication steps to order a client request if discordant states of the
execution are not received by a quorum of nodes. Even though Fast Paxos gives an opti-
mal number of communication steps for such cases, it is dependent on an elected leader to
resolve the discordant states (if they happen). On the other hand, Generelized Paxos [59]
orders transactions according to their actual conflicts but it also relies on an elected leader
for resolving discordant states. With Caesar, we designed a multi-leader partial order solu-
tion which orders transactions according to their actual conflicts and solves the problem of
bottleneck created by a single leader. But even Caesar is prone to additional communication
steps when at least a node in the quorum observes discordant state.

Reducing the number of communication steps even under possibility of discordant states
observed by different nodes in a quorum is a challenging problem. As ring network topology
is found to provide optimal performance [36], it becomes our natural choice for designing a
high performance ordering protocol. In summary, as our last contribution to this thesis, we
propose to design a multi-leader partial order protocol which will ensure fast decision for
every transaction will follow a fast decision for finalizing its order, thereby improving the
latency and performance of transactional systems.

Bibliography

[1] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions. PhD thesis, Massachusetts Institute of Technology, 1999.
AAI0800775.

[2] Amazon Inc. Elastic Compute Cloud, November 2008. URL:
http://aws.amazon.com/ec2.

[3] T. E. Anderson. The performance of spin lock alternatives for shared-memory multi-
processors. IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, January 1990.

[4] Ken Arnold, Robert Scheifler, et al. Jini Specification. Addison-Wesley, 1999.

[5] João Barreto, Aleksandar Dragojevic, Paulo Ferreira, Ricardo Filipe, and Rachid Guer-
raoui. Unifying thread-level speculation and transactional memory. In Middleware,
2012.

[6] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency control
and recovery in database systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1987.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[8] Martin Biely, Zarko Milosevic, Nuno Santos, and André Schiper. S-Paxos: Offloading
the Leader for High Throughput State Machine Replication. In SRDS, 2012.

[9] Nathan G. Bronson, Hassan Chafi, and Kunle Olukotun. Ccstm: A library-based stm
for scala. Scala Days, April 2010.

[10] Joao Cachopo and Antonio Rito-Silva. Versioned boxes as the basis for memory trans-
actions. Sci. Comput. Program., 63(2):172–185, December 2006.

[11] Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek Williams, and Hung
Le. Robust architectural support for transactional memory in the power architecture.
In Proceedings of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 225–236, New York, NY, USA, 2013. ACM.

117

Sachin Hirve Bibliography 118

[12] Berkant Barla Cambazoglu, Flavio P. Junqueira, Vassilis Plachouras, Scott Bana-
chowski, Baoqiu Cui, Swee Lim, and Bill Bridge. A refreshing perspective of search
engine caching. In Proceedings of the 19th International Conference on World Wide
Web, WWW ’10, pages 181–190, New York, NY, USA, 2010. ACM.

[13] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC ’08, 2008.

[14] Nuno Carvalho, Paolo Romano, and Lúıs Rodrigues. Scert: Speculative certification
in replicated software transactional memories. In SYSTOR ’11, 2011.

[15] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[16] Bernadette Charron-Bost and Andre Schiper. Improving fast paxos: Being optimistic
with no overhead. In PRDC, pages 287–295, 2006.

[17] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders
Landin, Sherman Yip, H̊akan Zeffer, and Marc Tremblay. Rock: A high-performance
sparc cmt processor. IEEE Micro, 29(2):6–16, March 2009.

[18] E. Cohen and H. Kaplan. Refreshment policies for web content caches. In IEEE
INFOCOM ’01, 2001.

[19] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luis Rodrigues. D2STM: De-
pendable distributed software transactional memory. PRDC, 2009.

[20] TPC Council. TPC-C benchmark. 2010.

[21] James Cowling and Barbara Liskov. Granola: Low-overhead distributed transaction
coordination. In USENIX Annual Technical Conference ’12, 2012.

[22] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: streamlining stm by
abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’10, pages 67–78, New
York, NY, USA, 2010. ACM.

[23] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Daniel Nussbaum. Hybrid transactional memory. In Proceedings of the 12th interna-
tional conference on Architectural support for programming languages and operating
systems, ASPLOS-XII, pages 336–346, New York, NY, USA, 2006. ACM.

[24] X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys, 36(4), 2004.

[25] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36, 2004.

Sachin Hirve Bibliography 119

[26] David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Shlomi Dolev,
editor, DISC, volume 4167 of Lecture Notes in Computer Science. Springer, 2006.

[27] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Kapalka. Stretching transac-
tional memory. PLDI ’09.

[28] Richard Ekwall and Andr Schiper. Solving atomic broadcast with indirect consensus.
In In IEEE International Conference on Dependable Systems and Networks (DSN,
2006.

[29] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[30] Roy Friedman and Robbert van Renesse. Packing messages as a tool for boosting the
performance of total ordering protocols. In HPDC, pages 233–242, 1997.

[31] Stéphane Gançarski, Hubert Naacke, Esther Pacitti, and Patrick Valduriez. The
leganet system: Freshness-aware transaction routing in a database cluster. Inf. Syst.,
32(2):320–343, April 2007.

[32] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt Lloyd. Probe: A thousand-
node experimental cluster for computer systems research. volume 38, June 2013.

[33] Google. Google Cloud Platform, 2014. URL: https://cloud.google.com.

[34] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory.
In PPOPP ’08, 2008.

[35] Rachid Guerraoui and Michal Kapalka. The semantics of progress in lock-based trans-
actional memory. In POPL, pages 404–415, 2009.

[36] Rachid Guerraoui, Ron R. Levy, Bastian Pochon, and Vivien Quéma. Throughput
optimal total order broadcast for cluster environments. ACM Trans. Comput. Syst.,
28(2):5:1–5:32, July 2010.

[37] Rachid Guerraoui and Lúıs Rodrigues. Introduction to Reliable Distributed Program-
ming. Springer-Verlag New York, Inc., 2006.

[38] Rachid Guerraoui and André Schiper. Genuine atomic multicast in asynchronous
distributed systems. Theor. Comput. Sci., 254(1-2):297–316, 2001.

[39] Nicolas Guillaume. For google, 400ms of increased page load time, results in 0.44%
lost search sessions, February 2013. Available at http://www.cedexis.com/blog/

for-google-400ms-of-increased-page-load-time-results-in-044-lost-search-sessions/.

[40] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang.
Rex: replication at the speed of multi-core. In EuroSys, pages 11:1–11:14. ACM, 2014.

http://www.cedexis.com/blog/for-google-400ms-of-increased-page-load-time-results-in-044-lost-search-sessions/
http://www.cedexis.com/blog/for-google-400ms-of-increased-page-load-time-results-in-044-lost-search-sessions/

Sachin Hirve Bibliography 120

[41] James Hamilton. The cost of latency, October 2009. Available at http://

perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx.

[42] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Memory, 2nd edition.
Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2010.

[43] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, 1991.

[44] Maurice Herlihy. Technical perspective - highly concurrent data structures. Commun.
ACM, 52(5):99, 2009.

[45] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for imple-
menting software transactional memory. In OOPSLA ’06. ACM, 2006.

[46] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. In Proceedings of the 20th annual international symposium
on computer architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[47] Sachin Hirve, Roberto Palmieri, and Binoy Ravindran. Archie: A speculative replicated
transactional system. In Middleware, 2014.

[48] Sachin Hirve, Roberto Palmieri, and Binoy Ravindran. HiperTM: High Performance,
Fault-Tolerant Transactional Memory. In ICDCN, 2014.

[49] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance
broadcast for primary-backup systems. 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 0:245–256, 2011.

[50] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and
Mike Dahlin. All about Eve: execute-verify replication for multi-core servers. In OSDI
’12, 2012.

[51] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-R, a new
way to implement database replication. In VLDB 2000, 2000.

[52] Bettina Kemme, Fernando Pedone, Gustavo Alonso, Andre Schiper, and Matthias
Wiesmann. Using optimistic atomic broadcast in transaction processing systems. IEEE
TKDE, 15(4), 2003.

[53] T. Kobus, T. Kokocinski, and P.T. Wojciechowski. Practical considerations of dis-
tributed STM systems development (abstract). In WDTM ’12, 2012.

[54] Tadeusz Kobus, Maciej Kokocinski, and Pawel T. Wojciechowski. Paxos STM. TR-
ITSOA-OB2-1-PR-10-4. Technical report, Instytut Informatyki, Politechnika Poznan-
ska., 2010.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx

Sachin Hirve Bibliography 121

[55] Tadeusz Kobus, Maciej Kokocinski, and Pawel T. Wojciechowski. Hybrid replication:
State-machine-based and deferred-update replication schemes combined. In ICDCS,
pages 286–296. IEEE, 2013.

[56] Tadeusz Kobus, Maciej Kokocinski, and Pawe T. Wojciechowski. Hybrid replication:
State-machine-based and deferred-update replication schemes combined. In ICDCS,
2013.

[57] Jan Kończak, Nuno Santos, Tomasz urkowski, Pawe T. Wojciechowski, and Andr
Schiper. JPaxos: State machine replication based on the Paxos protocol. Technical
report, EPFL, 2011.

[58] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony
Nguyen. Hybrid transactional memory. In Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’06, pages
209–220, New York, NY, USA, 2006. ACM.

[59] Leslie Lamport. Generalized Consensus and Paxos. Technical Report MSR-TR-2005-
33, Microsoft Research, March 2005.

[60] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., pages 133–169,
1998.

[61] Leslie Lamport. Future directions in distributed computing. chapter Lower Bounds
for Asynchronous Consensus, pages 22–23. 2003.

[62] Leslie Lamport. Generalized consensus and paxos. Technical Report MSR-TR-2005-33,
Microsoft Research, March 2005.

[63] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[64] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

[65] Leslie Lamport and Mike Massa. Cheap paxos. In Proceedings of the 2004 International
Conference on Dependable Systems and Networks, DSN ’04, pages 307–, Washington,
DC, USA, 2004. IEEE Computer Society.

[66] Wen-Syan Li, Oliver Po, Wang-Pin Hsiung, K. Selçuk Candan, and Divyakant Agrawal.
Freshness-driven adaptive caching for dynamic content web sites. Data Knowl. Eng.,
pages 269–296, November 2003.

[67] Barbara Liskov. Practical uses of synchronized clocks in distributed systems. In PODC
’91, pages 1–9, 1991.

[68] Li Lu and Michael L. Scott. Generic multiversion stm. In Yehuda Afek, editor, DISC,
volume 8205 of Lecture Notes in Computer Science, pages 134–148. Springer, 2013.

Sachin Hirve Bibliography 122

[69] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius: Building efficient
replicated state machine for wans. In OSDI, pages 369–384, 2008.

[70] P. J. Marandi, Benevides Bezerra, and Fernando Pedone. Rethinking state-machine
replication for parallelism. In ICDCS, 2014.

[71] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. High performance state-
machine replication. In DSN, pages 454–465, 2011.

[72] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. High performance state-
machine replication. In DSN, pages 454–465, 2011.

[73] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. Multi-ring paxos. In DSN,
2012.

[74] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone. Ring
paxos: A high-throughput atomic broadcast protocol. In DSN, 2010.

[75] Richard Martin. Wall street’s quest to process data at the speed
of light, April 2007. Available at http://www.informationweek.com/

wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/

1054287?

[76] D.L. Mills. Internet time synchronization: the network time protocol. Communica-
tions, IEEE Transactions on, 39(10):1482–1493, 1991.

[77] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. Logtm: Log-based transactional memory. In in HPCA, pages 254–265, 2006.

[78] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus
in egalitarian parliaments. In SOSP, 2013.

[79] Roberto Palmieri, Francesco Quaglia, and Paolo Romano. AGGRO: Boosting STM
replication via aggressively optimistic transaction processing. In NCA ’10, 2010.

[80] Roberto Palmieri, Francesco Quaglia, and Paolo Romano. OSARE: Opportunistic
speculation in actively replicated transactional systems. In SRDS, 2011.

[81] Ccile Le Pape, Stphane Ganarski, and Patrick Valduriez. Refresco: Improving query
performance through freshness control in a database cluster. In Jacques Le Maitre,
editor, BDA, pages 153–173, 2004.

[82] Marta Patino-Martinez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso.
MIDDLE-R: Consistent database replication at the middleware level. ACM Trans.
Comput. Syst., 23(4), 2005.

http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?

Sachin Hirve Bibliography 123

[83] Fernando Pedone and Svend Frølund. Pronto: High availability for standard off-the-
shelf databases. J. Parallel Distrib. Comput., 68(2), 2008.

[84] Fernando Pedone, Rachid Guerraoui, and André Schiper. The database state machine
approach. Distrib. Parallel Databases, 14(1):71–98, July 2003.

[85] Fernando Pedone and André Schiper. Optimistic atomic broadcast. In DISC, 1998.

[86] Fernando Pedone and André Schiper. Generic broadcast. In DISC, 1999.

[87] S. Peluso, P. Romano, and F. Quaglia. SCORe: A scalable one-copy serializable partial
replication protocol. In Middleware, 2012.

[88] Sebastiano Peluso, Joao Fernandes, Paolo Romano, Francesco Quaglia, and Lúıs Ro-
drigues. SPECULA: Speculative replication of software transactional memory. In
SRDS ’12, 2012.

[89] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly con-
current multithreaded execution. In Proceedings of the 34th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture, MICRO 34, pages 294–305, Washington,
DC, USA, 2001. IEEE Computer Society.

[90] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based
programs. In Proceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS X, pages 5–17, New
York, NY, USA, 2002. ACM.

[91] Red Hat. Open Shift, 2013. URL: https://www.openshift.com.

[92] J. Reinders. Transactional synchronization in Haswell. 2013.

[93] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with
eager validation. In DISC ’06, 2006.

[94] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot isolation for software
transactional memory. In In Proceedings of the First ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Transactional Computing (TRANS-
ACT ’06), June 2006.

[95] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based transactional memory
with scalable time bases. In Proceedings of the Nineteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’07, pages 221–228, New York, NY,
USA, 2007. ACM.

[96] Paolo Romano, Roberto Palmieri, Francesco Quaglia, Nuno Carvalho, and Lúıs Ro-
drigues. Brief announcement: on speculative replication of transactional systems. In
SPAA, pages 69–71, 2010.

Sachin Hirve Bibliography 124

[97] Paolo Romano, Roberto Palmieri, Francesco Quaglia, Nuno Carvalho, and Lúıs Ro-
drigues. An optimal speculative transactional replication protocol. In ISPA, pages
449–457, 2010.

[98] Nuno Santos and André Schiper. Tuning paxos for high-throughput with batching and
pipelining. In ICDCN, 2012.

[99] Nuno Santos and André Schiper. Optimizing paxos with batching and pipelining.
Theor. Comput. Sci., 496:170–183, 2013.

[100] N. Schiper, P. Sutra, and F. Pedone. P-store:genuine partial replication in WAN. In
SRDS, 2010.

[101] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[102] Fred B. Schneider. Replication management using the state-machine approach. ACM
Press/Addison-Wesley Publishing Co., 1993.

[103] Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. Scalable deferred update
replication. In DSN, pages 1–12, 2012.

[104] Peluso Sebastiano, Roberto Palmieri, Francesco Quaglia, and Binoy Ravindran. On
the viability of speculative transactional replication in database systems: a case study
with PostgreSQL. In NCA ’13, 2013.

[105] Nir Shavit and Dan Touitou. Software transactional memory. In PODC, 1995.

[106] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors. Proceedings
of the IEEE, 83(12):1609–1624, Dec 1995.

[107] Michael F. Spear, Maged M. Michael, and Christoph von Praun. Ringstm: scalable
transactions with a single atomic instruction. In Proceedings of the twentieth annual
symposium on Parallelism in algorithms and architectures, SPAA ’08, pages 275–284,
New York, NY, USA, 2008. ACM.

[108] Jaswanth Sreeram, Romain Cledat, Tushar Kumar, and Santosh Pande. Rstm: A
relaxed consistency software transactional memory for multicores. In Proceedings of the
16th International Conference on Parallel Architecture and Compilation Techniques,
PACT ’07, pages 428–, Washington, DC, USA, 2007. IEEE Computer Society.

[109] Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John Turek. Multiple
reservations and the oklahoma update. IEEE Parallel Distrib. Technol., 1(4):58–71,
November 1993.

[110] Pierre Sutra and Marc Shapiro. Fast genuine generalized consensus. In SRDS, pages
255–264, 2011.

Sachin Hirve Bibliography 125

[111] Douglas Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, and
Marcos K. Aguilera. Transactions with consistency choices on geo-replicated cloud
storage. Technical Report MSR-TR-2013-82, September 2013.

[112] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agree-
ments for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13.

[113] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. Calvin: Fast distributed transactions for partitioned database
systems. In SIGMOD, 2012.

[114] E Tilevich and Y Smaragdakis. J-Orchestra: Automatic Java application partitioning.
In ECOOP, 2002.

[115] Alexandru Turcu, Sebastiano Peluso, Roberto Palmieri, and Binoy Ravindran. Be gen-
eral and don’t give up consistency in geo-replicated transactional systems. In OPODIS,
2014.

[116] Matthias Wiesmann and André Schiper. Comparison of database replication techniques
based on total order broadcast. IEEE TKDE, 17(4), 2005.

[117] Pawel T. Wojciechowski, Tadeusz Kobus, and Maciej Kokocinski. Model-driven com-
parison of state-machine-based and deferred-update replication schemes. In SRDS,
2012.

	Introduction
	Replication Model
	Motivation
	Summary of Current Research Contributions
	Summary of Proposed Post-Prelim Work
	Thesis Organization

	Related Work
	Transactional Replication Systems
	Optimistic Atomic Broadcast
	Scalable Read Processing

	Background
	Paxos
	The Paxos Algorithm
	Multi-Paxos
	Generalized Paxos

	Atomic Broadcast
	Optimistic Atomic Broadcast
	Transaction Memory
	Software Transaction Memory
	Concurrency Control Mechanisms
	Version Management Systems
	Conflict Detection

	Common System Model
	Assumptions
	Transaction Model and Processing

	Hiper TM
	Optimistic S-Paxos
	The Protocol
	Write Transaction Processing
	Read-Only Transaction Processing

	Speculative Concurrency Control
	Properties
	Formalism
	Global Properties
	Local Properties

	Implementation and Evaluation
	Bank Benchmark
	TPC-C Benchmark

	Summary

	Archie
	MiMoX
	Ordering Process
	Handling Faults and Re-transmissions
	Evaluation

	PARSPEC
	Transactional Read Operation
	Transactional Write Operation
	X-Commit
	Commit
	Abort
	Read-Only Transactions

	Consistency Guarantees
	Implementation and Evaluation
	Bank Benchmark
	TPC-C Benchmark
	Vacation Benchmark

	Summary

	Caesar
	Leaderless Transactions' Ordering
	Overview
	Unfolding the Idea

	Protocol Details
	Proposal Phase
	Retry Phase
	Execution Phase
	Size of the Quorums and Handling of Failures

	Correctness
	Implementation and Evaluation
	TPC-C and Vacation Benchmarks
	Bank Benchmark

	Conclusion

	Dexter
	System Model and Assumptions
	Architecture Overview
	Rule-based framework
	Processing transactions in Dexter
	Handling Transactions In The Synchronous Level
	Propagating updates
	Handling read-only transactions

	Correctness
	Evaluation
	Summary

	Conclusions
	Proposed Post-Prelim Work
	Ordering Transactions in DUR
	Executing Distributed Transactions on HTM
	Multi-leader Partial Order Ring-based Transactional System

