
Extracting Parallelism from Legacy Sequential Code Using
Transactional Memory

Mohamed M. Saad

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Binoy Ravindran, Chair
Anil Kumar S. Vullikanti

Paul E. Plassmann
Robert P. Broadwater

Roberto Palmieri
Sedki Mohamed Riad

May 25, 2016
Blacksburg, Virginia

Keywords: Transaction Memory, Automatic Parallelization, Low-Level Virtual Machine,
Optimistic Concurrency, Speculative Execution, Legacy Systems, Age Commitment Order,

Low-Level TM Semantics, TM Friendly Semantics

Copyright 2016, Mohamed M. Saad

Extracting Parallelism from Legacy Sequential Code Using
Transactional Memory

Mohamed M. Saad

(ABSTRACT)

Increasing the number of processors has become the mainstream for the modern chip design
approaches. However, most applications are designed or written for single core processors; so
they do not benefit from the numerous underlying computation resources. Moreover, there
exists a large base of legacy software which requires an immense effort and cost of rewriting
and re-engineering to be made parallel.

In the past decades, there has been a growing interest in automatic parallelization. This
is to relieve programmers from the painful and error-prone manual parallelization process,
and to cope with new architecture trend of multi-core and many-core CPUs. Automatic
parallelization techniques vary in properties such as: the level of paraellism (e.g., instructions,
loops, traces, tasks); the need for custom hardware support; using optimistic execution or
relying on conservative decisions; online, offline or both; and the level of source code exposure.

Transactional Memory (TM) has emerged as a powerful concurrency control abstraction.
TM simplifies parallel programming to the level of coarse-grained locking while achieving
fine-grained locking performance. This dissertation exploits TM as an optimistic execution
approach for transforming a sequential application into parallel. The design and the imple-
mentation of two frameworks that support automatic parallelization: Lerna and HydraVM,
are proposed, along with a number of algorithmic optimizations to make the parallelization
effective.

HydraVM is a virtual machine that automatically extracts parallelism from legacy sequential
code (at the bytecode level) through a set of techniques including code profiling, data depen-
dency analysis, and execution analysis. HydraVM is built by extending the Jikes RVM and
modifying its baseline compiler. Correctness of the program is preserved through exploiting
Software Transactional Memory (STM) to manage concurrent and out-of-order memory ac-
cesses. Our experiments show that HydraVM achieves speedup between 2×-5× on a set of
benchmark applications.

Lerna is a compiler framework that automatically and transparently detects and extracts
parallelism from sequential code through a set of techniques including code profiling, in-
strumentation, and adaptive execution. Lerna is cross-platform and independent of the
programming language. The parallel execution exploits memory transactions to manage
concurrent and out-of-order memory accesses. This scheme makes Lerna very effective for
sequential applications with data sharing. This thesis introduces the general conditions for
embedding any transactional memory algorithm into Lerna. In addition, the ordered version
of four state-of-art algorithms have been integrated and evaluated using multiple benchmarks
including RSTM micro benchmarks, STAMP and PARSEC. Lerna showed great results with
average 2.7× (and up to 18×) speedup over the original (sequential) code.

While prior research shows that transactions must commit in order to preserve program se-
mantics, placing the ordering enforces scalability constraints at large number of cores. In this
dissertation, we eliminates the need for commit transactions sequentially without affecting
program consistency. This is achieved by building a cooperation mechanism in which trans-
actions can forward some changes safely. This approach eliminates some of the false conflicts
and increases the concurrency level of the parallel application. This thesis proposes a set
of commit order algorithms that follow the aforementioned approach. Interestingly, using
the proposed commit-order algorithms the peak gain over the sequential non-instrumented
execution in RSTM micro benchmarks is 10× and 16.5× in STAMP.

Another main contribution is to enhance the concurrency and the performance of TM in
general, and its usage for parallelization in particular, by extending TM primitives. The
extended TM primitives extracts the embedded low level application semantics without
affecting TM abstraction. Furthermore, as the proposed extensions capture common code
patterns, it is possible to be handled automatically through the compilation process. In this
work, that was done through modifying the GCC compiler to support our TM extensions.
Results showed speedups of up to 4× on different applications including micro benchmarks
and STAMP.

Our final contribution is supporting the commit-order through Hardware Transactional Mem-
ory (HTM). HTM contention manager cannot be modified because it is implemented inside
the hardware. Given such constraint, we exploit HTM to reduce the transactional execution
overhead by proposing two novel commit order algorithms, and a hybrid reduced hardware
algorithm. The use of HTM improves the performance by up to 20% speedup.

This work is supported by VT-MENA program.

iii

Dedication

To my wife, my parents, and my grandma.

iv

Acknowledgments

I would like to thank my advisor, Dr. Binoy Ravindran, for all his help and support. Also,
I would like to thank my friend, mentor and co-advisor, Dr. Roberto Palmieri, for his
guidance, dedication and efforts. I would also like to thank my committee members: Dr.
Robert P. Broadwater, Dr. Anil Kumar S. Vullikanti, Dr. Paul E. Plassmann and Dr. Sedki
Mohamed Riad, for their guidance, feedbacks and advice. It is a great honor for me to have
them serving in my committee.

Many thanks to all my friends in the Systems Software Research Group for their support,
assistance and cooperation. They include, Dr. Ahmed Hassan, Dr. Mohamed Mohamedin,
Dr. Sandeep Hans, Dr. Sebastiano Peluso, Dr. Alexandru Turcu, Joshua Bockenek, Marina
Sadini, and many others. Also, special thanks to Dr. Mohamed E. Khalefa for the fruitful
discussions and his valuable inputs that had considerable influence in shaping this work.

Finally, I would like to thank my wife, Shaimaa, for her endless love, understanding and
patience. Also, I would like to thank my parents for their encouragement and support.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Manual Parallelization . 2

1.1.2 Automatic Parallelization . 3

1.2 Contributions . 7

1.2.1 HydraVM . 9

1.2.2 Lerna . 10

1.2.3 Commitment Order Algorithms . 10

1.2.4 TM-Friendly Semantics . 11

1.3 Thesis Organization . 12

2 Background 13

2.1 Manual Parallelization . 15

2.2 Automatic Parallelization . 17

2.3 Thread Level Speculation . 17

2.4 Transactional Memory . 18

2.4.1 NOrec . 20

2.4.2 TinySTM . 21

2.5 Parallelism Limits and Costs . 22

3 Past & Related Work 24

3.1 Transactional Memory . 24

vi

3.2 Parallelization . 25

3.3 Optimistic Concurrency . 26

3.3.1 Thread-Level Speculation . 27

3.3.2 Parallelization using Transactional Memory 28

3.4 Comparison with existing work . 28

4 HydraVM 30

4.1 Program Reconstruction . 31

4.2 Transactional Execution . 33

4.3 Jikes RVM . 35

4.4 System Architecture . 36

4.4.1 Bytecode Profiling . 38

4.4.2 Trace detection . 38

4.4.3 Parallel Traces . 40

4.4.4 Reconstruction Tuning . 41

4.4.5 Misprofiling . 42

4.5 Implementation . 42

4.5.1 Detecting Real Memory Dependencies 42

4.5.2 Handing Irrevocable Code . 43

4.5.3 Method Inlining . 43

4.5.4 ByteSTM . 44

4.5.5 Parallelizing Nested Loops . 45

4.6 Experimental Evaluation . 47

4.7 Discussion . 49

5 Lerna 50

5.1 Challenges . 51

5.2 Low-Level Virtual Machine . 53

5.3 General Architecture and Workflow . 54

vii

5.4 Code Profiling . 57

5.5 Program Reconstruction . 57

5.5.1 Dictionary Pass . 57

5.5.2 Builder Pass . 59

5.5.3 Transactifier Pass . 61

5.6 Transactional Execution . 63

5.6.1 High-priority Transactions . 65

5.6.2 Transactional Increment . 65

5.7 Algorithms . 66

5.7.1 Ordered NOrec . 66

5.7.2 Ordered TinySTM . 67

5.7.3 Other Algorithms . 67

5.8 Adaptive Runtime . 67

5.8.1 Batch Size . 68

5.8.2 Jobs Tiling and Partitioning . 69

5.8.3 Workers Selection . 69

5.8.4 Manual Tuning . 70

5.9 Evaluation . 71

5.9.1 Micro-benchmarks . 71

5.9.2 The STAMP Benchmark . 76

5.9.3 The PARSEC Benchmark . 82

5.9.4 The Effect of Changing TM Algorithm 84

5.10 Discussion . 85

6 Ordered Write Back Algorithm 86

6.1 Commit Order . 87

6.2 Execution and Memory Model . 88

6.2.1 Age-based Commit Order (ACO) . 89

6.3 Analyzing the Ordering Overhead . 90

viii

6.3.1 Blocking/Stall Approach . 91

6.3.2 Freeze/Hold Approach . 92

6.4 General Design . 94

6.4.1 Cooperative Ordered Transactional Execution 95

6.5 The Ordered Write Back (OWB) . 96

6.6 Implementation . 101

6.6.1 Lock Structure . 101

6.6.2 Thread Execution . 102

6.7 Correctness . 103

6.8 Evaluation . 104

7 Ordered Undolog Algorithm 105

7.1 Ordered Undolog Algorithm (OUL) . 105

7.1.1 The OUL-Steal Algorithm . 108

7.2 Implementation . 111

7.2.1 Lock Structure . 111

7.2.2 Thread Execution . 111

7.3 Correctness . 111

7.4 Evaluation . 112

7.4.1 Micro Benchmark . 113

7.4.2 STAMP Benchmark . 121

7.5 Discussion . 124

8 Extending TM Primitives using Low Level Semantics 125

8.1 The Evolution of Semantic TM . 127

8.2 TM-Friendly API . 128

8.2.1 TM-friendly semantics in action . 130

8.3 Semantic-Based TM Algorithms . 132

8.3.1 Semantic NOrec Algorithm (S-NOrec) 133

ix

8.3.2 Semantic Transactional Locking 2 Algorithm (S-TL2) 135

8.4 Correctness . 138

8.4.1 Correctness of S-NOrec . 141

8.4.2 Correctness of S-TL2 . 141

8.5 Integration with GCC . 142

8.6 Evaluation . 144

8.6.1 RSTM-based implementations . 145

8.6.2 GCC-based implementations . 149

9 Exploiting Hardware Transactional Memory 153

9.1 Haswell’s RTM . 153

9.1.1 The Challenges of ACO Support . 154

9.2 The Burning Tickets Hardware Algorithm (BTH) 154

9.2.1 Configuring Tickets Burning . 155

9.2.2 Conflict Resolution . 157

9.3 The Timeline Flags Hardware Algorithm (TFH) 158

9.3.1 Configuring Timeline Flags . 159

9.3.2 Evaluation . 159

9.4 The Ordered Write Back - Reduced Hardware Algorithm (OWB-RH) 162

9.4.1 Hybrid TM Design Choices . 162

9.4.2 Algorithm Description . 163

9.4.3 Evaluation . 164

10 Conclusions and Future Work 169

10.1 Discussion & Limitations of Parallelization using TM 170

10.1.1 Recommended Programming Patterns 171

10.2 Future Work . 174

10.2.1 Transaction Checkpointing . 174

10.2.2 Complex Semantic Expressions . 176

x

10.2.3 Semantic-Based HTM . 177

10.2.4 Studying the Impact of Data Access Patterns 178

Bibliography 180

xi

List of Figures

2.1 Loop classification according to inter-iteration dependencies 14

2.2 Running traces over three processors . 15

2.3 OpenMP code snippet . 16

2.4 Example of thread-level speculation over four processors 18

2.5 An example of transactional code using atomic TM constructs 20

2.6 Maximum Speedup according to Amdahl’s Law and Gustafson’s Laws 22

4.1 Program Reconstruction as Jobs . 32

4.2 Parallel execution pitfalls: (a) Control Flow Graph, (b) Possible parallel exe-
cution scenario, and (c) Managed TM execution. 34

4.3 Transaction States . 34

4.4 HydraVM Architecture . 37

4.5 Matrix Multiplication . 39

4.6 Program Reconstruction as a Producer-Consumer Pattern 41

4.7 3x3 Matrix Multiplication Execution using Traces Generated by profiling 2x2
Matrix Multiplication . 42

4.8 Static Single Assignment form Example . 43

4.9 Nested Traces . 46

4.10 HydraVM Speedup . 48

5.1 Lerna’s Loop Transformation: from Sequential to Parallel. 52

5.2 LLVM Three Layers Design . 53

5.3 Lerna’s Architecture and Workflow . 55

xii

5.4 The LLVM Intermediate Representation using SSA form of Figure 5.1a. . . . 58

5.5 Natural, Simple and Transformed Loop . 60

5.6 Symmetric vs Normal Transactions . 61

5.7 Conditional Counters . 65

5.8 Workers Manager . 68

5.9 ReadNWrite1 Benchmark. 72

5.10 ReadWriteN Benchmark. 73

5.11 MCAS Benchmark. 75

5.12 Adaptive workers selection . 76

5.13 Kmeans and Genome Benchmarks . 77

5.14 Vacation and SSCA2 Benchmarks . 79

5.15 Labyrinth and Intruder Benchmarks . 80

5.16 Effect of Tiling on abort and speedup using 8 workers and Genome. 81

5.17 Kmeans performance with user intervention 81

5.18 PARSEC Benchmarks . 83

5.19 Effect of changing the TM algorithm (y-axis in log-scale) 84

6.1 States of a transaction execution in OWB and OUL. 89

6.2 The Execution of Ordered Transactions using Blocking/Stall Approach . . . 92

6.3 The Execution of Ordered Transactions using Freeze/Hold Approach 93

6.4 The Execution of Ordered Transactions using our approach 96

6.5 An execution of OWB, which is TMS1. Initial value of all the shared variables
is 0. The ACO is T1 ≺ T2 ≺ T3 . 104

7.1 OUL Transaction States . 107

7.2 Peak performance of all competitors (including unorderd) using all micro
benchmarks (Y-axis is log scale). 114

7.3 Disjoint Benchmark. 115

7.4 ReadNWrite1 Benchmark. 116

7.5 ReadWriteN Benchmark. 117

xiii

7.6 MCAS Benchmark. 118

7.7 Aborts Breakdown . 120

7.8 Execution time of STAMP Kmeans (Y-axis log scale). 122

7.9 Execution time of STAMP applications (Y-axis log scale). 123

7.10 OWB and OUL Algorithms Summary . 124

8.1 Probing a hash table with open addressing 130

8.2 Micro Benchmarks using RSTM. 146

8.3 STAMP Applications using RSTM. 148

8.4 STAMP Applications using RSTM. 149

8.5 Micro Benchmarks using GCC. 151

8.6 Some STAMP Applications using GCC. 152

9.1 Executions of Next-to-Commit Hardware Algorithm 155

9.2 Tickets Burning with number of tickets (N)=9, and delay (D)=3 156

9.3 Timeline Flags with N=19, and M=3 . 158

9.4 BTH vs. TFH using Bank and TPC-C Benchmakrs. 160

9.5 BTH and TFH fast-path execution . 161

9.6 Execution of two transactions using HyTM 162

9.7 Aborts Breakdown . 167

9.8 OWB-RH fast-path execution . 167

9.9 OWB vs. OWB-RH using RSTM Micro-benchmark. 168

10.1 Checkpointing implementation with write-buffer and undo-logs 175

xiv

List of Tables

1.1 Comparison with existing techniques. 6

4.1 Testbed and platform parameters for HydraVM experiments. 47

4.2 Profiler Analysis on Benchmarks . 48

5.1 Transactional Memory Design Choices . 64

5.2 Testbed and platform parameters for Lerna experiments. 71

5.3 Input configurations for STAMP benchmarks. 78

5.4 Input configurations for PARSEC benchmarks. 82

6.1 Handling of Read/Write between concurrent transactions. 97

8.1 Extended TM Constructs. 129

8.2 Extended GCC ABI. 142

8.3 Average Number of Operations per Transaction. 144

xv

Acronyms

ACO: Age-based Commit Order
Advisor XE: Intel Parallel Advisor
AOS: Adaptive Optimization System
BiSort: Bitonic Sort
BTH: Burning Tickets Algorithm
CFG: Control Flow Graph
CM: Contention Management
CMP: Chip Multiprocessor
DASTM: Dependency Aware STM model
DBMS: Database Management Systems
ETL: Encounter-Time Locking
GC: Garbage Collector
GCC: GNU Compiler Collection
HJM: Heath-Jarrow-Morton
HTM: Hardware Transactional Memory
HyTM: Hybrid Transactional Memory
ILP: Instruction-Level Parallelization
IR: Intermediate Representation
Jikes RVM: Jikes Research Virtual Machine
JNI: Java Native Interface
JVM: Java Virtual Machine
LLVM: Low-Level Virtual Machine
LRU: Least Recently Used
LSA: Lazy Snapshot Algorithm
MC: Monte Calro simulation
MMTK: The Memory Manager Toolkit
MPI: Message Passing Interface
MSSP: Master/Slave Speculative Parallelization
MST: Minimum Spanning Tree
NOrec: No Ownership Records Algorithm
NUMA: Non-Uniform Memory Access
OLTP: On-Line Transaction Processing
OpenMP: Open Multi-Processing
OUL: Ordered Undo Logging Algorithm
OUL-Steal: OUL Lock-Steal Algorithm
OWB: Ordered Write Buffer Algorithm
OWB-RH: OWB Reduced Hardware Algorithm
PLPP: Pattern Language for Parallel Programming
RAW: Read-After-Write
RTM: Restricted Transactional Memory

xvi

SMTX: Software Multi-threaded Transactions
S-NOrec: Semantic NOrec Algorithm
SSA: Static Single Assignment form
STAMP: Stanford Transactional Applications for Multi-Processing
S-TL2: Semantic Transactional Locking 2 Algorithm
STM: Software Transactional Memory
TCM: Transaction Commit Manager
TFH: Timeline Flags Algorithm
TL2: Transactional Locking 2 Algorithm
TLS: Thread-Level Speculation
TM: Transactional Memory
TMS1: Transactional Memory Specification 1
TPC-C: Transaction Processing Performance Council
TSP: Traveling Salesman Problem
WAR: Write-After-Read
WAW: Write-After-Write

xvii

Chapter 1

Introduction

In the last decade, parallelism has gained a lot of attention due to the physical constraints
which prevent the increase of processor operating frequency. The runtime of a program is
measured by the time required to execute its instructions. Decreasing the runtime requires
reducing the execution time of a single instruction, which implies increasing the operating
frequency. From the mid 1980s until the mid 2000s1 this approach, namely frequency scaling,
was the dominant force to improve programs runtime in commodity processor performance.
However, operating frequency is proportional to the power consumptions and consequently
heat generation. These obstacles put an end to the era of frequency scaling and force the
chip designers to find an alternative approach for improving the performance of applications.

Gordon E. Moore made an empirical observation that the number of transistors in a dense
integrated circuit has doubled approximately every two years. With the power consumption
issues, these additional transistors are moved to add extra hardware that have made the use
of multicore processors the norm for microarchitecture chip design. Wulf et. al. [187] report
that the rate of improvement in microprocessor speed exceeds the rate of improvement in
memory speed, namely memory wall. This wall constraints the performance of any program
running on a single processing unit.

These combined factors (i.e., power consumption, the availability of extra hardware resources,
and memory wall) made parallelism, which primarily has been employed for long time in
high-performance computing, appear as an appealing alternative.

Parallelism is the execution of a sequential application simultaneously on multiple compu-
tation resources. The application is divided into multiple sub-tasks that can run in parallel.
The communication between sub-tasks defines the parallelism granularity. An application
is embarrassingly parallel when the communications between its sub-tasks are rare while an
application with a lot of sub-task communications exhibits fine-grained parallelism. The

1At year 2004, because of the increase in processor power consumption Intel announced the cancellation
of its Tejas and Jayhawk processors, the successors processors families for Pentium 4 and Xeon respectively.

1

Mohamed M. Saad Chapter 1. Introduction 2

maximum possible speedup of a single program as a result of parallelization is known as
Amdahl’s law. This law defines the relation between speedup and the time needed for the
sequential fraction of the program. On the other hand, the vast majority of the applica-
tions and algorithms are designed or written for single core processors (often intentionally
designed to be sequential to reduce development costs, while exploiting Moore’s law of single-
core chips).

1.1 Motivation

Many organizations with enterprise-class legacy software are increasingly faced with a hard-
ware technology refresh challenge due to the ubiquity of the Chip Multiprocessor (CMP)
hardware. This problem is apparent when legacy codebases run into several million LOC
and are not concurrent. Manual exposition of concurrency is largely non-scalable for such
codebases due to the significant difficulty in exposing concurrency and ensuring the correct-
ness of the converted code. In some instances, sources are not available due to proprietary
reasons, intellectual property issues (of integrated third-party software), and organizational
boundaries. Additionally, adapting these programs to exploit hardware parallelism requires
a (possibly) massive amount of software rewriting operated by skilled programmers with
knowledge and experience of parallel programming. They must take care of both high-level
aspects, such as data sharing, race conditions, and parallel sections detection, and low-level
hardware features, such as thread communication, locality, caching, and scheduling. This
motivates techniques and tools for automated concurrency refactoring, or automatic paral-
lelization, and designing new programming languages to aid writing parallel programs, or
manual parallelization.

1.1.1 Manual Parallelization

Designing a parallel program requires both identifying and implementing parallelism. This
gained a significant research interest for helping programmers to identify and to develop
parallel programs. Identifying parallelism requires a deep understanding of the sequential
program to convert and the problem domain. In [118], Pattern Language for Parallel Pro-
gramming (PLPP) was proposed to formalize high-quality solutions to frequently occurring
problems in the parallelization domain. PLPP helps programmers to find concurrency; to
build a parallel structure such as divide and conquer, pipeline, decomposition, and event
based coordination; and to support these structures using techniques like master/worker,
fork/join, shared queues, distributed arrays and loop parallelism. Intel Parallel Advisor [1]
(or Advisor XE) automates the manual parallelization by proving a shared-memory thread-
ing design and prototyping tool. It helps programmers detect parallel sections and compare
performance using different threading models. Additionally, it finds data dependencies and
enables eliminating them, if possible.

Mohamed M. Saad Chapter 1. Introduction 3

On the other hand, different languages have been designed to facilitate parallel programming
development. For example, OpenMP [51] is a compiler extension for the C, C++ and
Fortran languages that supports adding parallelism to existing code, mainly loops, without
significant changes. Cilk [27] is C-based runtime for multithreaded parallel programming
using the fork/join model. Cilk represents the program as a directed graph of non blocking
code snippets. Each node in the graph executes its code within a separate thread. A node
may spawn children nodes, and its code runs concurrently with its children’s code (non
blocking execution). However, in order to receive children’s return values, the parent node
needs to spawn a successor node. A different approach was introduced by the Atomos [40]
language where parallel sections are organized as transactions. Atomos programming model
supports strong atomicity by providing watch and retry constructs to handle conflicting
parallel sections.

Despite all the aforementioned techniques, tools and programming languages, the procedure
of manual parallelization is still costly, error pruning, time consuming, and inapplicable in
some situation where the source code is not available.

1.1.2 Automatic Parallelization

Automatic parallelization simplifies the life of programmers, especially those not extensively
exposed to the nightmare of developing efficient concurrent applications. It also allows
a growing number of (even legacy) systems to benefit from the presently available cheap
hardware parallelism. Automatic parallelization targets programming transparency; the
application is coded as sequential and the specific methodology used for handling concurrency
is hidden to the programmer.

Automatic parallelization has been extensively studied during the past decades [68, 79, 146,
181, 176, 43, 45, 65, 142, 111, 186, 120]. Past efforts on automatic parallelization can be
broadly classified into speculative (optimistic execution) and non-speculative (pessimistic
execution) techniques.

Non-speculative techniques usually come in the form of compiler support where static anal-
ysis of the code is employed. For example, alias analysis [47] detects if multiple references
point to the same memory location. Memory dependence analysis [17, 184] analyzes a mem-
ory operation and extracts the preceding memory operations that depend on it. Points-to
analysis [175] identifies, with some assumptions on the address type, which memory locations
are referred to by pointers. The polyhedral analysis [29, 74] uses an abstract mathematical
representation to analyze the memory access patterns. Unlike the dependency analysis where
each node in the dependency graph represents one statement in the source program, in the
polyhedral model each point corresponds to one statement instance. This permits building
a distance vector between instances which captures the carried dependencies. That way
several loop transformations can be applied to enhance the parallelism such as: tiling, index
set splitting, loop fusion and nested loop regeneration.

Mohamed M. Saad Chapter 1. Introduction 4

Using these analyses, and others, helps non-speculative techniques in identifying sections of
the code with no memory dependencies. These independent sections of the code are eligible
to run in parallel while preserving a consistent view of memory. However, these techniques
do not translate well with low-level memory operations (e.g., pointer arithmetic, unions and
functions pointer) in C and C++ programming languages.

On the other hand, speculative techniques exploits optimistic executions with a compensat-
ing actions to recover from invalid operations (e.g., memory conflicts). Among speculative
techniques, two appealing primary approaches exist: thread-level speculation (TLS) and
transactional memory (TM). TLS runs code speculatively, usually through hardware, and
eventually the correct order is determined. The evaluated operations are detected to be cor-
rect or not. Incorrect results are discarded and the thread is restarted. TLS uses processor
cache as a buffer for thread memory changes. Cache coherence protocols are overloaded
with the TLS monitoring algorithm. Squashing a thread is done by aborting the thread
and discarding the cache contents while committing thread changes is done by flushing the
cache to main memory. Parallelization using thread-level speculation (TLS) has been ex-
tensively studied using both hardware [177, 102, 80, 44] and software [146, 111, 146, 43]. It
was originally proposed by Rauchwerger et. al. [146] for identifying and parallelizing loops
with independent data access – primarily arrays. The common characteristics of TLS im-
plementations are: they largely focus on loops as a unit of parallelization; they mostly rely
on hardware support or changes to the cache coherence protocols; and the parallel sections
are usually small (e.g., innermost loops). An example of TLS automated parallelizing com-
pilers is POSH [111]. POSH focuses on loops and subroutines as unit of parallelization, and
employs a profiling phase to discard ineffective sections (non hot-spot portions of the code).
Using a simulated TLS CMP with 4 superscalar cores, POSH achieves an average speedup
by 1.3 on SPECint2000 applications.

The second speculative approach is Transactional Memory (TM). Transactions were orig-
inally proposed by Database Management Systems (DBMS) to guarantee atomicity, con-
sistency, data integrity, and durability of operations manipulating shared data. This syn-
chronization primitive has been recently ported from DBMS to concurrent applications (by
relaxing durability), providing a concrete alternative to the manual implementation of syn-
chronization using basic primitives such as locks. This new multi-threading programming
model has been named Transactional Memory [93]. TM has emerged as a powerful con-
currency control abstraction [83, 107] that permits developers to define critical sections as
simple atomic blocks, which are internally managed by the TM itself. It allows the pro-
grammer to access shared memory objects without providing the mutual exclusion by hand,
which inherently overcomes the drawbacks of locks. As a result, with TM the program-
mer still writes concurrent code using threads, but the code is now organized so that reads
and writes to shared memory objects are encapsulated into atomic sections. Each atomic
section is a transaction, in which the enclosed reads and writes appear to take effect in-
stantaneously. Transactions speculatively execute, while logging changes made to objects–
e.g., using an undo-log or a write-buffer. When two transactions conflict (e.g., read/write,

Mohamed M. Saad Chapter 1. Introduction 5

write/write), one of them is aborted and the other is committed, yielding (the illusion of)
atomicity. Aborted transactions are re-started, after rolling-back the changes–e.g., undoing
object changes using the undo-log (eager), or discarding the write buffers (lazy). Besides
a simple programming model, TM provides performance comparable to highly concurrent,
fine-grained locking implementations [59, 33], and allows composability [84], which enables
multiples nested atomic blocks to be executed as a single all-or-nothing transaction. Mul-
tiprocessor TM has been proposed in hardware (HTM), in software (STM), and in hard-
ware/software combination. TM’s adoption is growing in the last years, specially after the
integration with the popular GCC compiler (from the release 4.7), and due to the integra-
tion into the embedded cache-coherence protocol of commodity processors, such as Intel [99]
and IBM [35], which naively allows transactions to execute directly on the hardware. Given
its easy-to-use abstraction, TM would seem the missing building block enabling the (trans-
parent) parallelization of sequential code by automatically injecting atomic blocks around
parallel sections. STMlite [120] presents a lightweight STM implementation customized for
automatic loop parallelization. Loop iterations are divided into chunks and distributed over
available cores. An outer loop is generated around the original loop body to manage parallel
execution between different chunks, and a centralized Transaction Commit Manager (TCM)
controls the transactions commit in the program’s chronological order. Unfortunately, such
high-level abstraction comes with a price in terms of performance cost, which easily leads to
a parallel code slower than its sequential version (e.g., in [38, 166] a performance degradation
of between 3 to 7 times has been shown).

Most of the methodologies, tools and languages for parallelizing programs target scientific
and data-parallel, computation-intensive applications, where actual data sharing is very lim-
ited and the dataset is precisely analyzed by the compiler and partitioned so that parallel
computation is possible. Examples of those approaches include [134, 153, 111, 94]. Alter-
natively, automatic parallelization using TLS requires special hardware support, while TLS
has not made it into the mainstream multicore systems yet. Finally, despite the flexibility
and ease of use of TM, the primary drawback of using it for parallelization is the significant
overhead of code execution and validation [38, 166]. Previous work on using TM for paral-
lelization [73, 178] relied primarily on the programmer for specification of parallel sections
and definition of ordering semantics. The key weaknesses with programmer reliance are:

1. It requires a full understanding of the software (e.g., the algorithm implementation
and input characteristics) and mandates the existence of the source code;

2. It does not take into account TM characteristics and factors of overhead; and

3. It uses TM as a black box utility for preserving data integrity.

In contrast, the solutions proposed in this thesis target common programs and analyze
the code in its intermediate representation without the need for the original source code,
and without using custom hardware support. This makes us independent of the language in

Mohamed M. Saad Chapter 1. Introduction 6

Property

Automatic

N
on

-S
p

ec
u
la

ti
ve

[7
4] Speculative

M
an

u
al

[1
18

,
1]

T
L

S
[1

77
,

10
2,

80
,

44
]

T
M

[1
20

,
73

]

T
h
is

D
is

se
rt

at
io

n

No custom hardware (commodity machines) X X X X
Tolerate non trivial dependencies X X X X
White-box TM model (cooperative model, ordering algorithms) – – – X
Automatic parallelization (no user intervention) X X X X
Employs static analysis X X
Language independence / Intermediate representation X X
Employs application semantics X X

Table 1.1: Comparison with existing techniques.

which the code was written and does not enforce exposure of the source code to the proposed
framework, especially when it is not available. Additionally, the parallel version of the code
produced by the proposed framework runs on commodity machines.

This dissertation is fundamentally different from past STM-based parallelization works in
that it benefits from static analysis for reducing transactional overheads and automatically
identify parallel sections (i.e., traces or loops) by compile- and runtime program analysis
techniques, which are then executed as transactions. Additionally, this work targets arbitrary
programs (not just recursive ones as [32] does), is entirely software-based (unlike [32, 66, 56,
182]), and does not require program source code. Furthermore, this dissertation proposes
a cooperative transactional execution model where atomicity is relaxed with preserving the
original sequential semantics. Finally, it extends TM constructs to get use of low-level
application semantics to increase the parallelism.

Table 1.1 summarizes some of the main properties of this dissertation and compares them
against existing techniques. Unlike other techniques, TLS usually uses hardware to run the
code speculatively [177, 102, 80, 44]. This makes TLS independent of the underlying source
code or the programming language. This dissertation achieves a similar level of programming
language-independence by relying on intermediate representations of the source code (e.g.,
JVM bytecode, LLVM bytecode, GCC Gimple). Non speculative solutions [74] rely on strong
guarantees of data or control dependencies provided by static analysis [47, 17, 175, 29].
These guarantees limit parallelization where non trivial dependencies exist (e.g., pointer

Mohamed M. Saad Chapter 1. Introduction 7

operations, global state accesses). This dissertation employs static analysis for a different
purpose – i.e., reducing TM overhead. On the other hand, speculative execution techniques
using TM [120, 73] use TM as a black box, however, TM is designed for concurrency control
rather than parallelization. The use of TM for parallelization requires some adaption to
the classical TM model (i.e., white-box TM model), which is done as a part of this work.
Finally, manual parallelization techniques [118, 1] open the door for the programmer to
rewrite (refactor) the code while preserving application semantics. This dissertation shares
the same sweet-spot of utilizing application semantics for parallelization through a novel
semantic-based TM extension.

1.2 Contributions

This thesis tries to bridge the gap between the parallelism of existing multicore architectures
and the sequential design of most (including existing) applications. This is done by presenting
a set of techniques for extracting parallelism from sequential programs for speculative parallel
thread execution on multiprocessor architectures and “thread transactification” for managing
concurrent and out-of-order memory accesses. The techniques include code profiling, alias
analysis, data dependency analysis, execution analysis at the intermediate representation
level, cooperative transactional execution, and exploiting low level semantics of programs.
The dissertation makes the following three main contributions.

Automatic Parallelization Frameworks

This dissertation introduces the design and the implementation of two automatic paralleliza-
tion frameworks: HydraVM and Lerna. Both of HydraVM and Lerna require no programmer
intervention, they are completely automated, and do not need to expose source code; unlike
previous approaches for parallelization that require programmer to identify parallel sections
or additional information to help the parallelization process. The common technique used in
the proposed two implementations is the use of Transactional Memory (TM) as an optimistic
execution approach for transforming a sequential application into parallel “blindly”, mean-
ing without external interventions. Using the proposed frameworks, user benefits from TM
seamlessly by running sequential programs and enjoys a safe parallel execution. Under-the-
hood, the frameworks handle the problems of detecting parallel code snippets, concurrent
memory access, synchronizations and resources utilization.

Unlike Lerna, HydraVM exploits dynamic techniques for profiling, parallel code detection
and adaptive execution of the program. Besides, HydraVM targets trace as a unit of par-
allelism, while Lerna focuses on loop parallelization. From the experience with HydraVM,
it is learnt about parallel patterns and bottlenecks in the programs. First, relying only on
dynamic analysis introduces an overhead that can be easily avoided through pre-execution

Mohamed M. Saad Chapter 1. Introduction 8

static analysis phase. Second, adaptive design should not be limited to the architecture
(e.g., runtime recompilation), but it could be extended to: selecting best number of worker
threads, assignment of parallel code to threads, and the depth of speculative execution. Last,
except recursive calls, most of the detected parallel traces at HydraVM was primarily loops.
Keeping these goals in sight, Lerna was designed as a compiler framework. With Lerna,
the sequential code is transformed into parallel with best-efforts TM support to guarantee
safety and to preserve ordering. Lerna produces a native executable, yet adaptive; thanks to
Lerna runtime library that orchestrates and monitor the parallel execution. The programmer
can interact with Lerna to aid the static analysis for the sake of producing a less overhead
program.

HydraVM and Lerna are the first set of compiler/run-time infrastructures that advance the
state-of-the-art [120] by: employing static analysis to reduce TM overhead and to allow
accessing some local memory variables on stack, providing a vehicle to run different TM
algorithms for parallelization (including STMLite [120]), and presenting an adaptive model
that maintains the feedbacks collected from the execution to optimize the transactional
execution and to recover from misprofiling situations.

Commit-Order TM Algorithms

Parallelization using TM requires concurrency control algorithms that ensure a specific (pre-
defined) commit-order of the transactions injected in the runtime framework. Transaction
ordering intuitively means considering not just the set of transactions as input of the problem,
but also the specific commit-order that must be enforced for them. Such a formulation
inherently brings up a fundamental trade off between the level of parallelism achievable,
given the need of committing in-order, and the performance of the single threaded execution
without any software instrumentation (which is rather needed to prevent conflicts when
running in parallel). TM algorithms have been designed to solve the classical concurrency
problems where a set of transactions is invoked in parallel and a history of their operations
is built to let them commit.

In this thesis, a set of commit-order TM algorithms is proposed: Ordered Undo Logging Algo-
rithm (OUL), Ordered Write Buffer Algorithm (OWB), OUL Lock-Steal Algorithm (OUL-
Steal), and OWB Reduced Hardware Algorithm (OWB-RH), that are designed with any
eye on the commit-order as a fundamental system requirement. It is shown that even in the
presence of data conflicts, the proposed algorithms are able to outperform single-threaded ex-
ecution, and other baseline and specialized state-of-the-art competitors, significantly. OUL,
OWB, OUL-Steal and OWB-RH are the first set of TM algorithms that exploit cooperation
between transactions for the sake of reducing the in order commit waiting time. OWB, and
its RH variant, are the first algorithms that support Transactional Memory Specification 1
(TMS1) [62], a weaker consistency condition than opacity [76, 77], the most popular consis-
tency condition for TM. TMS1 has been proved to be sufficient to guarantee safety [13] in

Mohamed M. Saad Chapter 1. Introduction 9

the parallelization model, as is the case with opacity.

Low Level TM Semantics

Analyzing the results produced by executing the aforementioned commit-order algorithms
inside the proposed automatic parallelization frameworks, it is clear that there is still a gap
in performance that is difficult to fill without having a deeper knowledge of the semantics of
the original (sequential) application.

This thesis proposes a solution that increases the level of semantics that can be captured
automatically, therefore improving performance further. The proposed extensions also boost
the capabilities of the classical transactional memory programming model. In fact, histori-
cally, the TM model defines two language/library constructs for reading and writing memory
addresses. As a common pattern, each transaction maintains its own read-set and write-set
to detect conflicts with other concurrent transactions. Two concurrent transactions are said
to be conflicting if they access the same address and at least one access is a write. However,
in some situations conflicting transactions can safely commit and still preserve the appli-
cation semantics, which means that the conflict triggered by the TM framework is a “false
conflict” at the semantic level. As a part of this thesis, the classical TM primitives were
extended by identifying TM-friendly semantics and proposing an approach to inject them
in the current TM algorithms and frameworks. Furthermore, the proposed extensions were
integrated in GCC to provide a full compiler support. The proposed TM-friendly semantic
primitives are the first such extensions that allow both the compiler-support and capturing
application low-level semantics. Furthermore, this extension can be deployed as a TM library
without affecting TM generality and with a minimum learning curve for the programmers
because all the extensions map to known programming language primitives.

1.2.1 HydraVM

This is a Java virtual machine based on Jikes RVM. The user runs its sequential program
(Java classes) using the virtual machine, and internally the bytecode is instrumented at
runtime to profile the execution paths. The profiling detects which places of the code are
suitable for parallelization and does not have data dependency. Next, the bytecode is recon-
structed by extracting portions of the code to run as separate threads. Each thread runs as a
transaction, which means it operates on its private copy of memory. Conflicting transactions
are aborted and retried while successful transactions commit its changes at the chronological
time of the code it executes.

HydraVM [160] inherits the adaptive design of Jikes RVM. The profiling and code recon-
struction continue while the program is running. It monitors the performance and abort
rate of transformed code and uses this information to repeatedly reconstructs new versions
of the code. For example, assume a loop is parallelized and each iteration runs in a separate

Mohamed M. Saad Chapter 1. Introduction 10

transaction. When every three consecutive iterations of loop conflict with each other, then
a better reconstruction is to combine them and makes the transaction runs three iterations
instead one. It worth noting that the reconstruction process occurs at runtime by reloading
the classes definition.

Finally, ByteSTM was developed as a software transactional memory implementation at the
bytecode level. ByteSTM allows access to low-level memory (e.g., registers, thread stack),
so it is possible create a memory signature for memory accessed by the current transac-
tion. Comparing concurrent transaction signatures allows us to quickly detect conflicting
transaction.

1.2.2 Lerna

Lerna [163] is a compiler that runs on the intermediate representation level, which makes it
independent of the source code and programming language used. The generated code is a
task-based multi-threaded version of the input code.

Unlink HydraVM, Lerna employs static analysis techniques, such as alias analysis and mem-
ory dependency analysis, to reduce the overhead of transactional execution, and here the
focus is on parallelizing loops. Lerna is not limited to a specific TM implementation, and
the integration of any TM algorithm can be done through a well-defined APIs. Additionally,
in Lerna the mapping between extracted tasks and transactions is not one-to-one. A trans-
action can run multiple tasks (tiling), or task can have multiple transactions (partitioning).

Lerna and HydraVM share the idea of exploiting transactional memory, profiling and pro-
ducing adaptive code. However, as Lerna supports the generation of native executable as
output it is not possible to rely on an underlying layer (the virtual machine in HydraVM) to
support the adaptive execution. Instead, the program is linked with Lerna runtime library
that is able to monitor and modify the key performance parameters of the executor module
such as: number of workers threads, the mapping between transactions and tasks, and exe-
cuting in transaction mode or go sequentially. Both frameworks achieve an average speedup
2.5× on a set of benchmark including applications from JOlden [34], RSTM [2], STAMP [37]
and PARSEC [133].

1.2.3 Commitment Order Algorithms

With the experience gained from using HydraVM and Lerna, it is learnt that preserving
program order hampers scalability. A thread that completes its execution must either stalls
waiting its correct chronological order in the program or proceeds executing more transac-
tions, and consequently increases the lifetime of these pending transactions and makes them
subject to conflict with other transactions. Additionally, transactional reads and stores are
sandboxed. This prevents any possible cooperation between transactions that could still pro-

Mohamed M. Saad Chapter 1. Introduction 11

duce a correct program results. For example, in DOACROSS loops [49] iterations are data
or control dependent, however, they can run in parallel with exchanging some data between
them.

This dissertation proposes a novel technique [164] for cooperation between concurrent trans-
actions. With this technique, transactions can expose their changes to other transactions
without waiting for their chronological commit times. Nevertheless, transactions with the
earlier chronological order can abort completed transactions (and cascade abort to any other
affected transactions) whenever a conflict exists. Using this technique, the peak gain over
the sequential non-instrumented execution in RSTM micro benchmarks is 10× and 16.5× in
STAMP.

Furthermore, a set of commit-order algorithms that exploit Intel’s Haswell [149] are pre-
sented. Haswell is the first mainstream CPU with transactional memory support. The use
of HTM support reduces (or eliminates) the transactional execution overhead, which in effect
magnifies the parallelization gain.

1.2.4 TM-Friendly Semantics

As mentioned before, the key intuition at the core of HydraVM and Lerna is the use of
TM to execute the automatically generated parallel code. However, despite TM’s high
programmability and generality, its performance is still not yet as good as (or better than)
optimized manual implementations of synchronization. Providing high performance in multi-
threaded applications before the advent of TM, when thread synchronization was manually
done using fine-grained locks and/or lock-free designs, depended upon the specific application
semantics. For example, identifying the critical sections and the best number of locks to
use are design choices that can be made only after deeply knowing the semantics of the
application itself (i.e., what the application does).

A related question that arises in this regard is: Is there some room for including semantics
in TM frameworks without sacrificing their generality? If the answer is “yes”, which is
what this dissertation claims and assesses, then we will finally be able to overcome one
of the main obstacles that has existed alongside TM since its early stages, and boost its
performance accordingly. Motivated by the above question, first, this dissertation identifies
a set of semantics that can be included in TM frameworks without impacting the generality
of the TM abstraction (TM-friendly semantics [162, 161]), and the existing TM APIs are
extended to include such semantics. Second, it is shown how to modify STM algorithms to
exploit such semantic-based APIs. Results showed speedups of up to 4× over the original
algorithms on different applications including micro benchmarks and STAMP.

Finally, embedding those extensions in compiler passes (using GCC) is illustrated so that the
application developing experience will not be altered, additionally, such compiler integration
permits us to exploit the new TM APIs throughout automatic parallelization frameworks.

Mohamed M. Saad Chapter 1. Introduction 12

The use of the proposed TM extension in automatic parallelization is multi-fold. First, it
reduces the aborts by utilizing the embedded application semantics and eliminating some
false conflicts. Second, it reduces the number of required TM calls which lower the transac-
tion overhead. Last, it implicitly handles common code patterns such as increments, which
automatically eliminates inter-dependencies between transactions (e.g., loop iterations).

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 surveys the techniques for solving the paral-
lelization problem. Past and related efforts is overviewed in Chapter 3. In Chapter 4 and 5,
the architecture, transformation, optimization techniques, and the experimental evaluation
for the two implementations are detailed: HydraVM and Lerna.

Chapters 6 and 7 describe the design and the implementation of the commitment order
algorithms: Ordered Write Back (OWB) algorithm, and Ordered Undolog (OUL) algorithm.
Next, Chapter 8 presents a TM extension for exploiting the application low level semantics.

In Chapter 9, Hardware Transactional Memory (HTM) is exploited for designing two hard-
ware commit-order algorithms: Burning Tickets Algorithm (BTH) and Timeline Flags Al-
gorithm (TFH), and for creating a hybrid version of OWB algorithm, namely OWB-RH.
Finally, Chapter 10 concludes the dissertation and proposes future work .

Chapter 2

Background

Parallel computations can be done on multiple levels such as instructions, branch targets,
loops, execution traces, and subroutines. Loops have gained a lot of interest as they are by
nature a major source of parallelism and usually contain the most processing.

Instruction-Level Parallelization (ILP) is a measure of how many instructions can be run
in parallel. ILP is application-specific as it involves reordering the execution of instructions
to run in parallel and to utilize the underlying hardware. ILP can be implemented using
software (compiler), or hardware (pipelining). Common techniques for supporting ILP are:
out-of-order execution, where instructions execute in any order that does not violate data
dependencies; register renaming, which is renaming instruction operands to avoid unneces-
sary reuse of registers; and speculative execution, where an instruction is executed before it
should take place according to the serial control flow.

Since on average 20% of instructions are branches, branch prediction was extensively studied
to optimize branch execution and to run targets in parallel with the evaluation of branching
conditions. Branch predictors are usually implemented in hardware with different variants:
Early implementations of SPARC and MIPS used static prediction by always predicting
that a conditional jump would not be taken and executing the next instruction in parallel
to evaluation of the condition. Dynamic prediction is implemented through a state machine
that maintains a history of branches (per each branch, or globally). For example, the Intel
Pentium processor uses a four-state machine to predict branches. The state machine can
be local (per branch instruction) as in the Intel Pentium MMX, Pentium II, and Pentium
III; or global (a shared history of all conditional jumps) as in AMD processors and Intel’s
Pentium M, Core, and Core 2.

Loops can be classified as sequential loops, parallel loops (DOALL), and loops of intermediate
parallelism (DOACROSS) [49] (see Figure 2.1). In DOALL loops, iterations are independent
and can run in parallel as no data dependencies exist between loops. DOACROSS loops
exhibit inter-iteration data dependencies. When data from lower index iterations is used

13

Mohamed M. Saad Chapter 2. Background 14

For i = 1 to n {
Sum = Sum + A[i] ;

}

(a) Sequential Loop

For i = 1 to n {
D[i] = A[i] ∗ B[i] + c

}

(b) DOALL Loop

For i = 1 to n−1 {
D[i] = A[i] + B[i]
C[i] = D[i +1] ∗ B[i]

}

(c) Lexically-forward DOACROSS Loop

For i = 2 to n {
D[i] = A[i] + B[i]
C[i] = D[i −1] ∗ B[i]

}

(d) Lexically-backward DOACROSS Loop

Figure 2.1: Loop classification according to inter-iteration dependencies

by iterations with higher indices, lexically-backward, the processors executing higher index
iterations must wait for the required calculations from lower index iterations to be evaluated
(See Figure 2.1d). In contrast, with lexically-forward loops, lower index iterations access
data used at higher indices. Loops can run in parallel without delay if both sets of iterations
load their data at their starts.

Traces are defined as hot paths in program execution. Traces can be parts of loops or span
multiple iterations and can be parts of individual methods or span multiple methods. A trace
is detected dynamically at runtime and is defined as a set of basic blocks (set of instructions
ended by a branch or other terminator). Similarly, traces can run in parallel on multiple
threads, then are linked together according to their entry and exit points. Figure 2.2 shows
an example of traces that run in parallel on three processors.

In contrast to data parallelism (e.g., a loop operating on the same data as in Figure 2.1),
task parallelism is a form of parallelization wherein tasks or subroutines are distributed over
multiple processors. Each task has a different control flow and processes a different set of
data; however, they can communicate with each other by passing data between threads.
Running different tasks in parallel reduces the overall runtime of a program.

Another classification of parallel techniques is according to user intervention. In manual
parallelization, the programmer uses programming language constructs to define parallel
portions of the code and protects shared data through synchronization primitives. An alter-
native approach is for the programmer to design and develop the program to run sequentially
and use interactive tools that analyze the program (statically or dynamically) to provide the
programmer with hints about data dependencies and eligible portions for parallelization.
Iteratively, the programmer modifies the code and compares the performance scaling of
different threading designs to get the best possible speedup. Clear examples of this semi-
automated technique are Intel Parallel Advisor [1], and the Paralax compiler [183]. Lastly,

Mohamed M. Saad Chapter 2. Background 15

T1

T2

T3

T4

T5

T6

T7

(a) Traces

T1

T2

T5

T6

T3

T5

T4

T7

T6
T5

dispatch

link

dispatch

link

(b) Parallel Traces

Figure 2.2: Running traces over three processors

automatic parallelization aims to parallelize programs without any user intervention.

2.1 Manual Parallelization

Designing a parallel program that runs efficiently in a multi-processor environment is not a
trivial procedure as it involves multiple factors and requires a skilled programmer. Mainte-
nance and debugging of parallel programs is a nightmare and incredibly difficult, as it involves
racing, invalid shared data accesses, live- and deadlock situations, and non-deterministic sce-
narios.

Firstly, the programmer must understand the problem that he is trying to solve and the
nature of the input data. A problem can be partitioned according to the domain (i.e., input
data decomposition), or through functional decomposition (cooperative parallel sub-tasks).

After partitioning the problem, usually there are some kind of communications and shared
data accesses between different tasks. Both communications and shared accesses present
a challenge (and usually delay) to the parallel program. An application is embarrassingly
parallel when the communication between its sub-tasks is rare and it does not require a lot
of data sharing. The following factors needs to be considered for inter-task communications:

1. Frequency. An application exhibits fine-grained parallelism if its sub-tasks communi-
cate frequently, while in coarse-grained parallelism, applications experience less com-
munication. As communication takes place through communication media (e.g., buses),

Mohamed M. Saad Chapter 2. Background 16

#pragma omp f o r p r i v a t e (n) shared (t o t a l) ordered schedu le (dynamic)
f o r (i n t n=0; n<100; ++n)
{

f i l e s [n] . compress () ;

t o t a l += g e t s i z e (f i l e s [n]) ;

#pragma omp ordered
send (f i l e s [n]) ;

}

Figure 2.3: OpenMP code snippet

the contention over communication media directly affects overall performance, espe-
cially if the media is being used for other purposes (e.g., transferring data from and to
processors).

2. Cost. The communication cost is determined by: the delay in sending and receiving
the information, and the amount of transferred data.

3. Blocking. Communication can be either synchronous or asynchronous. Synchronous
communications block at the receiver (and sender as well when an acknowledgment
is required). On the other hand, asynchronous communications allow both sides to
proceed with processing but introduce more complexity to the application design.

Protecting shared data from concurrent access requires a synchronization mechanism such
as barriers or locks. Synchronization primitives usually introduce bottlenecks and significant
overhead to the processing time. Besides, a misuse of locks can cause the application to
deadlock (i.e, two or more tasks each waiting for the other to finish), livelock (i.e, tasks are
not blocked, but are too busy responding to each other to resume work), or starvation (i.e.,
greedy set of tasks keep holding the locks for a long time).

Resolving data and control dependencies between tasks is the responsibility of the program-
mer. A good understanding of the inputs and the underlying algorithm helps in determining
independent tasks; however, there are tools that could help in this step [1].

Finally, the programmer should maintain a load balance between the computation resources.
For example, static assignment of tasks to processors (e.g., round-robin) is a light technique,
but may lead to low utilization; while dynamic assignment of tasks requires monitoring the
state of tasks (i.e., start and end times) and handling a shared queue of ready-to-execute
tasks.

As an example of parallel programming languages, OpenMP is a compiler extension for the
C, C++ and Fortran languages that supports adding parallelism to existing code without

Mohamed M. Saad Chapter 2. Background 17

significant changes. OpenMP primarily focuses on parallelizing loops and running iterations
in parallel with optional ordering capabilities. Figure 2.3 shows an example of OpenMP
parallel code that compresses a hundred files, but sends them in order, and calculates the
total size after compression. Programmers can define shared variables (e.g., the non-local
variable total) and local thread variables (e.g., the loop counter n). Shared variables are
transparently protected from concurrent access. A private copy is created for variables that
are defined as thread-local (i.e., using the private primitive).

2.2 Automatic Parallelization

Past efforts on parallelizing sequential programs can be broadly classified into speculative and
non-speculative techniques. Non-speculative techniques, which are usually compiler-based,
exploit loop-level parallelism and differ in the types of data dependencies that they handle
(e.g., static arrays, dynamically allocated arrays, pointers) [26, 79, 158, 55].

In speculative techniques, parallel sections of code run speculatively, guarded by a compen-
sating mechanism for handling operations that violate application consistency. The key idea
is to provide more concurrency where extra computing resources are available. Speculative
techniques can be broadly classified based on

1. what program constructs they use to extract threads (e.g., loops, subroutines, traces,
branch targets),

2. whether they are implemented in hardware or software,

3. whether they require source code, and

4. whether they are done online, offline, or both.

Of course, this classification is not mutually exclusive. The execution of speculative code is
either eager or predictive. In eager speculative execution, every path of the code is executed
(with the assumption of unlimited resources); however, only the correct value is committed.
With predictive execution, selected paths are executed according to prediction heuristics. If
there is a misprediction, the execution is rolled back and re-executed.

Among speculative techniques, two appealing primary approaches exist: Thread-Level Spec-
ulation (TLS) and Transactional Memory (TM).

2.3 Thread Level Speculation

Thread-Level Speculation (TLS) refers to the execution of out-of-order (unsafe) operations
and caching of the results in thread-local storage or buffers (usually via the processor cache).

Mohamed M. Saad Chapter 2. Background 18

try-commit

try-commit

try-commit

try-commit

try-commit

Age 1 Age 2 Age 3
Age 4

Age 5
restart

squash
conflict

Processor 1 Processor 2 Processor 3 Processor 4

ti
m
e

Figure 2.4: Example of thread-level speculation over four processors

TLS assigns an age to each thread according to the earliness of the code it executes. The
thread with the earliest age is marked as safe.

Speculative threads are subject to buffer overflow. When a thread buffer is full the thread
either stalls (till it becomes the lowest age) or is squashed and restarted. An exception is the
safe thread (the one executing the earliest code). TLS monitors dependency violations (e.g.,
through checking cache line requests). For example, a Write-After-Read (WAR) dependency
violation occurs when a higher age speculative thread modifies a value before another lower
age thread needs to read it. Similarly, when a higher age speculative thread reads an address,
then a lower age thread changes the value of this thread, this is another dependency violation
named Read-After-Write (RAW). A different type of violation is that caused by control
dependencies, where a speculative thread executes unreachable code due to a change in
the program control flow. Any dependency violation (data or control) causes the higher-
age thread to be squashed and restarted. Figure 2.4 shows an example of TLS using four
processors.

TLS is usually implemented through hardware. However, the same concept can be applied
using software [105, 158, 55] (with performance issues), especially when low-level operations
are not feasible [46, 42] (e.g., with Java-based frameworks). TLS software implementations
use a data access signature (or summaries) to detect conflicts between speculative threads.
An access signature represents all addresses accessed in the current thread. Conflict is
detected by intersecting signatures for partial matches.

2.4 Transactional Memory

Lock-based synchronization is inherently error-prone. Coarse-grained locking, in which a
large data structure is protected using a single lock, is simple and easy to use but permits
little concurrency. In contrast, with fine-grained locking [123, 95], in which each component

Mohamed M. Saad Chapter 2. Background 19

of a data structure (e.g., a bucket of a hash table) is protected by a lock, programmers must
acquire necessary and sufficient locks to obtain maximum concurrency without compromising
safety. Both these situations are highly prone to programmer errors. In addition, lock-
based code is non-composable. For example, atomically moving an element from one hash
table to another using those tables’ (lock-based) atomic methods is difficult: if the methods
internally use locks, a thread cannot simultaneously acquire and hold the locks of the two
tables’ methods; if the methods were to export their locks, that will compromise safety.
Furthermore, lock-inherent problems such as deadlock, livelock, lock convoying, and priority
inversion have not gone away. For these reasons, lock-based concurrent code is difficult to
reason about, program, and maintain [89].

Transactional memory (TM) [83] is a promising alternative to lock-based concurrency con-
trol. It was proposed as an alternative model for accessing shared memory addresses, without
exposing locks in the programming interface, to avoid the drawbacks of locks. With TM,
programmers write concurrent code using threads but organize code that reads/writes shared
memory addresses as atomic sections. Atomic sections are defined as transactions in which
reads and writes to shared addresses appear to take effect instantaneously. A transaction
maintains a read-set and write-set, and at commit time, checks for conflicts on shared ad-
dresses. Two transactions conflict if they access the same address and one access is a write.
When that happens, a contention manager [168] resolves the conflict by aborting one of the
transactions and allowing the other to proceed to commit, yielding (the illusion of) atom-
icity. Aborted transactions are restarted, often immediately. Thus, a transaction ends by
either committing (i.e., its operations take effect) or by aborting (i.e., its operations have no
effect). In addition to a simple programming model, TM provides performance comparable
to highly concurrent, fine-grained locking implementations [59, 33] and is composable [84].
Multiprocessor TM has been proposed in hardware (HTM), in software (STM), and in hard-
ware/software combinations (HyTM).

Transactional Memory algorithms differ according to their design choices. An algorithm can
apply its changes directly to memory and maintain an undo-log for restoration to a consistent
state upon failure. Such an optimistic approach fits the situation where conflicts are rare. In
contrast, an algorithm can use a private thread-local buffer to keep its changes invisible from
other transactions. At commit, the local changes are merged into main memory. Another
orthogonal design choice is the time of conflict detection. Transactions may acquire access
(lock) on their write-sets at encounter time or during the commit phase.

Figure 2.5 shows some example transactional code. Atomic sections are executed as transac-
tions. Thus, the possible values of A and B are either 42 and 42, or 22 and 11, respectively.
An inconsistent view of a member (e.g., A=20 and B=10), due to atomicity violation or
interleaved execution, causes one of the transactions to abort, rollback, and then re-execute.

Motivated by TM’s advantages, several recent efforts have exploited TM for automatic par-
allelization. In particular, trace-based automatic/semi-automatic parallelization is explored
in [31, 32, 39, 58], which use HTM to handle dependencies. [144] parallelizes loops with

Mohamed M. Saad Chapter 2. Background 20

A = 10, B = 20;

THREAD A

atomic{
B = B + 1 ;
A = B ∗ 2 ;

}
. . . .

THREAD B

atomic{
B = A;

}
. . . .
. . . .

Figure 2.5: An example of transactional code using atomic TM constructs

dependencies using thread pipelines, wherein multiple parallel thread pipelines run concur-
rently. [120] parallelizes loops by running them as transactions, with STM preserving the
program order. [173] parallelizes loops by running a non-speculative “lead” thread, while
other threads run other iterations speculatively, with STM managing dependencies.

2.4.1 NOrec

The No Ownership Records Algorithm (NOrec) [53] is a lazy software transactional memory
algorithm that uses a minimal amount of metadata for accessed memory addresses. Unlike
other STM algorithms, NOrec does not associate ownership records (orecs) to maintain its
write-set. Instead, it uses a value-based validation during commit time to make sure the
read values still have the same values the transaction already used during its execution.

Transactions use a write-buffer to store their updates; the implementation of the write-
buffer is a linear-probed hash table with versioned buckets to support O(1) clearing (when
transaction descriptors are reused). NOrec uses a lazy locking mechanism, which means
written addresses are not locked until commit time. This approach reduces locking time for
the accessed memory locations, which allows readers to proceed without writer interference.

NOrec employs a single global sequence lock. Whenever a transaction commits, the global
lock is acquired and is incremented. This assumption limits the system to having a single
committer transaction at a time. The commit procedure starts by incrementing the sequence
lock atomically. Failing to increment the lock means another writer transaction is trying to
commit, so the current transaction needs to validate its read-set and wait for the other
transaction to finish the commit. Upon successful increment, the transaction acquires locks
on its write-set, exposes the changes to memory, and releases the locks.

Another drawback of the algorithm is that before each read, it must validate the whole
read-set. This is required to maintain opacity [75] – a TM feature which mandates that
even invalid transactions must always read a consistent view of memory. NOrec tries to
avoid unneeded validation by doing it whenever the global sequence got changed (i.e., when

Mohamed M. Saad Chapter 2. Background 21

a transaction commit takes place).

NOrec is the default TM algorithm for Lerna. In Chapter 5, we describe our variant of the
algorithm that preserves ordering between concurrent transactions.

2.4.2 TinySTM

TinySTM [69] is a lightweight, lock-based STM algorithm. It uses a single-version word-based
variant of the LSA [150] algorithm. Similar to other word-based locking algorithms [53, 59],
TinySTM relies upon a shared array of locks that cover all memory addresses. Multiple
addresses are covered by the same lock, and each lock uses a single bit for state (i.e., locked
or not) with the remaining bits as a version number. This version number indicates the
timestamp of the last transaction that wrote to any of the addresses covered by this lock.
As a lock covers a portion of the address space, false conflicts could occur when concurrent
transactions access adjacent addresses.

Unlike NOrec, TinySTM uses Encounter-Time Locking (ETL); transactions acquire locks
during execution. The benefit of ETL is twofold: conflicts are discovered at an early time,
which avoids wasting processing time executing doomed transactions; and the handling of
read-after-write situations is simplified. The algorithm uses a time-based design [59, 150]
by employing a shared counter as a clock. Update transactions acquire a new timestamp
on commit, validate their read-sets, then store the timestamp to the versioned locks of their
write-sets.

TinySTM is proposed with two strategies for memory access: write-through and write-back.
Each has its advantages and limitations. Using the write-back strategy, updates are kept in a
local transaction write-buffer until commit time, while in write-through updates go to main
memory and the old values are stored in an undo log. With write-through, transactions have
lower commit-time overhead and faster read-after-write/write-after-write handling. However,
aborts are costly as they require restoring the old values of written addresses. On the other
hand, in write-back, the abort procedure simply discards the read and write sets, but commit
requires validating the read-set and moving the write-set values from the local write-buffer
to main memory.

The use of ETL is interesting to our work as it enables early detection of conflicting transac-
tions, which saves processing cycles. Additionally, the write-through strategy is perfect for
low-contention workloads as it involves lightweight commits that could lead to performance
comparable to sequential execution.

Mohamed M. Saad Chapter 2. Background 22

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20

S
p
e
e
d
u
p

Threads

S = 75% S = 50% S = 25% S = 10%

(a) Amdahl’s Law

 5 10 15 20
 0

 1

 2

 3

 4

 5

 6

 7

 8

S
p
e
e
d
u
p

Threads

S = 75% S = 50% S = 25% S = 10%

(b) Gustafson’s Law

Figure 2.6: Maximum Speedup according to Amdahl’s Law and Gustafson’s Laws

2.5 Parallelism Limits and Costs

Amdahl’s law is a formula that defines the upper bound on expected speedup to an overall
system when only part of the system is improved. Let S be the percentage of the program’s
serial portion of the code (i.e., not included in the parallelism). When executing the program
using n threads, then the expected execution time is

Time(n) = Time(1) ∗ (S + 1/n ∗ (1− S))

Therefore, the maximum speedup is given by the following formula

Speedup(n) = 1/(S + 1/n ∗ (1− S)) = n/(1 + S ∗ (n− 1))

Figure 2.6a shows the maximum possible speedup for different percentages of the sequential
portion of the code with different numbers of threads. With only 10% of the code being
sequential, the maximum speedup using 20 threads is around 7× only. Thus, at some point
adding an additional processor to the system will add less speedup than the previous one,
as the total speedup heads toward the limit of 1/(1− n). However, here we assume a fixed
size of the input. Usually, adding more processors permits solving larger problems (i.e.,
increasing the input size), consequently increasing the parallel portion of the program. This
fact is captured by Gustafson’s Law, which states that computations involving arbitrarily
large data sets can be efficiently parallelized. Accordingly, the speedup can be defined by
the following formula (See Figure 2.6b)

Speedup(n) = n− S ∗ (n− 1)

Mohamed M. Saad Chapter 2. Background 23

In general, parallel applications are much more complex than sequential ones. The com-
plexity appears in every aspect of the development cycle including: design, development,
debugging, tuning, and maintenance. Add to that the hardware requirements for running a
parallel system. The return value per added processor is not guaranteed to be reflected in
the overall performance. On the contrary, sometimes splitting the workload over even more
threads increases rather than decreases the amount of time required to finish. This is known
as parallel slowdown.

Chapter 3

Past & Related Work

3.1 Transactional Memory

The classical solution for handling shared memory during concurrent access is to protect
shared addresses with locks [11, 98]. However, locks have many drawbacks including dead-
lock, livelock, lock-convoying, priority inversion, non-composability, and the overhead of lock
management.

TM, proposed by Herlihy and Moss [93], is an alternative approach for shared memory access
with a simpler programming model. Memory transactions are similar to database transac-
tions: a memory transaction is a self-maintained entity that guarantees atomicity (all or
none), isolation (local changes are hidden till commit), and consistency (linearizable execu-
tion). TM has gained significant research interest including that for Software Transactional
Memory (STM) [170, 127, 84, 82, 91, 92, 116], Hardware Transactional Memory (HTM) [93,
81, 10, 28, 128], and Hybrid Transactional Memory (HyTM) [19, 54, 129, 104]. STM has
relatively larger overhead due to transaction management and architecture-independence.
HTM has the lowest overhead but assumes architecture specializations. HyTM seeks to
combine the best of HTM and STM.

STM can be broadly classified as static or dynamic. In static STM [170], all accessed ad-
dresses are defined in advance, while dynamic STM [91, 92, 116] relaxes that restriction. The
dominant trend in STM designs is to implement the single-writer/multiple-reader pattern,
either using locks [60, 59] or obstruction-free (i.e., a single thread executed in isolation will
complete its operation with a bounded number of steps) techniques [150, 91], though a few
implementations allow multiple writers to proceed under certain conditions [151]. In fact, it
is shown in [67] that obstruction-freedom is not an important property and results in less
efficient STM implementations than lock-based ones.

Another orthogonal TM property is address acquisition time: pessimistic approaches acquire

24

Mohamed M. Saad Chapter 3. Past & Related Work 25

addresses at encounter time [67, 33], while optimistic approaches do so at commit time [60,
59]. Optimistic address acquisitions generally provide better concurrency with an acceptable
number of conflicts [59]. STM implementations also rely on write-buffer [114, 116, 91] or
undo-log [129] approaches to ensure a consistent view of memory. In the write-buffer ap-
proach, address modifications are written to a local buffer and take effect at commit time.
In the undo-log method, writes directly change the memory and the old values are kept in a
separate log to be retrieved at abort.

Nesting (or composability) is an important feature for transactions as it allows partial roll-
back and introduces semantics between the parent transaction and its enclosed ones. Earlier
TM implementations did not support nesting or simply flattened nested transactions into a
single top-level transaction. Harris et. al. [84] argue that closed nested transactions, support-
ing partial rollback, are important to implementing composable transactions, and presented
an orElse construct that relies upon closed nesting. In [6], Adl-Tabatabai et. al. presented
an STM that provides both nested atomic regions and orElse, and introduced the notion
of mementos to support efficient partial rollback. Recently, a number of researchers have
proposed the use of open nesting. Moss described the use of open nesting to implement
highly concurrent data structures in a transactional setting [130]. In contrast to a database
setting, the different levels of nesting are not well-defined; thus, different levels may conflict.
For example, a parent and child transaction may both access the same memory location and
conflict.

3.2 Parallelization

Parallelization has been widely explored using different levels of programmer intervention.
Manual parallelization techniques rely on the programmer for analysis and design phases but
assist in the implementation and performance tuning. Open Multi-Processing (OpenMP) [51]
defines an API that supports shared memory multiprocessing programming in C, C++, and
Fortran. The programmer uses OpenMP directives to define parallel sections of the code
and the execution semantics (e.g., ordering). Synchronization of shared access is handled
through directives that define the scope of access (i.e., shared or private). OpenMP trans-
parently and efficiently handles low-level operations such as locking, scheduling and thread
stalling. Message Passing Interface (MPI) [171] is a message-based, language-independent
communications protocol used for parallel computing. MPI offers basic concepts for mes-
saging between parallel processes such as: grouping and partitioning of processes, various
types of communication (i.e., point-to-point, broadcasting or reduce), interchanged/custom
data types, and synchronization (global, pairwise, and remote locks). NVIDIA introduced
CUDA [138] as a parallel programming and computing platform for its graphics processing
units (GPUs); this enables programmers to access a GPU’s virtual instruction set and mem-
ory and use it for general purpose processing (not exclusively graphics computation). GPUs
rely on using many concurrent slow threads rather than using limited count of cores with

Mohamed M. Saad Chapter 3. Past & Related Work 26

high speed (as in CPUs), which makes GPUs suitable for data-parallel computations.

An alternative approach, semi-automatic parallelization, provides the programmer with hints
and design decisions that help him write code that is more eligible for parallelization or de-
tects data dependencies and shared accesses during the design phase when they are less
expensive to fix. Paralax [183] is a compiler framework for extracting parallel code using
static analysis. Programmers use annotations to assist the compiler in finding parallel sec-
tions. DiscoPoP [110] and Kremlin [71] are runtime tools that discover and present ranked
suggestions for parallelization opportunities. Intel Parallel Advisor (Advisor XE) [1] is a
shared-memory threading design and prototyping tool. Advisor XE helps programmers
detect parallel sections and compare performance using different threading models. Addi-
tionally, it finds data dependencies and enables eliminating them, if possible.

Automatic parallelization aims to produce best-effort performance without any program-
mer intervention; this relieves programmers from designing and writing complex parallel
applications; besides that, it is highly useful for legacy code. Polaris [68], one of the earli-
est parallelizing compiler implementations, proposes a source-to-source transformation that
generates a parallel version of the input program (Fortran). Another example is the Stand-
ford SUIF compiler [79]; it determines parallelizable loops using a set of data dependency
techniques such as data dependence analysis, scalar privatization analysis, and reduction
recognization. SUIF optimizes cache usage by ensuring that processors reuse the same data
and defragment shared addresses.

Parallelization techniques can be classified according to their granularity. Significant efforts
have focused on enhancing fine-grained parallelism such as that for: nested loops [30, 146, 49],
regular/irregular array accesses [159], and scientific computations [192] (e.g., dense/sparse
matrix calculations). Sohi et. al. [172] increase instruction-level parallelism by dividing
tasks for speculative execution amongst functional units; [154] does so with a trace-based
processor. Nikolov et. al. [137] use a hybrid processor/SoC architecture to exploit nested loop
parallelism, while [9] uses postdominance information to partition tasks on a multithreaded
architecture. However, fine-grained parallelism is not sufficient for exploitation of CMP
parallelism. Coarse-grained parallelism focuses on parallelizing tasks as units of work. In
[179], the programmer manually annotates concurrent and synchronized code blocks in C
programs and then uses those annotations for runtime parallelization. Gupta et. al. [78]
and Rugina et. al. [158] do compile-time analysis to exploit parallelism in array-based,
divide-and-conquer programs.

3.3 Optimistic Concurrency

Optimistic concurrency techniques, such as thread-level speculation (TLS) and Transactional
Memory (TM), have been proposed as a way of extracting parallelism from legacy code.
Both techniques split an application into sections using hardware or a compiler and run

Mohamed M. Saad Chapter 3. Past & Related Work 27

them speculatively on concurrent threads. A thread may buffer its state or expose it and
use a compensating procedure. At some point, the executed code may become safe and
the code proceeds as if it were executed sequentially. Otherwise, the code’s changes are
reverted and execution is restarted. Some efforts combined TLS and TM through a unified
model [18, 145, 144] to get the best of the two techniques.

3.3.1 Thread-Level Speculation

Automatic parallelization for thread-level speculation (TLS) hardware has been extensively
studied, with focus largely on loops [146, 181, 65, 111, 176, 43, 45, 142, 186]. Loop paralleliza-
tion using TLS has been proposed in both hardware [141] and software [146, 22]. The LRPD
Test [146] determines if a loop has any cross-iteration dependencies (i.e., DOALL loop) and
runs it speculatively; at runtime, a validation step is performed to check if the accessed
data is affected by any unpredictable control flow. Saltz and Mirchandane [167] parallelize
DOACROSS loops by assigning iterations to processors in a wrapped manner. To prevent
data dependency violations, processors have to stall till the correct values are produced.
Polychronopoulos [140] proposes running the maximal set of continuous iterations with no
dependencies concurrently; consequently, this method does not fully utilize all processors.
An alternative approach is to remove dependencies between the iterations. Krothapalli et.
al. [103] proposed a runtime method to remove anti Write-After-Read (WAR) and Write-
After-Write (WAW) dependencies. This method helps to remove dependencies caused by
reusing memory/registers, but does not remove computation dependencies.

Prabhu et. al. [141] presented some guidelines for programmers to manually parallelize code
using TLS. In their work, a source-to-source transformation is performed in order to run
the loops speculatively, while TLS hardware detects any data dependency violations and
acts accordingly (i.e., squashing the threads and restarting the iteration). Zilles et. al. [191]
introduced an execution paradigm called Master/Slave Speculative Parallelization (MSSP).
In MSSP, a master processor executes an approximate version of the program, based on
common-case execution, to compute selected values that the full program’s execution is
expected to compute. The masters results are checked by slave processors that execute the
original program.

Automatic and semi-automatic parallelization without TLS hardware have also been ex-
plored [105, 158, 55, 46, 42]. In [144], Raman et. al. proposed a software approach that
generalizes existing software TLS memory systems to support speculative pipelining schemes
and efficiently tunes them for loop parallelization. Jade [105] is a programming language
that supports coarse-grained concurrency and exploits a software TLS technique. Using
Jade, programmers augment the code with data dependency information and the compiler
uses this to determine which operations can be executed concurrently. Deutsch [55] ana-
lyzes symbolic access paths for interprocedural may-alias analysis with the goal of exploiting
parallelism. In [46], Choi et. al. present escape analysis for Java programs for determining

Mohamed M. Saad Chapter 3. Past & Related Work 28

object lifetimes for concurrency enhancement.

3.3.2 Parallelization using Transactional Memory

Tobias et. al. [66] proposed an epoch-based speculative execution of parallel traces using
hardware transactional memory (HTM). Parallel sections are identified at runtime based on
binary code. The conservative nature of the design does not utilize all cores; besides, relying
on techniques only at runtime for parallelization introduces nonnegligible overhead to the
framework. Similarly, DeVuyst et. al. [56] used HTM to optimistically run parallel sections,
which are detected using special hardware. Sambamba [178] showed that static optimization
at compile-time does not exploit all possible parallelism. Similar to our work, it used Software
Transactional Memory (STM) with an adaptive runtime approach for executing parallel
sections. It relies on user input for defining parallel sections. Gonzalez et. al. [73] proposed
a user API for defining parallel sections and ordering semantics. Based on user input, STM is
used to handle concurrent sections. In contrast, HydraVM does not require special hardware
and is fully automated, with optional user interaction for improving speedup.

The study at [184] classified applications into sequential, optimistically parallel, or truly
parallel; and classified tasks into ordered (speculative iterations of loop) and unordered
(critical sections). It introduced a model that captures data and inter-dependencies. For a
set of benchmarks [37, 15, 135, 41], the study showed important features for each, like size
of read and write sets, dependency density, and size of parallel sections.

Mehrara et. al. [120] present STMlite: a lightweight STM implementation customized to
facilitate profile-guided automatic loop parallelization. In this scheme, loop iterations are
divided into chunks and distributed over available cores. An outer loop is generated around
the original loop body to manage parallel execution between different chunks.

In MTX, a transaction runs under more than one thread. Vachharajani et. al. [182] presented
a hardware memory system that supports MTXs. Their system changes the hardware cache
coherence protocol to buffer speculative states and recover from mis-speculation. Software
Multi-threaded Transactions (SMTX) are used to handle memory accesses for speculated
threads. Both SMTX and STMlite use a centralized transaction commit manager and conflict
detection that is decoupled from the main execution.

3.4 Comparison with existing work

Most of the methodologies, tools and languages for parallelizing programs target scientific
and data-parallel, computation-intensive applications, where actual data sharing is very
limited and the dataset is precisely analyzed by the compiler and partitioned so that parallel
computation is possible. Examples of those approaches include [134, 153, 111, 94].

Mohamed M. Saad Chapter 3. Past & Related Work 29

Despite the flexibility and ease of use of TM, the primary drawback of using it for paral-
lelization is the significant overhead of code execution and validation [38, 166]. Previous
work [73, 178] relied primarily on the programmer for specification of parallel sections and
definition of ordering semantics. The key weaknesses with programmer reliance are:

1. it requires a full understanding of the software (e.g., the algorithm implementation and
input characteristics) and mandates the existence of the source code;

2. it does not take into account TM characteristics and factors of overhead; and

3. it uses TM as a black box utility for preserving data integrity.

In contrast, the solutions proposed in this thesis target common programs and analyze the
code in its intermediate representation without the need for the original source code. This
makes us independent of the language in which the code was written and does not enforce
exposure of the source code to our framework, especially when it is not available.

Additionally, in Lerna, we employ alias analysis and propose two novel techniques: high-
priority transactions and transactional increment, for reducing the read-set size and valida-
tion overhead and eliminating some reasons of transactional conflicts. As far as we know,
this is the first study that attempts to reduce transactional overhead based on program
characteristics.

HydraVM and MSSP [191] share the same concept of using execution traces (not just loops
such as [120, 173]). However, MSSP uses superblock [96] executions for validating the main
execution. In contrast, HydraVM splits execution equally on all threads and uses STM for
handling concurrent memory accesses. Perhaps the closest to our proposed work are [32] and
[66]. Our work differs from [32] and [66] in the following ways. First, unlike [66], we propose
STM for concurrency control, which does not need any hardware transactional support.
Second, [32] is restricted to recursive programs, whereas we allow arbitrary programs. Third,
[32] does not automatically infer transactions; rather, entire work performed in tasks (of
traces) is packaged as transactions. In contrast, we propose compile- and runtime program
analysis techniques that identify traces, which are executed as transactions.

Our work is fundamentally different from past STM-based parallelization works in that we
benefit from static analysis for reducing transactional overheads and automatically identify
parallel sections (i.e., traces or loops) by compile- and runtime program analysis techniques,
which are then executed as transactions. Additionally, our work targets arbitrary programs
(not just recursive ones as [32] does), is entirely software-based (unlike [32, 66, 56, 182]), and
does not require program source code. Thus, our proposed work of STM-based parallelization
(with the consequent advantages of STM’s concurrency control, completely software-based,
and no need for program sources), has never been done before.

Chapter 4

HydraVM

In this chapter, we present a virtual machine, called HydraVM, that automatically extracts
parallelism from legacy sequential code (at the bytecode level) through a set of techniques
including online and offline code profiling, data dependency analysis, and execution analysis.
HydraVM is built by extending the Jikes RVM [12] and modifying its baseline compiler,
and exploits software transactional memory to manage concurrent and out-of-order memory
accesses.

HydraVM targets extracting parallel jobs in the form of code traces. This approach is
different from loop parallelization [30], because a trace is equivalent to an execution path
which can be a portion of a loop, or spans loops and method calls. Traces were invented
in [16] as part of HP’s Dynamo optimizer, which optimizes native program binary at runtime
using a trace cache.

To handle potential memory conflicts, we develop ByteSTM, which is a VM-level STM
implementation. In order to preserve original semantics, ByteSTM suspends completed
transactions till their valid commit times are reached. Aborted transactions discard their
changes and are either terminated (i.e., a program flow violation or a misprediction) or
re-executed (i.e., to resolve a data-dependency conflict).

We experimentally evaluated HydraVM on a set of benchmark applications, including a
subset of the JOlden benchmark suite [34]. Our results reveal speedup of up to 5× over the
sequential code.

30

Mohamed M. Saad Chapter 4. HydraVM 31

4.1 Program Reconstruction

The program can be represented as a set of basic blocks, where each basic block is a sequence
of non-branching instructions that ends either with a branch instruction (conditional or
non-conditional) or a return. Thus, any program can be represented by a directed graph
in which nodes represent basic blocks and edges represent the program control flow – i.e.,
Control Flow Graph (CFG). Basic blocks can be determined at compile-time. However, our
main goal is to determine the context and frequency of reachability of the basic blocks – i.e.,
when the code is revisited through execution.

Basic blocks can be grouped according to their runtime behavior and execution paths. A
Trace is a set of connected basic blocks at the CFG, and it represents an execution path
(See Figure 4.1a). A Trace contains one or more conditional branches that may transfer the
control out of the trace boundaries, namely exits. Exists transfer control to the program or
to another trace. It is possible for a trace to have more than one entry, and a trace with a
single entry is named a Superblock [96].

Our basic idea is to optimistically split code into parallel traces. For each trace, we create a
synthetic method (See Figure 4.1b) that:

• Contains the code of the trace.

• Receives its entry point and any variables accessed by the trace code as input param-
eters.

• Returns the exit point of the trace (i.e., the point where the function returns).

Synthetic methods are executed in separate threads as memory transactions, and a TM
library is used for managing the contention. We name a call to the synthetic methods with
a specific set of inputs as a job. Multiple jobs can execute the same code (trace), but with
different inputs. As concurrent jobs can access and modify the same memory location, it is
required to protect memory against invalid accesses. To do so, we employ TM to organize
access to memory and to preserve memory consistency. Each transaction is mapped to a
subset of the job code or spans multiple jobs.

While executing, each transaction operates on a private copy of the accessed memory. Upon
a successful completion of the transaction, all modified variables are exposed to the main
memory. We define a successful execution of an invoked job as an execution that satisfies
the following two conditions:

• It is reachable by future executions of the program; and

• It does not cause a memory conflict with any other job having an older chronological
order.

Mohamed M. Saad Chapter 4. HydraVM 32

(a) Control Flow Graph with two Traces

(b) Transformed Program

Figure 4.1: Program Reconstruction as Jobs

Mohamed M. Saad Chapter 4. HydraVM 33

As we will detail in Section 4.2, any execution of a parallel program produced after our
transformations is made of a sequence of jobs committed after a successful execution.

In a nutshell, the parallelization targets those blocks of code that are prone to be paral-
lelized and uses the TM abstraction to mark them. Such TM-style transactions are then
automatically instrumented by us to make the parallel execution correct (i.e., equivalent to
the execution of the original serial application) even in presence of data-conflicts (e.g., the
case of two iterations of one loop activated in parallel and modifying the same part of a
shared data structure). Clearly the presence of more conflicts leads to less parallelism and
thus poor performance.

4.2 Transactional Execution

TM encapsulates optimism: a transaction maintains its read-set and write-set, i.e., the
objects read and written during the execution, and at commit time checks for conflicts on
shared objects. Two transactions conflict if they access the same object, and one access is
a write. When this happens, a contention manager [168] solves the conflict by aborting one
and allowing the other to proceed to commit, yielding (the illusion of) atomicity. Aborted
transactions are re-started, often immediately. Thus, a transaction ends by either committing
(i.e., its operations take effect), or by aborting (i.e., its operations have no effect).

The atomicity of transactions is mandatory as it guarantees the consistency of the code, even
after its refactoring to run in parallel. However, if no additional care is taken, transactions
run and commit independently of each other, and that could revert the chronological order
of the program, which must be preserved to avoid incorrect executions.

In our model, jobs run (which contain transactions) speculatively, but a transaction, in
general, is allowed to commit whenever it finishes. This property is desirable to increase
thread utilization and avoid fruitless stalls, but it can lead to transactions corresponding
to unreachable code (e.g., a break condition that changes the execution flow), and transac-
tions executing code with earlier chronological order may read future values from committed
transactions that are corresponding to code with later chronological order. The following
example illustrates this situation.

Consider the example in Figure 4.2, where three jobs A, B, and C are assigned to different
threads TA, TB, and TC and execute as three transactions tA, tB, and tC , respectively. Job A
can have B or C as its successor, and that cannot be determined until runtime. According to
the parallel execution in Figure 4.2(b), TC will finish execution before others. However, tC
will not commit until tA or tB completes successfully. This requires that every transaction
must notify the STM to permit its successor to commit.

Now, let tA conflict with tB because of unexpected memory access. STM will favor the
older transaction in the original execution and abort tB, and will discard its local changes.

Mohamed M. Saad Chapter 4. HydraVM 34

A
B

C
A

B

C
A

B

C

(a) (b) (c)

T
im
e

TxA TxC TxB

Figure 4.2: Parallel execution pitfalls: (a) Control Flow Graph, (b) Possible parallel execu-
tion scenario, and (c) Managed TM execution.

Idle

Active

Completed

Committed Aborted

Assigned to Job(s)

Completes
Execution

Validation Fails1- Reachable

2- Validated

Conflict

Released

Released

Figure 4.3: Transaction States

Later, tB will be re-executed. A problem arises if tA and tC wrongly and unexpectedly access
the same memory location. Under Figure 4.2(b)’s parallel execution scenario, this will not
be detected as a transactional conflict (TC finishes before TA). To handle this scenario,
we extend the lifetime of transactions to the earliest transaction starting time. When a
transaction must wait for its predecessor to commit, its lifetime is extended till the end of
its predecessor. Figure 4.2(c) shows the execution from the our managed TM perspective.

Although these scenarios are admissible under generic concurrency controls (where the order
of transactions is not enforced), it clearly violates the logic of the program. To resolve this
situation, program order is maintained by deferring the commit of transactions that complete
early till their valid execution time.

Motivated by that, we propose an ordered transactional execution model based on the orig-
inal program’s chronological order. Transactions execution works as follows. Transactions
have five states: idle, active, completed, committed, and aborted. Initially, a transaction is
idle because it is still in the transactional pool waiting to be attached to a job to dispatch.
Each transaction has an age identifier that defines its chronological order in the program. A
transaction becomes active when it is attached to a thread and starts its execution. When

Mohamed M. Saad Chapter 4. HydraVM 35

a transaction finishes the execution, it becomes completed. That means that the transac-
tion is ready to commit, and it completed its execution without conflicting with any other
transaction. A transaction in this state still holds all locks on the written addresses. Finally,
the transaction is committed when it becomes reachable from its predecessor transaction.
Decoupling completed and committed states, permits threads to process next transactions
without the need to wait for the transaction valid execution time.

4.3 Jikes RVM

Jikes Research Virtual Machine (Jikes RVM) is an open source implementation Java Virtual
Machine (JVM). Jikes RVM has a flexible and modular design that support prototyping,
testbed and doing the experimental analysis. Unlike most other JVM implementations,
which is usually written in native code (e.g., C, C++), Jikes is written in Java. This
characteristic provides portability, object-oriented design, and integration with the running
applications.

Jikes RVM is divided to the following components:

• Core Runtime Services : This component is responsible for managing the execution of
running applications, which includes the following:

– Thread creation, management and scheduling.

– Loading classes definitions and triggering compiler.

– Handling calls to Java Native Interface (JNI) methods

– Exception handling and traps

• Magic: This is a mechanism for handling low-level system-programing operations such
as: raw memory access, uninterruptible codes, and unboxed types. Unlike all other
components, this module is not written in pure Java, as it uses machine code to provide
this functionality.

• Compilers : it reads bytecode and generates an efficient machine code that is executable
for the current platform

• The Memory Manager Toolkit (MMTK) handles memory allocation and garbage col-
lection.

• Adaptive Optimization System (AOS) allows online feedback-directed optimizations. It
is responsible for profiling an executing application and triggers the optimizing compiler
to improve its performance.

Mohamed M. Saad Chapter 4. HydraVM 36

4.4 System Architecture

In HydraVM, we extend the AOS [12] architecture to enable parallelization of input pro-
grams, and dynamically refine parallelized sections based on execution. Figure 4.4 shows
HydraVM’s architecture, which contains six components:

• Profiler: performs static analysis and adds additional instructions to monitor data
access and execution flow.

• Inspector: monitors program execution at runtime and produces profiling data.

• Optimization Compiler: recompiles bytecode at runtime to improve performance and
triggers reloading classes definitions.

• Knowledge Repository: a store for profiling data and execution statistics.

• Builder: uses profiling data to reconstruct the program as multi-threaded code, and
tunes execution according to data access conflicts.

• TM Manager: handles transactional concurrency control to guarantee safe memory
and preserves execution order.

HydraVM works in three phases. The first phase focuses on detecting parallel patterns in the
code, by injecting the code with hooks, monitoring code execution, and determining memory
access and execution patterns. This may lead to slower code execution due to inspection
overhead. Profiler is active only during this phase. It analyzes the bytecode and instruments
it with additional instructions. Inspector collects information from generated instructions
and stores it in the Knowledge Repository.

The second phase starts after collecting enough information in the Knowledge Repository
about which blocks were executed and how they access memory. The Builder component
uses this information to split the code into traces, which can be executed in parallel. The
new version of the code is generated and is compiled by the Recompiler component. The
TM Manager manages memory access of the execution of the parallel version, and organizes
transactions commit according to the original execution order. The manager collects profiling
data including commit rate and conflicting threads.

The last phase is tuning the reconstructed program based on thread behavior (i.e., conflict
rate). The Builder evaluates the previous reconstruction of traces by splitting or merging
some of them, and reassigning them to threads. The last two phases work in an alternative
way till the end of program execution, as the second phase represents a feedback to the third
one.

HydraVM supports two modes: online and offline. In the online mode, we assume that
program execution is long enough to capture parallel execution patterns. Otherwise, the

Mohamed M. Saad Chapter 4. HydraVM 37

Builder

Inspector

Optimization Compiler

Profiler

TM Manager

Figure 4.4: HydraVM Architecture

Mohamed M. Saad Chapter 4. HydraVM 38

first phase can be done in a separate pre-execution phase, which can be classified as offline
mode.

We now describe each of HydraVM’s components.

4.4.1 Bytecode Profiling

To collect this information, we modify Jikes RVM’s baseline compiler to insert additional
instructions (in the program bytecode) at the edges of selected basic blocks (e.g., branching,
conditional, return statements) that detect whenever a basic block is reached. Additionally,
we insert instructions into the bytecode to:

• Statically detect the set of variables accessed by the basic blocks, and

• Mark basic blocks with irrevocable calls (e.g., input/output operations), as they need
special handling in program reconstruction.

This code modification does not affect the behavior of the original program. We call this
version of the modified program, profiled bytecode.

4.4.2 Trace detection

With the profiled bytecode, we can view the program execution as a graph with basic blocks
and variables represented as nodes, and the execution flow as edges. A basic block that is
visited more than once during execution will be represented by a different node each time
(See Figure 4.5b). The benefits of execution graph are multifold:

• Hot-spot portions of the code can be identified by examining the graph’s hot paths,

• Static data dependencies between blocks can be determined, and

• Parallel execution patterns of the program can be identified.

To determine traces, we use a string factorization technique: each basic block is represented
by a character that acts like a unique ID for that block. Now, an execution of a program
can be represented as a string. For example, Figure 4.5a shows a matrix multiplication code
snippet. An execution of this code for a 2x2 matrix can be represented with the execution
graph shown at Figure 4.5b, or as the string abjbhcfefghcfefghijbhcfefghcfefghijk. We
factorize this string into its basic components using a variant of Main’s algorithm [113]. The
factorization converts the matrix multiplication string into ab(jb(hcfefg)2hi)2jk. Using this
representation, combined with grouping blocks that access the same memory locations, we
divide the code into multiple sets of basic blocks, namely traces (See Figure 4.5c). In our
example, we detected three traces:

Mohamed M. Saad Chapter 4. HydraVM 39

f o r (In t eg e r i = 0 ; i < DIMx; i++)
f o r (In t eg e r j = 0 ; j < DIMx; j++)

f o r (In t eg e r k = 0 ; k < DIMy; k++)
X[i] [j] += A[i] [k] ∗ B[k] [j] ;

(a) Matrix Multiplication Code

e

g

f

e

g

f

h i

j b

e

g

f

e

g

f

h i

j bb j

a k

11X 12X 21X 22X

(b) 2x2 Matrix Multiplication Execution Graph with Traces

a

b

j h

i

k c

f

g

e

(c) Control Flow Graph with Traces

Figure 4.5: Matrix Multiplication

Mohamed M. Saad Chapter 4. HydraVM 40

1. Trace ab with two entries (to a and to b), and two exits (to j and to h)

2. Trace jk with a single entry (to j), and two exits (to z and to b), and

3. Trace hcfefg two entries (to h and to e) and three exits (to h, to e and to i). In this
trace the inner most loop was unrolled, so each trace represents two iterations of the
inner most loop. This is reflected in Figure 4.5c by adding an extra node f . Note that
the transition from g to h is represented by an exit and an entry, not as an internal
transition within the trace. This difference enables running multiple jobs concurrently
executing the same trace code.

Thus, we divide the code, optimistically, into independent parts called traces that represent
subsets of the execution graph. Each trace does not overlap with other traces in accessed
variables, and represents a long sequence of instructions, including branch statements, that
commonly execute in this pattern. Since a branch instruction has taken and not taken paths,
the trace may contain one or both of the two paths according to the frequency of using those
paths. For example, in biased branches, one of the paths is often considered; so it is included
in the trace, leaving the other path outside the trace. On the other hand, in unbiased
branches, both paths may be included in the trace. Therefore, a trace has multiple exits,
according to the program control flow during its execution. A trace also has multiple entries,
since a jump or a branch instruction may target one of the basic blocks that constructs it.
The builder module orchestrates the construction of traces and distributes them over parallel
threads. However, this may potentially lead to an out-of-order execution of the code, which
we address through STM concurrency control (see Section 4.2). I/O instructions are excluded
from parallel traces, as changing their execution order affects the program semantics, and
they are irrevocable (i.e., at transaction aborts).

4.4.3 Parallel Traces

Upon detection of candidate trace for parallelization, the program is reconstructed as a
producer-consumer pattern. In this pattern, two daemons threads are active, producer and
consumer, which share a common fixed-size queue of jobs. Recall that a job represents a
call to the synthetic methods executing the trace code with a specific set of inputs. The
producer generates jobs and adds them in the queue, while the consumer dequeues the jobs
and executes them. HydraVM uses a Collector module and an Executor module to process
the jobs: the Collector has access to the generated traces and uses them as jobs, while the
Executor executes the jobs by assigning them to a pool of core threads.

Figure 4.6 shows the overall pattern of the generated program. Under this pattern, we utilize
the available cores by executing jobs in parallel. However, doing so requires handling of the
following issues:

• Threads may finish in out of original execution order.

Mohamed M. Saad Chapter 4. HydraVM 41

Threads

Executor

Collector

Traces

jobs queue

Reconstructed Program

Figure 4.6: Program Reconstruction as a Producer-Consumer Pattern

• The execution flow may change at runtime causing some of the assigned traces to be skipped
from the correct execution.

• Due to the differences between the actual execution flow in the profiling phase and the actual

execution, memory access conflicts between concurrent accesses may occur. Also, memory

arithmetic (e.g., arrays indexed with variables) may easily violate the program reconstruction

(see example in Section 4.4.5).

To tackle these problems, we execute each job as a transaction. A transaction’s changes are
deferred until commit. At commit time, a transaction commits its changes if and only if: 1)
it did not conflict with any other concurrent transaction, and 2) it is reachable under the
execution.

4.4.4 Reconstruction Tuning

TM preserves data consistency, but it may cause degraded performance due to successive
conflicts. To reduce this, the TM Manager provides feedback to the Builder component to
reduce the number of conflicts. We store the commit rate, and the conflicting scenarios in
the Knowledge Repository to be used later for further reconstruction. When the commit
rate reaches a minimum preconfigured rate, the Builder is invoked. Conflicting traces are
combined into a single trace. This requires changes to the control instructions (e.g., branching
conditions) to maintain the original execution flow. The newly reconstructed version is
recompiled and loaded as a new class definition at runtime.

Mohamed M. Saad Chapter 4. HydraVM 42

i

Figure 4.7: 3x3 Matrix Multiplication Execution using Traces Generated by profiling 2x2
Matrix Multiplication

4.4.5 Misprofiling

Profiling depends mainly on the program input. This input may not reflect some runtime
aspects of the program flow (e.g., loops limits, biased branches). To illustrate this, we
return to the matrix multiplication example in Figure 4.5a. Based on the profiling using
2x2 matrices, we construct the execution graph shown in Figure 4.5b. Now, recall our three
traces ab, hcfefg, and jk, and assume we need to run this code for matrices 2x3 and 3x2.
The Collector will assign jobs to the Executor, but upon the execution of the trace jk, the
Executor will find that the code exits after j and needs to execute bs. Hence, it will request
the Collector to schedule the job ab, with an entry to basic block b, in the incoming job set.
Doing so allows us to extend the flow to cover more iterations. Note that the entry point
must be sent to the synthetic method that represents the trace, as it should be able to start
from any of its basic blocks (e.g., ab will start from b not a).

In Figure 4.7, traces are represented by blocks with their entries points on the left side, and
exits on the right. The figure describes the execution using the traces extracted by profiling
2x2 matrix (See example at Section 4.4.1).

4.5 Implementation

4.5.1 Detecting Real Memory Dependencies

Recall that we use bytecode as the input, and concurrency refactoring is done entirely at the
VM level. Compiler optimizations, such as register reductions and variable substitutions,
increase the difficulty in detecting memory dependencies at the bytecode-level. For example,

Mohamed M. Saad Chapter 4. HydraVM 43

y = 1 y1 = 1
y += 2 y2 = y1 + 2
x = y / 2 x1 = y2 / 2

Figure 4.8: Static Single Assignment form Example

two independent basic blocks in the source code may share the same set of local variables
or loop counters in the bytecode. To overcome this problem, we transform the bytecode
into the Static Single Assignment form (SSA) [24]. The SSA form guarantees that each local
variable has a single static point of definition and is assigned exactly once, which significantly
simplifies analysis. Figure 4.8 shows an example of the SSA form.

Using the SSA form, we inspect assignment statements, which reflect memory operations re-
quired by the basic block. At the end of each basic block, we generate a call to a hydra touch
operation that notifies the VM about the variables that were accessed in that basic block.
In the second phase of profiling, we record the execution paths and the memory accessed
by those paths. We then package each set of basic blocks in a trace. Traces should not be
conflicting and access the same memory objects. However, it is possible to have such con-
flicts since our analysis uses information from past execution (which could be different from
the current execution). We intentionally designed the data dependency algorithm to ignore
some questionable data dependencies (e.g., loop index). This gives more opportunities for
parallelization since if at run time a questionable dependency occurs, then TM will detect
and handle it. Otherwise, such blocks will run in parallel and greater speedup is achieved.

4.5.2 Handing Irrevocable Code

Input and output instructions must be handled as a special case in the reconstruction and
parallel execution as they cannot be rolled back. Traces with I/O instructions are therefore
marked for special handling. The Collector never schedules such marked traces unless they
are reachable – i.e., they cannot be run in parallel with their preceding traces. However,
they can be run in parallel with their successor traces. This implicitly ensures that at most
one I/O trace executes (i.e., only a single job of this trace runs at a time).

4.5.3 Method Inlining

Method inlining is the insertion of the complete body of a method in every place that it is
called. In HydraVM, method calls appear as basic blocks, and in the execution graph, they
appear as nodes. Thus, inlining occurs automatically as a side effect of the reconstruction
process. This eliminates the time overhead of invoking a method.

Another interesting issue is handling recursive calls. The execution graph for recursion
will appear as a repeated sequence of basic blocks (e.g., abababab . . .). Similar to method-

Mohamed M. Saad Chapter 4. HydraVM 44

inlining, we merge multiple levels of recursion into a single trace, which reduces the overhead
of managing parameters over the heap. Thus, a recursive call under HydraVM will be formed
as nested transactions with lower depth than the original recursive code.

4.5.4 ByteSTM

ByteSTM [125] is STM that operates at the bytecode level, which yields the following ben-
efits:

• Significant implementation flexibility in handling memory access at low-level (e.g.,
registers, thread stack) and for transparently manipulating bytecode instructions for
transactional synchronization and recovery;

• Higher performance due to implementing all TM building blocks (e.g., versioning,
conflict detection, contention management) at bytecode-level; and

• Easy integration with other modules of HydraVM (Section 4.4)

We modified the Jikes RVM to support TM by adding instructions, xBegin and xCommit,
which are used to start and end a transaction, respectively. Each load and store inside a
transaction is done transactionally: loads are recorded in a read signature and stores are
sandboxed; stores are stored in a transaction-local storage, called the write-set. The address
of any variable (accessible at the VM level) is added to the written signature. The read/write
signature is represented using a Bloom filter [25] and used to detect read/write or write/write
conflicts. This approach is more efficient than comparing transaction read-set and write-set
of transactions, but it also increases false negatives. (With the correct signature size, the
effect of false positives can be reduced – we do this.)

When a load is called inside a transaction, we first check the write-set to determine if this
location has been written to before and if so, the value from the write-set is returned.
Otherwise, the value is read from the memory and the address signature is added to the
read signature. At commit time, the read signature and write the signature of concurrent
transactions are compared, and if there is a conflict, the newer transaction is aborted and
restarted again. If the validation shows no conflict, then the write-set is written to memory.

For a VM-level STM, greater optimizations are possible than that for non VM-level STMs
(e.g., Deuce [101], DSTM2 [91]). At the VM level, data types do not matter; only their sizes
do. This allows us to simplify the data structures used to handle transactions. One through
eight-byte data types is handled in the same way. Similarly, all different data addressing is
reduced to absolute addressing. Primitives, objects, array elements, and statics are handled
differently inside the VM, but they are translated into an absolute address and a specific
size in bytes. This simplifies and speeds-up the write-back process, since we only care about
writing back some bytes at a specific address. This allows us to work at the field level and

Mohamed M. Saad Chapter 4. HydraVM 45

at the array element level, which significantly reduces conflicts: if two transactions use the
same object, but each use a different field inside the object, then no conflict occurs (similarly
for arrays).

Another optimization is the ability to avoid the VM’s Garbage Collector (GC). GC can reduce
STM performance when attempting to free unused objects. Also, dynamically allocating new
memory to be used by STM is costly. ByteSTM disables the GC for the memory used for the
internal data structures that support STM, we statically allocate memory for STM, handle
it without interruption from the GC, and manually recycle it. The new memory is allocated
if there is a memory overflow. Note that if a hybrid TM is implemented in Java, then it must
be implemented inside the VM. Otherwise, hybrid TM will violate invariants of internal data
structures used inside the VM, leading to inconsistencies.

We also inline the STM code inside the load and store instructions and the newly added
instructions xBegin and xCommit. Thus, there is no overhead in calling the STM procedures
in ByteSTM.

Each job has an order that represents its logical order in the sequential execution of the
original program. To preserve the data consistency between jobs, STM must be modified to
support this ordering. Thus, in ByteSTM, when a conflict is detected between two jobs, we
abort the one with the higher order. Also, when a block with a higher order tries to commit,
we force it to sleep until its order is reached. ByteSTM commits the block if no conflict is
detected.

When attempting to commit, each transaction checks its order against the expected order. If
they are the same, the transaction proceeds, validates its read-set, commit its write-set, and
updates the expected order. Otherwise, it sleeps and waits for its turn. The validation is done
by scanning the thread stack and registers, and collecting the accessed objects’ addresses.
Objects IDs are retrieved from the object copies and used to create a transaction signature,
which represents the memory addresses accessed by the transaction. Transactional conflicts
are detected using the intersection of transaction signatures. After committing, each thread
checks if the next thread is waiting for its turn to commit, and if so, that thread is woken up.
Thus, ByteSTM keeps track of the expected order and handles commit in a decentralized
manner.

4.5.5 Parallelizing Nested Loops

Nested loops introduce a challenge for parallelization, as it is difficult to parallelize both
inner and outer loops and imposes complexity to the system design. In HydraVM, we
handle nested loops as nested transactions using the closed-nesting model [132]: aborting a
parent transaction aborts all its inner transactions, but not vice versa, and changes made
by inner transactions become visible to their parents when they commit, but those changes
are hidden from outside world till the highest level parent’s commit.

Mohamed M. Saad Chapter 4. HydraVM 46

e

g

f

e

g

f

h i

j b

e

g

f

e

g

f

h i

j bb j

a k

11X 12X 21X 22X

Figure 4.9: Nested Traces

1. Inner transactions share the read-set/write-set of their parent transactions;

2. Changes made by inner transactions become visible to their parent transactions when
the inner transactions commit, but they are hidden from the outside world till the
commit of the highest level parent;

3. Aborting an inner transaction aborts only its changes (not other sibling transactions,
and not its parent transaction);

4. Aborting a parent transaction aborts all its inner transactions;

5. Inner transactions may conflict with each other and also with other, non-parent, higher-
level transactions; and

6. Inner transactions are mutually ordered; i.e., their ages are relative to the first inner
transaction of their parent. When an inner transaction conflicts with another inner
transaction of a different parent, the ages of parent transactions are compared.

The use of closed nesting, instead other models such as linear nesting [132], is twofold:

1. Inner transactions run concurrently; conflict is resolved by aborting the higher age
transaction.

2. We leverage the partial rollback of inner-transactions without affecting the parent or
sibling transactions.

Although open nesting model [131] allows further increases in concurrency, open nesting con-
tradicts our ordering model. In open nesting, inner transactions are permitted to commit

Mohamed M. Saad Chapter 4. HydraVM 47

Configurations

Processor AMD Opteron Processor
CPU Cores 8
Clock Speed 800 MHz
L1 64 KB
L2 512 KB
L3 5 MB
Memory 12 GB
OS Ubuntu 10.04, Linux

Table 4.1: Testbed and platform parameters for HydraVM experiments.

before its parent transaction, and if the parent transaction was aborted it uses a compen-
sating action to revert the changes done by its committed inner transactions. However, in
our model allowing inner transactions to commit will violate the ordering rule (lower trans-
actions commit first), and preventing it from commit (i.e., wait until its chronological order)
will cancel the idea behind open nesting.

Consider our earlier matrix multiplication example (See Section 4.4). From the execution
string, ab(jb(hcfefg)2hi)2jk, we can create two nested traces: an outer trace jb(hcfefg)2hi,
and an inner trace hcfefg (See Figure 4.9). The outer trace runs within a transaction,
executing jbhi, that invokes a set of inner transactions hcfefg after the execution of the
basic block b.

4.6 Experimental Evaluation

Benchmarks. To evaluate HydraVM, we used five applications as benchmarks. These
include a matrix multiplication application and four applications from the JOlden benchmark
suite [34]: Minimum Spanning Tree (MST), tree add (TreeAdd), Traveling Salesman Problem
(TSP), and Bitonic Sort (BiSort). The applications are written as sequential applications,
though they exhibit data-level parallelism.

Testbed. We conducted our experiments on an 8-core multicore machine. Each core is an
800 MHz AMD Opteron Processor, with 64 KB L1 data cache, 512 KB L2 data cache, and
5 MB L3 data cache. The machine ran Ubuntu Linux.

Evaluation. Table 4.2 shows the result of the Profiler analysis on the benchmarks. The
table shows the number of basic blocks, traces, and the average number of instructions per
basic block. The lower part of the table shows the number of executed jobs by the Executor,
and the maximum level of nesting during the experiments.

Using our techniques, we manage to split the sequential implementation of the benchmarks

Mohamed M. Saad Chapter 4. HydraVM 48

Table 4.2: Profiler Analysis on Benchmarks

Benchmark Matrix TSP BiSort MST TreeAdd

Avg. Instr. per BB. 4.29 4.2 4.75 3.7 4.1
Basic Blocks 31 77 24 52 10
Traces 3 12 5 3 4
Jobs 1001 1365 1023 12241 8195
Max Nesting 2 5 2 1 3

 0

 1

 2

 3

 4

 5

 6

Matrix TSP BiSort MST TreeAdd

S
pe

ed
up

2 Processors
4 Processors
6 Processors
8 Processors

Figure 4.10: HydraVM Speedup

into parallel jobs that exploit the data-level parallelism. Figure 4.10 shows the speedup ob-
tained for different number of processors. For matrix multiplication, HydraVM reconstructs
the outer two loops into nested transactions, while the inner-most loop is formed as a trace
because of the iteration dependencies. In TSP, BiSort, and TreeAdd, each multiple level of
the recursive call is inlined into a single trace. For the MST benchmark, each iteration over
the graph adds a new node to the MST, which creates inter-dependencies between iterations.
However, updating the costs from the constructed MST and other nodes presents a good
parallelization opportunity for HydraVM.

Mohamed M. Saad Chapter 4. HydraVM 49

4.7 Discussion

We presented HydraVM, a JVM that automatically refactors concurrency in Java programs
at the bytecode level. HydraVM extracts control-level parallelism by reconstructing program
as independent traces. Loops, as a special case of traces, is included into the reconstruction
procedure which supports data-level parallelism. Although, our goal targets extracting code
traces, most of the applications spend most of time executing loops. Loops have interesting
features such as: symmetric code blocks, data level parallelism, recurrences, and induction
variables. In the next chapter, we focus on loops as a unit for parallelization.

Online profiling and adaptive compilation provide transparent execution of the programs.
Nevertheless, it adds an overhead to the runtime. Such overhead is non-negligible for short
life applications, or ones with unpredictable execution paths. Static analysis of the code
could be beneficial for providing an initial guess of hot-spot regions of the code, and build
dependency relations between code-blocks. Adding a pre-execution static analysis and em-
ploying data dependency analysis could enhance the code generation and reduce transactional
overhead, we followed this approach in Lerna.

Chapter 5

Lerna

In this chapter, we present Lerna, a system that automatically and transparently detects
and extracts parallelism from sequential code. Lerna is cross-platform and independent of
the programming language, and does not require the analysis of the application’s source
code, it simply takes its intermediate representation compiled using LLVM [108], the well-
known compiler infrastructure, as input and produces ready-to-run parallel code as output1,
thus finding its best fit with (legacy) sequential applications. This approach makes Lerna
independent also of the specific hardware used.

Similar to HydraVM, the parallel execution exploits memory transactions to manage con-
current and out-of-order memory accesses. While, HydraVM presents an initial concept of
a virtual machine that exploits in-memory transactions to parallelize traces, Lerna focus on
parallelizing loops, which usually contains the hotspot sections in many applications. Recall
that HydraVM reconstructs the code at runtime through recompilation and reloading class
definition, and it is obligated to run the application through the virtual machine. Unlike
HydraVM, Lerna does not change the code at runtime through recompilation, which enable
us to compile the code to its native representation. Nevertheless, Lerna supports adaptive
execution of transformed programs through changing some key perfomance parameters of its
runtime library (See Section 5.8). Finally, the extensive profiling phase at HydraVM relies
on establishing a relation between basic blocks and their accessed memory addresses, which
limits its usage to small size applications. In Lerna, we replaced that with a static alias
analysis phase combined with light offline profiling step that complement our static analysis.

Lerna is a complete system, which overcome all the above limitations and embeds system
and algorithmic innovations to provide high performance. Our experimental study involves
the transformation of 10 sequential applications into parallel. Results showed an average of
2.7× speedup for micro-benchmarks and 2.5× for the macro-benchmarks.

1Lerna supports the generation of native executable as output.

50

Mohamed M. Saad Chapter 5. Lerna 51

5.1 Challenges

Despite the high-level goal showed above, without fine-grain optimizations and innovations,
deploying TM-style transactions to blocks of code that are prone to be parallelized leads
the application performance to be slower (often much slower) than the sequential, non-
instrumented execution. As an example of that, a blind parallelization of a loop (Figure 5.1a)
would mean wrapping the whole body of the loop within a transaction (Figure 5.1b). By
doing so, we let all transactions conflict with each other on, at least, the increment of the
variable c or i2. In addition: variables that have been never modified within the loop may be
transactionally accessed; the transaction commit order should be the same as the completion
order of the iterations if they would have executed sequentially; aborts could be costly, as
it involves retrying the whole transaction including local processing work. The combination
of these factors nullifies any possible gain due to parallelization, thus letting the application
pay just the overhead of the transactional instrumentation and, as a consequence, providing
performance slower than sequential execution.

Lerna does not suffer from the above issues (as showed in Figure 5.1c). It instruments a
small subset of code instructions, which is enough to preserve correctness, and optimizes the
processing by a mix of static optimizations and dynamic tuning. The first include: loop sim-
plification, induction variable reduction, removal of non-transactional work from the context
to restore after a conflict, exploitation of the symmetry of executed parallel code, and an
optimized in-order commit of transactions. Regarding the latter, Lerna provides an adaptive
runtime layer to improve the performance of the parallel execution. This layer is fine-tuned
by collecting feedbacks from the actual execution in order to capture the best settings of the
key performance parameters that most influence the effectiveness of the parallelization (e.g.,
number of worker threads, size and number of parallel jobs).

The results are impressive. We evaluated Lerna’s performance using a set of 10 applica-
tions including micro-benchmarks from the RSTM [2] framework, STAMP [37], a suite of
sequential applications designed for evaluating in-memory concurrency controls, and Flu-
idanimate [133], an application performing physics simulations. The reason we selected
them is because they provide (except for Fluidanimate) also a performance upper-bound
for Lerna. In fact, they are released with a version that provides synchronization by us-
ing manually defined, and optimized, transactions. This way, besides the speedup over the
sequential implementation, we can show the performance of Lerna against the same ap-
plication with an efficient, hand-crafted solution. Lerna is on average 2.7× faster than the
sequential version using micro-benchmarks (with a pick of 3.9×), and 2.5× faster considering
macro-benchmarks (with a top speedup of one order of magnitude reached with STAMP).

Lerna is self-contained, completely automated and transparent system that makes sequential
applications parallel. Thanks to an efficient use of transactional blocks, it finds its sweet

2Libraries that require programmer interaction, as OpenMP, already offer programming primitives to
handle loops increments.

Mohamed M. Saad Chapter 5. Lerna 52

c = min ;
whi l e (i < max){

i ++;
c = c + 5 ;
. . . l o c a l p r o c e s s i n g work . . .
i f (i < j)

k = k + c ;
}

(a) Loop with data dependency

c = min ;
whi l e (i < max){

atomic{
TX WRITE(i , TX READ(i) + 1) ;
TX WRITE(c , TX READ(c) + 5) ;
. . . l o c a l p r o c e s s i n g work . . .
i f (TX READ(i) < TX READ(j))

TX WRITE(k ,
TX READ(k) + TX READ(c)) ;

}
}

(b) Loop with atomic body

c = min ;
whi l e (i < max){

i ++;
p a r a l l e l (i){

c = min + i ∗5 ;
. . . l o c a l p r o c e s s i n g work . . .
atomic{
i f (i < j)

TX INCREMENT(k , c) ;
}

}
}

(c) Loop with parallelized body

Figure 5.1: Lerna’s Loop Transformation: from Sequential to Parallel.

Mohamed M. Saad Chapter 5. Lerna 53

C

C++

Objective C

Clang

frontend

llvm-gcc

frontend

GHC

frontend

CUDA

frontend

Fortran

Haskell

CUDA

x86

backend

ARM

backend

AMD

backend

PowerPC

backend

LLVM

Optimization
(Intermediate

Representation)

Chaining

IBM PowerPC

AMD

x86

ARM

VMKit

frontend
Java

Cloudera

Impala

frontend

SQL

Figure 5.2: LLVM Three Layers Design

spot with applications involving data sharing but not simply those with partitioned memory
access.

5.2 Low-Level Virtual Machine

Low-Level Virtual Machine (LLVM) is a modular and reusable collection of libraries, with
well-defined interfaces, that define a complete compiler infrastructure. It represents a middle
layer between front-end language-specific compilers, and back-end instruction sets generators.
LLVM offers an Intermediate Representation (IR), bytecode, that can be optimized and
transformed into more efficient IR. Optimizers can be chained to provide multi-level of
optimizations at different levels of scopes (modules, call graph, function, loop, region, and
basic block). LLVM supports a language-independent instruction set and data types in the
form of Single Static Assignment (SSA).

Such separation of layers help developers to write front-ends to get use of underlying compiler
optimizations. At the current stage, LLVM supports most of the widely used languages such
as: C, C++, Objective-C, Java, Fortran, Haskell, and Ruby – the full list at [3]. The most
common LLVM front-end is Clang which support compiling C, Objective-C and C++ codes.
CLange is supported by Apple as a replacement for C/Objective-C compiler in the GCC
system. Likewise, several platforms including: x86/x86-64, AMD, ARM, SPARC, MIPS,

Mohamed M. Saad Chapter 5. Lerna 54

and Nvidia, have LLVM back-end generators for its instruction sets – See Figure 5.2. These
factors together builds a large community for LLVM as a popular compiler infrastructure.
With LLVM, researchers build their optimizations on the intermediate layer using LLVM
byte code, and have their optimizations available for large set of languages/platforms.

5.3 General Architecture and Workflow

Lerna is deployed as a container of:

• an automated software tool that performs a set of transformations and analysis steps
(also called passes in accordance with the terminology used by LLVM) that run on the
LLVM intermediate representation of the original binary application code. It produces
a refactored multi-threaded version of the input program that can run efficiently on
multiprocessor architectures;

• a runtime library that is linked dynamically to the generated program, and is respon-
sible for: 1) organizing the transactional execution of dispatched jobs so that the
original program order (i.e., the chronological order) is preserved; 2) selecting (adap-
tively) the most effective number of worker threads according to the actual setup of
the runtime environment, and based on the feedbacks collected from the online exe-
cution; 3) scheduling jobs to threads according to threads’ characteristics (e.g., stack
size, priority); and 4) performing memory housekeeping and releasing computational
resources.

Figure 5.3 shows the architecture and the workflow of Lerna. Lerna operates at the LLVM
intermediate representation of the input program, thus it does not require the application to
be written in any specific programming language. However, Lerna’s design does not preclude
the programmer from providing hints that can be leveraged to make the refactoring process
more effective. In this work we provide the fully automated process without considering any
programmer intervention, and we discuss how to exploit the prior application knowledge in
Section 5.8. Lerna’s workflow includes the following three steps in this order: Code Profiling,
Static Analysis, and Runtime.

In the first step, our software tool executes the original (sequential) application by activating
our own profiler that collects some important parameters (e.g., execution frequencies) later
used by the Static Analysis.

The goal of the Static Analysis is to produce a multi-threaded (also called reconstructed)
version of the input program. This process evolves by following the below passes:

• Dictionary Pass. It scans the input program to provide a list of the accessible (i.e.,
which is not either a system-call or a native-library call) functions of the bytecode (or

Mohamed M. Saad Chapter 5. Lerna 55

Input

Program

(bytecode)

metadata
+

bytecode

@
Optional User

Annotations

Job(...)

Dispatch
& Sync

E
x
e
c
u

to
r

Knowledge
Base

Jobs Queue

Workers

Manager

Workers
Pool

Reconstructed

Program

(multi-thread)

Input Data
__ _ ___ _ _
_ __ _ _ _ _
_ _ _ _ _ __
_ _ __ _ __

Lerna Runtime

Dictionary
Pass

Builder
Pass

Transacti er
 PassStatic Analysis

Abort
Rate

Commit
Rate

Dequeue

EnqueueAcquire TxRelease Tx

Synch

Dispatch
STM

Tx Pool

Garbage
Collector

Contention
Manager

Pro led

Code

Input

Training Data

Pro ling
Pass

Code Pro ling

Pro ling
Info

Ordering

API

T
M

 A
lg

o
ri

th
m

Local

Queue

Pending Tx

Descriptors

Order

State

Flag

WORKER

Figure 5.3: Lerna’s Architecture and Workflow

Mohamed M. Saad Chapter 5. Lerna 56

the bitcode as named by LLVM) that we can analyze to determine how to transform.
By default, any call to an external function is flagged as unsafe. This information
is important because transactions cannot contain unsafe calls as they may include
irrevocable (i.e., which cannot be further aborted) operations, such as I/O system
calls.

• Builder Pass. It detects the code eligible for parallelization; it transforms this code into
a callable synthetic method; and it defines the transaction’s boundaries (i.e., where the
transaction begins and ends).

• Transactifier Pass. It applies the alias analysis [47] (i.e., it detects if multiple references
point to the same memory location) and some memory dependency techniques (e.g.,
given a memory operation, extracts the preceding memory operations that depend
on it) to reduce the number of transactional reads and writes. It also provides the
instrumentation of memory operations invoked within the body of a transaction by
wrapping them into transactional calls for read, write or allocate.

Once the Static Analysis is complete, the reconstructed version of the program is linked to
the application through the Lerna runtime library, which is mainly composed of the following
three components:

• Executor. It dispatches the parallel jobs and provides the exit of the last job to the
program. To exploit parallelism, the executor dispatches multiple jobs at-a-time by
grouping them as a batch. Once a batch is complete, the executor simply waits for the
result of this batch. Not all the jobs are enclosed in a single batch, thus the executor
could need to dispatch more jobs after the completion of the previous batch. If no more
job should be dispatched, the executor finalizes the execution of the parallel section.

• Workers Manager. It extracts jobs from a batch and it delivers ready-to-run transac-
tions at available worker threads.

• TM. It provides the handlers for transactional accesses (read and write) performed by
executing jobs. In case a conflict is detected, it also behaves as a contention manager
by aborting the conflicting transactions with the higher chronological order (this way
the original program’s order is respected). Also, it handles the garbage collection of
the memory allocated by a transaction, after it completes.

The runtime library makes use of two additional components: the jobs queue, which stores the
(batch of) dispatched jobs until they are executed; and the knowledge base, which maintains
the feedbacks collected from the execution in order to enable the adaptive behavior.

Mohamed M. Saad Chapter 5. Lerna 57

5.4 Code Profiling

Lerna uses the code profiling technique for identifying hotspot sections of the original code,
namely those most visited during the execution. This information is fundamental for letting
the refactoring process focus on the real parts of the code that are fruitful to parallelize (e.g.,
it would not be effective to parallelize a for-loop with only two iterations).

To do that, we consider the program as a set of basic blocks, where each basic block is a se-
quence of non-branching instructions that ends either with a branch instruction (conditional
or non-conditional) or a return. Given that, any program can be represented as a graph in
which nodes are basic blocks and edges reproduce the program control flow (an example of
such a graph is shown in Figure 5.5). Basic blocks are easily determined from the bytecode
(see Figure 5.4).

In this phase, our goal is to identify the context, frequency and reachability of each basic
block. To determine that information, we profile the input program by instrumenting its
bytecode at the boundaries of any basic blocks to detect whenever a basic block is reached.
This code modification does not affect the behavior of the original program. We call this
version of the modified program profiled bytecode.

5.5 Program Reconstruction

In the following, we illustrate in detail the transformation from sequential code to parallel
made during the static analysis phase. The LLVM intermediate representation (i.e., the
bytecode) is in the static single assignment (SSA) form. With SSA, each variable is defined
before it is used, and it is assigned exactly once. Figure 5.4 shows LLVM intermediate
representation of the loop Figure 5.1a. The code at Figure 5.4 is in SSA form, and is divided
into sets of basic blocks. Each basic block starts with an optional label; it is composed of
LLVM assembly instructions; and it ends with a branching instruction (terminator).

5.5.1 Dictionary Pass

In the dictionary pass, a full bytecode scan is performed to determine the list of accessible
code (i.e., the dictionary) and, as a consequence, the external calls. Any call to an external
function that is not included in the input program prevents the enclosing basic block from
being included in the parallel code. However, the user can override this rule by providing a
list of safe external calls. An external call is defined as safe if:

• It is revocable (e.g., it does not perform input/output operations);

• It does not affect the state of the program; and

Mohamed M. Saad Chapter 5. Lerna 58

entry :
%r e t v a l = a l l o c a i32 , a l i g n 4
br l a b e l %whi le . cond

whi le . cond :
; preds = %i f . end , %entry

%0 = load i32 ∗ %i , a l i g n 4
%1 = load i32 ∗ %max , a l i g n 4
%cmp = icmp s l t i 32 %0, %1
br i 1 %cmp , l a b e l %whi le . body , l a b e l %whi le . end

whi l e . body : ; preds = %whi le . cond
%2 = load i32 ∗ %i , a l i g n 4
%inc = add nsw i32 %2, 1
s t o r e i 32 %inc , i 32 ∗ %i , a l i g n 4
c a l l void @ Z19do loca l p roce s s ingv ()
%3 = load i32 ∗ %i , a l i g n 4
%4 = load i32 ∗ %j , a l i g n 4
%cmp1 = icmp s l t i 32 %3, %4
br i 1 %cmp1 , l a b e l %i f . then , l a b e l %i f . end

i f . then : ; preds = %whi le . body
%5 = load i32 ∗ %k , a l i g n 4
%add = add nsw i32 %5, 1
s t o r e i 32 %add , i 32 ∗ %k , a l i g n 4
br l a b e l %i f . end

i f . end :
; preds = %i f . then , %whi le . body

br l a b e l %whi le . cond
whi le . end : ; preds = %whi le . cond

%6 = load i32 ∗ %r e t v a l
r e t i 32 %6

Figure 5.4: The LLVM Intermediate Representation using SSA form of Figure 5.1a.

Mohamed M. Saad Chapter 5. Lerna 59

• It is thread safe.

A common example of safe calls are stateless random generators, or mathematical basic
functions such as trigonometric functions.

5.5.2 Builder Pass

This pass is one of the core steps made by the refactoring process because it takes the code to
transform (as output of the profiling phase) and makes it parallel by matching the outcome
of the dictionary pass. In fact, if the profiler highlights an often invoked basic block that
contains calls not in the dictionary, then the parallelization cannot be performed on that
basic block.

In this thesis we focus on loops as the most appropriate blocks of code for being parallelized.
However, our design is applicable (unless stated otherwise) for any independent sets of basic
blocks. The actual operation of building the parallel code takes place after the following two
transformations.

• Loop Simplification analysis. A natural loop has one entry block header and one or
more back edges (latches) leading to the header. The predecessor blocks for the loop
header are called pre-header blocks. We say that a basic block α dominates another
basic block β if every path in the code β go through α. The body of the loop is the set
of basic blocks that are dominated by its header, and reachable from its latches. The
exits are basic blocks that jump to a basic block that is not included in the loop body.
In Figure 5.4, the entry block is the loop pre-header, while its header is while.cond.
The loop has one latch (i.e., if.end), and a single exit while.end (from while.cond).
The loop body is the set of blocks while.body, if.then and if.end. A simple loop is a
natural loop, with a single pre-header and single latch; and its index (if exists) starts
from zero and increments by one.

We apply the loop simplification to put the loop into its simplest form. Examples
of natural and simple loops are reported in Figures 5.5 (a) and (b), respectively. In
Figure 5.5 (a), the loop header has two types of predecessors, external basic blocks
from outside of the loop, and one of the body latches. Putting this loop in its simple
form requires adding: i) a single pre-header and changing the external predecessors to
jump to the pre-header; and ii) an intermediate basic block to isolate the second latch
from the header.

• Induction Variable analysis. An induction variable is a variable within a loop whose
value changes by a fixed amount every iteration (i.e., the loop index) or is a linear func-
tion of another induction variable. Affine (linear) memory accesses are commonly used
in loops (e.g., array accesses, recurrences). The index of the loop, if one exists, is often
an induction variable, and the loop can contain more than one induction variable. The

Mohamed M. Saad Chapter 5. Lerna 60

Header

Latch

Latch

Exit 2Exit 1

Exit 2Exit 1

Preheader

Sync Dispatcher

(a) Natural Loop (b) Simple Loop

(c) Transformed Loop

Synthetic Method

Normal Exit
Exit 1 Exit 2

Header

Latch
Latch

Exit 2Exit 1

Asynchronous
Call

Figure 5.5: Natural, Simple and Transformed Loop

induction variable substitution is a transformation to rewrite any induction variable
in the loop as a closed form (function) of its index. It starts by detecting the candi-
date induction variables, then it sorts them topologically and creates a closed symbolic
form for each of them. Finally, it substitutes their occurrences with the corresponding
symbolic form.

As a part of our transformation, a loop is simplified, and its induction variable (i.e., the index)
is transformed into its canonical form where it starts from zero and is incremented by one.
A simple loop with multiple induction variables is a very good candidate for parallelization.
However, any induction variables introduce dependencies between iterations, which are not
desirable to maximize parallelism. To solve this problem, the value of such induction variables
is calculated as a function of the index loop prior to executing the loop body, and it is sent
to the synthetic method as a runtime parameter. This approach avoids unnecessary conflicts
on the induction variables.

Next, we extract the body of the loop as a synthetic method. The return value of the method
is a numeric value representing the exit that should be used. The addresses of all variables
accessed within the loop body are passed as parameters to the method.

The loop body is replaced by two basic blocks: Dispatcher and Sync. In the Dispatcher, we
prepare the arguments for the synthetic method, calculate the value of the loop index and
invoke an API of our library, named lerna dispatch, providing it with the address of the

Mohamed M. Saad Chapter 5. Lerna 61

Tx1 Tx2
Y[1] := 0 Y[2] := 0
Z [1] := X[1] Z [2] := X[2]

(a) Symmetric Transactions

Tx1 Tx2
Y[1] := 0

X[1] := Y[1]
Z [1] := X[1]

(b) Normal Transactions

Figure 5.6: Symmetric vs Normal Transactions

synthetic method and the list of the just-computed arguments. Each call to lerna dispatch
adds a job to our internal jobs queue, but it does not start the actual execution of the job.
The Dispatcher keeps dispatching jobs until our API decides to stop. When it happens, the
control passes to the Sync block. Sync immediately blocks the main thread and waits for
the completion of the current jobs. Figure 5.5 (c) shows the control flow diagram (CFG) for
the loop before and after transformation.

Regarding the exit of a job, we define two types of exits: normal exit and breaks. A normal
exit occurs when a job reaches the loop latch at the end of its execution. In this case, the
execution should go to the header and the next job should be dispatched. If there are no
more dispatched jobs to execute and the last one returned a normal exit, then the Dispatcher
will invoke more jobs. On the other hand, when the job exit is a break, then the execution
needs to leave the loop body, and hence ignore all later jobs. For example, assume a loop
with N iterations. If the Dispatcher invokes B jobs before moving to the Sync, then dN/Be
is the maximum number of transitions that can happen between Dispatcher and Sync.

Summarizing, the Builder Pass turns the execution model into the job-driven model, which
can exploit parallelism. This strategy abstracts the processing from the way the code is
written.

5.5.3 Transactifier Pass

After turning the bytecode into executable jobs, we employ additional passes to encapsulate
jobs into transactions. Each synthetic method is demarcated by tx begin and tx end, and any
memory operation (i.e., load, stores or allocation) within the synthetic method is replaced
by the corresponding transactional handler.

It is quite common that memory reads are numerous (and outnumber writes), thus it would
be highly beneficial to minimize those performed transactionally. That is because, the read-
set maintenance and the validation performed at commit time for preserving the correctness
of the transaction, which iterates over the read-set, is the primary source of TM’s overhead.
Several hardware prototypes have been proposed to enhance TM read-set management [38,
166]. Alternatively, in our work the transactifier pass eliminates unnecessary transactional
reads, thus significantly improving the performance of the transaction execution due to the

Mohamed M. Saad Chapter 5. Lerna 62

following reasons:

• direct memory read is even three times faster than transactional read [38, 166]. In fact,
reading an address transactionally requires: 1) checking if the address has already been
written before (i.e., check the write-set); 2) adding the address to the read-set; and 3)
returning the address value to the caller.

• the size of the read-set is limited, thus extending it requires copying entries into a
larger read-set, which is costly. Keeping the read-set small reduces the number of
resize operations.

• read-set validation is mandatory during the commit. The smaller the read-set, the
faster the commit operation.

In our model, concurrent transactions can be described as “symmetric”, which means that
the code executed in all active transactions is the same. That is because each transaction
executes one or more iterations of the same loop. Figure 5.1 shows an example of sym-
metric transactions. We take advantage of this characteristic by reducing the number of
transactional calls as follows.

Clearly, local addresses defined within the scope of the loop are not required to be accessed
transactionally. On the other hand, global addresses allow iterations to share information,
and thus they need to be accessed transactionally. We perform the global alias analysis as
a part of our transactifier pass to exclude some of the loads to shared addresses from the
instrumentation process.

To reduce the number of transactional reads, we apply the global alias analysis between all
loads and stores in the transaction body. A load operation that will never alias with any
store operation does not need to be read transactionally. For example, when a memory
address is always loaded and never written in any path of the symmetric transaction code,
Figure 5.6a, then the load does not need to be performed transactionally. In Figure 5.1,
concurrent transactions execute symmetric iterations of the loop. Although j is read within
the transactions, we do not have to read it transactionally as it can never be changed by any
of the transactions produced from the same loop (thus the only allowed to run concurrently).
Note that this technique is specific for parallelizing loops and cannot be applied to the normal
transaction processing where all transactions do not necessarily execute the same code as
for the symmetric transactions.

In contrast, in Figure 5.6b we show an example of two concurrent non-symmetric transac-
tions, thus executing different transaction bodies. Also in this case each transaction has a
load operation that does not alias with other stores but when the two transactions (with
different code paths) run concurrently they can produce wrong result. This is because these
transactions are not symmetric and thus the read must be done transactionally.

Mohamed M. Saad Chapter 5. Lerna 63

Transactions may contain calls to other functions. As these functions may manipulate mem-
ory locations, they must be handled. Whenever possible, we try to inline the called functions;
otherwise we create a transactional version of the function called within a transaction. In
the latter case, instead of calling the original function, we call its transactional version.
Inlined functions are preferable because they permit the detection of dependencies between
variables, which can be leveraged to reduce transactional calls, or the detection of dependent
loop iterations, which is useful to exclude them from the parallelization.

Finally, to avoid unnecessary overhead in the presence of single-threaded computation or a
single job executed at a time, we create another non-transactional version of the synthetic
method. This way we provide a fast version of the code without unnecessary transactional
accesses.

5.6 Transactional Execution

Transactional memory algorithms differ in the memory versioning techniques, i.e., undo-log
or write-buffer, and in the conflict detection, i.e., lazy or eager. In write-buffer algorithms,
transactional loads are recorded in a read-set and stores are and-boxed, which means that
each store is not written to the original address but it is kept into a local storage called
the write-set until commit. When a load is called inside a transaction, the write-set is first
checked to determine if this location has been written before and, if so, the value from the
write-set is returned. Otherwise, the value is read from the memory and the address is
added to the read-set. At commit time, the read-set is validated to make sure that it is
still consistent. If the validation shows no conflict, then the write-set is written back to
the shared memory and the changes become visible to all. On the other hand, undo-log
algorithms expose memory changes to the main memory right after the transactional write,
and they keep the old values in a local log to be restored upon transaction abort.

Contention between transactions occur when two transactions access the same address and
one of them is a writer. Eager contention detection is done by associating a lock with each
memory address (a lock can cover multiple addresses). A transaction acquires locks on its
written addresses at encounter time. Conflicts are detected when a transaction tries to access
a locked address. Alternatively, in lazy contention detection, each address has a version
record. Transaction stores the version of its read addresses. Succeeded transactions modify
the version of their written addresses at commit time. Transaction is aborted when it finds
a different version number than the one recorded. Validation of memory addresses accessed
transactionally is done either by performing addresses comparison [59], or by checking if the
values have changed [53].

Table 5.1 shows different design choices of some known transactional memory implementa-
tions.

Our design is decoupled from the specific TM implementation used but it requires in-order

Mohamed M. Saad Chapter 5. Lerna 64

Version
Eager Lazy

Contention
Eager

TinySTM [69], LogTM [129] LTM [10], TinySTM [69],
UTM [10], McRT-STM [165] SwissTM [63]

Lazy TL2 [59], TCC [81], NOrec [53]

Table 5.1: Transactional Memory Design Choices

commit. To allow the integration of further TMs, we identified the following requirements
needed to support ordering:

Supervised Commit. Threads are not allowed to commit once they complete their execution.
Instead, there must be a single stakeholder at-a-time that accomplished transaction commits,
namely the committer. It is not necessary having a dedicated committer because worker
threads can take over this role according to their age. For example, the thread executing the
transaction with the lowest age could be the committer and thus it is allowed to commit.
While a thread is committing, other threads can proceed by executing next transactions
speculatively, or wait until the commit completes. Allowing threads to proceed with their
execution is risky because it can increase the contention probability given that the life of
an uncommitted transaction enlarges (e.g., the holding time of their locks increases, or
the timestamp validity decreases), therefore this speculation must be limited by a certain
(tunable) threshold. Upon a successful commit, the committer role is delegated to the
subsequent thread with lowest age (which may be the same thread in some cases). This
strategy allows only one thread to commit its transaction(s) at a time.

An alternative approach is to use a single committer (as in [120]) to monitor the completed
transactions, and to permit non-conflicting threads to commit in parallel by inspecting their
read- and write-set. Although this strategy allows for concurrent commits, the performance
is bounded by the committer execution time.

Age-based Contention Management (CM). Algorithms with eager conflict detection (i.e., at
encounter time) should favor transactions with lower age (i.e., that encapsulate older itera-
tions), while algorithms that use lazy conflict detection (i.e., at commit time) should employ
an aggressive CM that favors the transaction that is committing using the single committer.
Note that, for value-based validation with eager versioning, it is possible for earlier transac-
tions to wrongly commit after it read from a speculative iteration. To solve this, during the
commit phase, the read-set must be compared with the write-sets of completed transactions.

Memory Versioning. For eager versioning, if the implementation uses eager CM, then it
prevents speculative iterations from affecting older iteration because they will collide. On
the other hand, Lazy CM may cause earlier iterations to read from speculative iterations.
However, thanks to the single committer, the former iteration will detect the conflict and
both transactions will be aborted. Lazy versioning implementations hide their changes from

Mohamed M. Saad Chapter 5. Lerna 65

f o r (i n t i =0; i <100; i ++){
. . .
i f (some condi t ion)

counter++;
. . .

}

(a) Conditional increments

whi le (proceed) {
. . .
counter++;
. . .

}

(b) No induction variable

Figure 5.7: Conditional Counters

other transactions, thus no modification is required for this category.

5.6.1 High-priority Transactions

A transaction performs a read-set validation at commit time to preserve correctness. That
is needed to ensure that its read-set has not been overwritten by any other committed
transaction. Let Txn be a transaction that has just started its execution, and let Txn−1 be
its immediate predecessor (i.e., Txn−1 and Txn process consecutive iterations of a loop). If
Txn−1 has been committed before that Txn performs its first transactional read, then we
can avoid the read-set validation of Txn when it commits. That is because Txn is now the
highest priority transaction at this time, so no other transaction can commit its changes
to the memory. We do that by flagging Txn as an irrevocable transaction. Similarly, a
transaction is flagged as high-priority if: i) it is the first, thus it does not have a predecessor;
ii) it is a retried transaction of the single committer thread; iii) there is a sequence of
transactions with consecutive age running on the same thread.

This optimization reduces the commit time by just writing the write-set values to the mem-
ory.

5.6.2 Transactional Increment

Figure 5.7 illustrates a common situation, which is the counter. Loops with counters hamper
parallelism because they create data dependencies between iterations, even non-consecutive
iterations, which produces a large amount of conflicts. The induction variable substitution
cannot produce a closed form (function) of the loop index (if it exists). If a variable is incre-
mented (or decremented) based on any arbitrary condition and its value is used only after
the loop completes the whole execution, then it is eligible for the Transactional Increment
optimization.

In addition to the classical transactional read and write (tx read and tx write), we propose

Mohamed M. Saad Chapter 5. Lerna 66

a new transactional primitive, the transactional increment, to enable the parallelization of
loops with irreducible counters. This type of counter can be detected during our transfor-
mations. Within the transactional code, a store St is eligible for our optimization if it aliases
only with one load Ld, and it writes a value that is based on the return value of Ld. The
load, change, and store operations are replaced with a call to tx increment, which receives
the address and the value to increment. We propose two ways to implement tx increment:

• Using an atomic increment to the variable, and storing the address to the transaction’s
meta-data. The atomic operation preserves data consistency; however, it affects the
shared memory before the transaction commits. To address this issue, aborted trans-
actions compensate all accessed counters by performing the same increment but with
the inverse value.

• By storing the increments into thread-specific meta-data. At the end of each Sync
operation, threads coordinate with each other to expose the aggregated per-thread
increments of the counter. This method is appropriate for floating point variables,
which cannot be updated atomically on commodity hardware.

Using this approach, transactions will not conflict on this address, and the correct value of
the counter will be in memory after the completion of the loop (See Figure 5.1c).

5.7 Algorithms

Lerna currently integrates four TM implementations with different designs: NOrec [53],
which executed commit phases serially without requiring any ownership record; TL2 [59],
which allows parallel commit phases but at the cost of maintaining an external data structure
for storing meta-data associated with the transactional objects; UndoLog [4] with visible
readers, which uses encounter time versioning and locking for accessed objects and maintains
a list of accessors transactions; and STMLite [120], which replaces the need for locking
objects and maintaining a read-set with the use of signatures. STMLite is the only TM
library designed for supporting loop parallelization.

5.7.1 Ordered NOrec

In the current implementation we used NOrec [53] as a TM library. It is an algorithm
that offers low memory access overhead with constant amount of global meta-data. Unlike
most STM algorithms, NOrec does not associate ownership records (e.g., locks or version
number) with accessed addresses; instead, it employs a value-based validation technique
during commit. A characteristic of this algorithm is that it permits a single committing writer

Mohamed M. Saad Chapter 5. Lerna 67

at a time, which is in general not desirable but it matches the need of Lerna’s concurrency
control: having a single committer (See Section 5.6). For this reason we decided to rely on
NOrec as the default STM implementation for Lerna because of its small memory footprint
and because it matches our ordering conditions (we need a single committer as limitation at
NOrec, it is one of the requirement for ordering transactions). Our modified version of NOrec
manages which transaction should be the single committer according to the chronological
order (i.e., age).

5.7.2 Ordered TinySTM

TinySTM algorithm uses encounter time locking (ETL) and comes with two memory access
strategies: write-through and write-back. TinySTM uses timestamps for transactions to
ensure a consistent view of memory; we exploit this timestamp to represent the age of
transactions. Using an aggressive age-based contention manager, transactions can be ordered
according to the chronological order of their executing code. With TinySTM, transactions
conflict at access time; this allows early detection of conflicting iterations. The choice of
write-through or write-back strategy is workload specific; at low-contention write-through
provides a fast path execution, while write-back is more suitable for high-contention as it
exhibits lower overhead abort procedure.

5.7.3 Other Algorithms

For completeness, we included ordered version of TL2 and UndoLog algorithms. Both al-
gorithms follow two different design choices: write-back and undo-log, respectively. How-
ever, the integration of more TM algorithm using the techniques explained in Section 5.6 is
straightforward.

5.8 Adaptive Runtime

The Adaptive Optimization System (AOS) [12] is a general virtual machine architecture that
allows online feedback-directed optimizations. In Lerna, we apply the AOS to optimize the
runtime environment by tuning some important parameters (e.g., the batch size, the number
of worker threads) and by dynamically refining sections of code already parallelized statically
according to the characteristics of the actual application execution.

Before presenting the optimizations made at runtime, we detail the component responsible
for executing jobs (i.e., the Workers Manager in Figure 5.8). Jobs are evenly distributed
over workers. Each worker thread keeps a local queue of its slice of dispatched jobs and a
circular buffer of transaction descriptors. A worker is in charge of executing transactions and

Mohamed M. Saad Chapter 5. Lerna 68

Local Queue

Tx Descriptors

State Flag

WORKER 1

Local Queue

Tx Descriptors

State Flag

WORKER 2

Local Queue

Tx Descriptors

State Flag

WORKER 3

Local Queue

Tx Descriptors

State Flag

WORKER N

....

Figure 5.8: Workers Manager

keeping them in the completed state once they finish. As stated before, after the completion
of a transaction, the worker can speculatively begin the next transaction. However, to avoid
unmanaged behaviors, the number of speculative jobs is limited by the size of its circular
buffer. The buffer size is crucial as it controls the lifetime of transactions. A larger buffer
allows the worker to execute more transactions, but it increases also the transaction life time,
and consequently the conflict probability.

The ordering is managed by a worker-local flag called state flag. This flag is read by the
current worker, but is modified by its predecessor worker. Initially, only the first worker
(executing the first job) has its state flag set, while others have their flag cleared. After
completing the execution of each job, the worker checks its local state flag to determine if it is
permitted to commit or proceed to the next transaction. If there are no more jobs to execute,
or the transactions buffer is full, the worker spins on its state flag. Upon successful commit,
the worker resets its flag and notifies its successor to commit its completed transactions.
Finally, if one of the jobs has a break condition (i.e., not the normal exit) the workers manager
stops other workers by setting their flags to a special value. This approach maximizes the
use of cache locality as threads operate on their own transactions and access thread-local
data structures, which also reduces bus contention.

5.8.1 Batch Size

The static analysis does not always provide information about the number of iterations,
hence, we cannot accurately determine the best size for batching jobs. A large batch size
may cause many aborts due to unreachable jobs, while having small batches increases the
number of iterations between dispatcher and the executor, and, as a consequence, the number
of pauses to perform due to Sync. In our implementation, we use an exponentially increasing
batch size. Initially, we dispatch a single job, which covers the common set of loops with

Mohamed M. Saad Chapter 5. Lerna 69

zero iterations; if the loops are longer, then we increase the number of dispatched jobs
exponentially until reaching a pre-configured threshold. Once a loop is entirely executed, we
record the last batch size used so that, if the execution goes back on calling the same loop,
we do not need to perform again the initial tuning.

5.8.2 Jobs Tiling and Partitioning

As explained in Section 5.5.2, the transformed program dispatches iterations as jobs, and our
runtime runs jobs as transactions. Here we discuss an optimization, named jobs tiling, that
allows the association of multiple jobs to a single transaction. Increasing jobs per transaction
reduces the total number of commit operations. Also, it allows assigning enough computation
power to the threads, which outweigh the cost of transactional setup. Nevertheless, tiling is
a double-edged sword. Increasing tiles increases the size of read and write sets which can
degrade performance. We tune tiling by taking into account the number of instructions per
job, and commit rate of past executions using the knowledge base.

In contrast to tiling, a job may perform a considerable amount of non-transactional work.
In this case, enclosing the whole job within the transaction boundaries makes the abort op-
eration very costly. Instead, the transactifier pass checks the basic blocks with transactional
operations and finds the nearest common dominator basic block for all of them. Given that,
the transaction start (tx begin) is moved to the common dominator block, and tx end is
placed at each exit basic block that is dominated by the common dominator. As a result,
the job is partitioned into non-transactional work, which is now moved out of the transaction
scope, and the transaction itself (See Figure 5.1c).

5.8.3 Workers Selection

Figure 5.3 shows how the workers manager module handles the concurrent executions. The
number of worker threads in the pool is not fixed during the execution, and it can be changed
by the executor module. The number of workers affects directly the transactional conflict
probability. The smaller the number of concurrent workers, the lower the conflict probability.
However, optimistically, increasing the number of workers can increase the overall parallelism
(thus performance), and the underlying hardware utilization.

In practice, at the end of the execution of a batch of jobs, we calculate the throughput and
we record it into the knowledge base, along with the commit rate, tiles and the number of
workers involved. We apply a greedy strategy to find an effective number of workers by
matching with the obtained throughput. The algorithm constructs a window of different
worker counts, and iteratively improves it by changing the count of workers.

Using the throughput metric is better than relying on the commit rate. For example, three
workers with an average commit rate equal to 50% are better than two workers with 70%

Mohamed M. Saad Chapter 5. Lerna 70

average commit rate. In addition to that, parallel execution is subject to other factors such
as bus contention, cache hits, and thread overhead.The throughput combines all of these
factors, thus giving a global picture about the performance gain.

Finally, in some situations (e.g., high contention or very small transactions) it is better to
use a single worker (sequentially). For that reason, if our heuristic decides to use only one
worker, then we use the non-transactional version (as a fast path) of the synthetic method
to avoid the unnecessary transaction overhead.

5.8.4 Manual Tuning

As stated early, Lerna is completely automated but it still allows the programmer to provide
hints about the program to parallelize. In this section we present some of the manual
configurations that can be done. These configurations are only applicable if the source code
is available.

A safe call is a call to an external function defined as a library or a system call; such a call
must be stateless and cannot affect the program result if repeated multiple times. Such calls
cannot be detected using static analysis, so we rely on the user for defining a list of them.
Our framework generates a histogram of calls that represents the number of excluded blocks
from our transformation because of this call. Based on this histogram, user can decide which
calls are more beneficial to be classified as a safe call.

The alias analysis techniques (see Section 5.5.3) help in detecting dependencies between loads
and stores; however, in some situations (as documented in [47]) it produces conservative
decisions, which limit the opportunities of parallelization. It is non-trivial for the static
analysis to detect aliases throughout nested calls. To assist the alias analysis, we try to
inline the called functions within the transactional context. Nevertheless, it is common in
many programs to find a function that does only loads of immutable variables (e.g., reading
memory input). Marking such a function as read-only can significantly reduce the number of
transactional reads, as we will be able to use the non-transactional version of the function,
hence reducing the overall overhead.

Section 5.4 explains how Lerna detects the eligible code for parallelization through the profil-
ing phase. Alternatively, users can directly inform our Builder Pass of their recommendations
for applying our analysis. Also, the programmer can exclude some sections of the code from
being parallelized for some reason. We support a user-defined exclude list for portions of
code that will be excluded from any transformation.

Mohamed M. Saad Chapter 5. Lerna 71

Configurations

Processor 2× Opteron 6168 processors
CPU Cores 12
Clock Speed 1.9 GHz
L1 128 KB
L2 512 KB
L3 12 MB
Memory 12 GB
OS Ubuntu 10.04, Linux

Table 5.2: Testbed and platform parameters for Lerna experiments.

5.9 Evaluation

In this section we evaluate Lerna and measure the effect of the key performance parameters
(e.g., job size, worker count, tiling) on the overall performance. Our evaluation involves a
total of 13 applications grouped into micro-benchmarks and macro-benchmarks: STAMP [37]
and PARSEC [133]. The micro-benchmarks allow us to tune the application workload in
order to show strengths (and weaknesses) of our automated solution. The applications of
the macro-benchmarks show the impact of Lerna in well-known workloads.

We compare the speedup of Lerna over the (original) sequential and the manual, optimized
transactional version of the code (not available for PARSEC benchmarks). Note that the
latter is not coded by us; it is released along with the benchmark itself, and is made manually
by knowing the details of the application logic, thus it can leverage optimizations, such as
the out-of-order commit, that cannot be caught by Lerna automatically. As a result, Lerna’s
performance goal is twofold: providing a substantial speedup over the sequential code, and
to be as close as possible to the manual transactional version.

The testbed used in the evaluation consists of an AMD multicore machine equipped with 2
Opteron 6168 processors, each with 12-cores running at 1.9 GHz of clock speed. The total
memory available is 12 GB and the cache sizes are 128 KB for the L1, 512 KB for the L2
and 12 MB for the L3. This machine represents well a current commodity hardware. On
this machine, the overall refactoring process, from profiling to the generation of the binary,
took ∼10s for micro-benchmarks and ∼40s for the macro-benchmarks. We did not use a
higher core machine to avoid the effect of the Non-Uniform Memory Access (NUMA), where
there is an additional latency according to the core used and the memory socket accessed.
Optimizing TM for NUMA access is studied in details in [126].

5.9.1 Micro-benchmarks

In our first set of experiments we consider the RSTM micro-benchmarks [2] to evaluate the
effect of different workload characteristics, such as the amount of transactional operations

Mohamed M. Saad Chapter 5. Lerna 72

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (11Thr)

(a) Read100Write1 - Speedup

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (17Thr)

(b) Read1000Write1 - Speedup

 0
 5

 10
 15

 20
 25

Threads

 100 200 300 400 500 600 700 800 900 1000

N Reads

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

S
p
e
e
d
u
p

(c) Lerna Speedup

Figure 5.9: ReadNWrite1 Benchmark.

per job, the job length, and the read/write ratio, on the overall performance.

We report the speedup over the sequential code by varying the number of threads used. The
performance is measured for two versions of Lerna: one adaptive, where the most effective
number of workers is selected at runtime (thus its performance do not depend on the number
of threads reported in the x-axis), and one with a fixed number of workers. We also reported
the percentage of aborted transactions (right y-axis). As a general comment, we observe
some small slow-down only when one thread is used; otherwise Lerna is usually very close
to the manual transactional version. Our adaptive version gains on average 2.7× over the
original code and it is effective because it finds (or is close to) the configuration where the
top performance is reached.

In ReadNWrite1Bench (Figure 5.9), transactions read N locations and write 1 location.

Mohamed M. Saad Chapter 5. Lerna 73

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (10Thr)

(a) ReadWrite100 - Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (10Thr)

(b) ReadWrite100 - Aborts

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (8Thr)

(c) ReadWrite1000 - Speedup

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (8Thr)

(d) ReadWrite1000 - Aborts

 0
 5

 10
 15

 20
 25

Threads

 100 200 300 400 500 600 700 800 900 1000

N Reads Writes

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

S
p
e
e
d
u
p

(e) Lerna Speedup

Figure 5.10: ReadWriteN Benchmark.

Mohamed M. Saad Chapter 5. Lerna 74

Given that, the transaction write-set is very small, hence it implies a fast commit of a lazy TM
algorithm as ours. The abort rate is low (0% in the experiments), and the transaction length
is proportional to the read-set size. Figure 5.9c illustrates how the size of transaction read-
set (with a small size write-set) affects the speedup. Lerna performs closer to the manual Tx
version; however, when transactions become smaller, the ordering overhead slightly outweighs
the benefit of more parallel threads.

In ReadWriteN (Figure 5.10), each transaction reads N locations, and then writes to another
N locations. The large transaction write-set introduces a delay at commit time for lazy
versioning TM algorithms, and increases the number of aborts. Both Lerna and manual Tx
incur performance degradation at high numbers of threads due to the high abort rate (up
to 50%). In addition, for Lerna the commit phase of long transactions forces some (ready to
commit) workers to wait for their predecessor, thus degrading the overall performance. In
such scenarios, the adaptive worker selection helps Lerna avoid this degradation.

MCASBench performs a multi-word compare and swap, by reading and then writing N
consecutive locations. Similarly to ReadWriteN, the write-set is large, but the abort prob-
ability is lower than before because each pair of read and write acts on the same location.
Figure 5.11 illustrates the impact of increasing workers with long and short transactions.
In Figure 5.11e, we see that with increasing the number of operations per transaction, the
speedup degrades; besides threads contention, the number of aborts increases with increasing
the number of accessed locations (See Figures 5.11b and 5.11d).

Interestingly, unlike the manual Tx, Lerna performs better at single thread because it uses
the fast path version of the jobs (non-transactional) to avoid needless overhead. It worth
noting that all micro-benchmarks does not perform many calculations on accessed memory
locations, which represents a challenge for a TM-based approach.

Figure 5.12 summarizes the behavior of the adaptive selection of the number of workers for
the three micro-benchmarks and varying the size of the batch. The procedure starts by
trying different worker counts within a fixed window (shown here, it is 7), then it picks the
best worker according to the calculated throughput. Changing the worker counts shifts the
window, thus allowing the technique to learn more and find the most effective settings for
the current execution.

Mohamed M. Saad Chapter 5. Lerna 75

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (9Thr)

(a) MCAS100 - Speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (9Thr)

(b) MCAS100 - Aborts

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (11Thr)

(c) MCAS300 - Speedup

 0

 5

 10

 15

 20

 25

 30

 35

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (11Thr)

(d) MCAS300 - Aborts

 0
 5

 10
 15

 20
 25

Threads

 50
 100

 150
 200

 250
 300

 350
 400

MCAS Operations

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

S
p
e
e
d
u
p

(e) Lerna Speedup

Figure 5.11: MCAS Benchmark.

Mohamed M. Saad Chapter 5. Lerna 76

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60

#
 W

o
rk

e
rs

 T
h
re

a
d
s

Batches

ReadNWrite1
ReadWriteN

MCAS

Figure 5.12: Adaptive workers selection

5.9.2 The STAMP Benchmark

STAMP [37] is a comprehensive benchmark suite with eight applications that cover a variety
of domains. Figures 5.13, 5.14 and 5.15 show the speedup of the Lerna’s transformed code
over sequential code, and against the manually transactified version of the application, which
exploits unordered commit. While the main focus of our work is speedup over baseline
sequential code, we highlight here the overheads and tradeoff with respect to a handcraft
manual transformation aware of the underlying program semantics. Two applications (Yada
and Bayes) have been excluded because they expose non-deterministic behaviors, thus their
evolution is unpredictable when executed transactionally. Table 5.3 provides a summary of
benchmarks and inputs used in the evaluation.

Kmeans, a clustering algorithm, iterates over a set of points and associate them to clusters.
The main computation in finding nearest point, while shared data updates occur at the end
of each iteration. Using job partitioning, Lerna achieves 6× and 1.6× speedup over the
sequential version (See Figures 5.13a - 5.13d). The ordering introduces 25% delay compared
to the unordered transactional version.

Genome, a gene sequencing program, reconstructs the gene sequence from segments of a
larger gene. It uses a shared hash-table to organize the segments, which requires synchro-
nization over its accesses. In Figures 5.13e - 5.13h, Lerna has 3× to 5.5× speedup over
sequential. Ordering semantics is not a must for the hash-table insertion, which causes the
manual Tx to perform 1.4× to 1.8× faster than Lerna, as transactions commit as soon as
they end.

Mohamed M. Saad Chapter 5. Lerna 77

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (10Thr)

(a) Kmeans, Low Contention - Speedup

 0

 20

 40

 60

 80

 100

 120

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (10Thr)

(b) Kmeans, Low Contention - Aborts

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (8Thr)

(c) Kmeans, High Contention - Speedup

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (8Thr)

(d) Kmeans, High Contention - Aborts

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (24Thr)

(e) Genome, Low Contention - Speedup

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (24Thr)

(f) Genome, Low Contention - Aborts

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (24Thr)

(g) Genome, High Contention - Speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (24Thr)

(h) Genome, High Contention - Aborts

Figure 5.13: Kmeans and Genome Benchmarks

Mohamed M. Saad Chapter 5. Lerna 78

Benchmark Configurations Description

Kmeans Low -m60 -n60 -t0.00001 n65536 -d128 -c16
m: max clusters, n: min clusters

High -m20 -n20 -t0.00001 n65536 -d128 -c16
Genome Low -g16384 -s64 -n86777216

n: number of segments
High -g16384 -s64 -n16777216

Vacation Low -n30 -q90 -u100 -r1048576 -t4194304
n: queries, q: relations queried ratio

High -n50 -q60 -u100 -r1048576 -t4194304
SSCA2 Low -s20 -i0.1 -u0.1 -l3 -p3 s: problem scale, i: inter cliques ratio,

High -s19 -i0.5 -u0.5 -l3 -p3 u: unidirectional ratio
Labyrinth Low -x128 -y128 -z3 -n128

x, y, z: maze dimensions, n: exits
High -x32 -y32 -z3 -n96

Intruder Low -a10 -l128 -n262144 -s1
l: max number of packets per stream

High -a10 -l12 -n262144 -s1

Table 5.3: Input configurations for STAMP benchmarks.

Vacation is a travel reservation system using an in-memory database. The workload consists
of clients reservation. This application emulated an OLTP workload. Lerna improves the
performance by 2.8× faster than the sequential system, and it is very close to the manual
(See Figures 5.14a - 5.14d). Vacation transactions do not inhibit a lot of aborts as it accesses
relatively large amount of data.

SCAA2 is a multi-graph kernel that is commonly used in domains such as biology and
security. The core of the kernel uses a shared graph structure that is updated at each
iteration. The transformed kernel outperforms the original by 1.4×, while dropping the
in-order commit allows up to 3.9× (See Figures 5.14e - 5.14h).

Lerna exhibits no speedup using Labyrinth and Intruder (See Figure 5.15) because they use
an internal shared queue for storing the processed elements and they access it at the beginning
of each iteration to dispatch them for the execution (i.e., a single contention point). While
our jobs execute as a single transaction, the manual transactional version, creates multiple
transactions per iteration. The first iteration, handle just the queue synchronization, while
other iterations do the processing. Jobs partitioning will not help in this situation because
the shared access occur at the beginning of the iteration. Assume splitting each job into two
transactions, the ordering between jobs will prevent the first transaction at higher iterations
from commit. However, we can see that this technique can help to parallelize two concurrent
iterations at most; the first transaction at the higher index iteration can access the shared
queue right after the corresponding lower index iteration commits.

Mohamed M. Saad Chapter 5. Lerna 79

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (24Thr)

(a) Vacation, Low Contention - Speedup

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (24Thr)

(b) Vacation, Low Contention - Aborts

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (24Thr)

(c) Vacation, High Contention - Speedup

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (24Thr)

(d) Vacation, High Contention - Aborts

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (24Thr)

(e) SCAA2, Low Contention - Speedup

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (24Thr)

(f) SCAA2, Low Contention - Aborts

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (24Thr)

(g) SCAA2, High Contention - Speedup

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (24Thr)

(h) SCAA2, High Contention - Aborts

Figure 5.14: Vacation and SSCA2 Benchmarks

Mohamed M. Saad Chapter 5. Lerna 80

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (1Thr)

(a) Labyrinth, Low Contention - Speedup

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (1Thr)

(b) Labyrinth, Low Contention - Aborts

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (1Thr)

(c) Labyrinth, High Contention - Speedup

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (1Thr)

(d) Labyrinth, High Contention - Aborts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (1Thr)

(e) Intruder, Low Contention - Speedup

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (1Thr)

(f) Intruder, Low Contention - Aborts

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Manual Tx

Lerna

Adp. Lerna (1Thr)

(g) Intruder, High Contention - Speedup

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16 24

A
b
o
rt

s
 R

a
ti

o
 %

Threads

Manual Tx

Lerna

Adp. Lerna (1Thr)

(h) Intruder, High Contention - Aborts

Figure 5.15: Labyrinth and Intruder Benchmarks

Mohamed M. Saad Chapter 5. Lerna 81

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 10 100 1000 10000
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

S
p
e
e
d
u
p

A
b
o
rt

 %

Tiles

Aborts
Speedup

Figure 5.16: Effect of Tiling on abort and speedup using 8 workers and Genome.

As explained in Section 5.8.2, selecting the number of jobs per each transaction (jobs tiling)
is crucial for performance. Figure 5.16 shows the speedup and abort rate with changing the
number of jobs per transaction from 1 to 10000 using the Genome benchmark. Although the
abort rate decreases when reducing the number of jobs per transaction, it does not achieve
the best speedup. The reason is that the overhead for setting up transactions nullifies the
gain of executing small jobs. For this reason, we dynamically set the job tiling according to
the job size and the gathered throughput.

The manual tuning further assists Lerna for improving the code analysis and eliminating any
avoidable overhead. An evidence of this is reported in Figure 5.17 where we show the speedup
of Kmeans against different numbers of worker threads using two variants of the transformed

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Lerna + User Hints

Lerna

(a) Low Contention

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Lerna + User Hints

Lerna

(b) High Contention

Figure 5.17: Kmeans performance with user intervention

Mohamed M. Saad Chapter 5. Lerna 82

Benchmark Configurations Description

Fluidanimate -i in 500K i: input file with 500K particles data
Swaptions -ns 100000 -sm 1 -nt 1 ns: number of swaptions
Blackscholes -i in 10M i: input file with 10 millions equations data
Ferret top=50 depth=5 top: top K, depth: depth

Table 5.4: Input configurations for PARSEC benchmarks.

code using Lerna: the first is the normal automatic transformation, and the second leverages
user’s hints about memory locations that can be accessed safely (i.e., non-transactionally).
The figure shows that Lerna’s transformed code outperforms even the manual transactional
code.

5.9.3 The PARSEC Benchmark

PARSEC [23] is a benchmark suite for shared memory chip-multiprocessors architectures.
We evaluate Lerna performance using a subset of these benchmarks which cover different
aspects of our implementation. Table 5.4 provides a summary of benchmarks and inputs
used in the evaluation.

The Black-Scholes equation [100] is a differential equation that describes how, under a certain
set of assumptions, the value of an option changes as the price of the underlying asset
changes. This benchmark calculates Black-Scholes equation for input values and produces
the results. The iterations are relatively short; which causes producing a lot of jobs in Lerna’s
transformed program. However, jobs can be tiled (See Section 5.8.2) where each group of
iterations execute within a single job. Another approach is to add an unrolling pass earlier to
our transformation. Figure 5.18c shows the speedup with different values for loop unrollings.

Swaptions benchmark contains routines to compute various security prices using Heath-
Jarrow-Morton (HJM) [86] framework. Swaptions employs Monte Calro simulation (MC) to
compute prices. Figure 5.18b shows Lerna speedup over the sequential code.

Fluidanimate [133] is a known application performing physics simulations (about incom-
pressible fluids) to animate arbitrary fluid motion by using a particle-based approach. The
main computation is spent on computing particle densities and forces, which involves six
levels of loops nesting updating a shared array structure. However, iterations updates a
global shared matrix of particles; which makes every concurrent transaction conflicts with
its preceding transactions (See Figure 5.18d).

Ferret is a toolkit which is used for content-based similarity search. The benchmark workload
is a set of queries for image similarity search. Similar to Labyrinth and Intruder, Ferret uses
a shared queue to process its queries; which represents a single contention point and prevents
any speedup with Lerna (See Figure 5.18e).

Mohamed M. Saad Chapter 5. Lerna 83

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Lerna

Adp. Lerna (24Thr)

(a) Blackscholes

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Lerna

Adp. Lerna (1Thr)

(b) Swaptions

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
p
e
e
d
u
p

Threads

No Unrolling
2 Unrollings
4 Unrollings
6 Unrollings
8 Unrollings

(c) Effect of Loop Unrolling on speedup using Blackscholes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Lerna

Adp. Lerna (1Thr)

(d) Fluidanimate

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 24

S
p
e
e
d
u
p

Threads

Sequential

Lerna

Adp. Lerna (1Thr)

(e) Ferret

Figure 5.18: PARSEC Benchmarks

Mohamed M. Saad Chapter 5. Lerna 84

 0.5

 1

 2

 4

 8

 16

Kmeans High

Kmeans Low

Genome

Vacation High

Vacation Low

SSCA2
Labyrinth

Intruder

Blackscholes

Swaptions

Fluidanimate

Ferret

S
p
e
e
d
u
p

Manual Unordered
Lerna NOrec

Lerna TL2
Lerna UndoLog
Lerna STMLite

Figure 5.19: Effect of changing the TM algorithm (y-axis in log-scale)

5.9.4 The Effect of Changing TM Algorithm

Figure 5.19 shows the speedup of Lerna’s transformed code over the sequential code, and
against the manual transactional version of the applications, which exploits unordered trans-
actions commits.3

In Kmeans, under high contention, NOrec is 3× slower compared to the manual unordered
transactional version (more data conflicts and stalling overhead); however they are very
close in the low contention scenario. TL2 and STMLite suffer from false conflicts (given the
limited lock table or signatures) which limits their scalability.

Genome conducts a large number of read-only transactions (Hashtable exists operation); a
friendly behavior for all implemented algorithms. TL2 is just 10% slower than the manual
competitor. Similarly, Swaptions benefits from its small size write-set which produces a
similar speedup with all TM algorithms integrated.

With Vacation, Lerna using NOrec achieves a peek performance of 2.8× faster than sequen-
tial, and it is very close to the manual. TL2 performance is dependent on the lock contention;

3In this experiment, we used different input configurations than the ones shown at Table 5.3 and Table 5.4
to illustrate the performance differences between the integrated TM algorithms.

Mohamed M. Saad Chapter 5. Lerna 85

2.2× under low contention, and no speedup under high contention.

The transformed SSCA kernel outperforms the original by 2.1× using NOrec, while dropping
the in-order commit allows up to 4.4×. It worth noting that NOrec is the only algorithm
that manage to achieve speedup because it tolerates high contention and isn’t affected by
false sharing as it deploys a value-based validation.

In Black-Scholes, the iterations are relatively short. Algorithms with low overhead, such as
NOrec and UndoLog, outperform others: TL2 and STMLite. All the TM algorithms produce
speedup between 2.1× and 5.6×.

As discussed before in Sections 5.9.2 and 5.9.3, regardless of the underlying TM algorithm,
Lerna exhibits no speedup using Labyrinth, Intruder, Fluidanimate and Ferret.

5.10 Discussion

Lerna can be applied to all applications other than the used benchmarks. Here we discuss
the lesson learnt from our evaluation in order to provide an intuition about which are the
(negative) cases where Lerna’s parallelization refactoring is less effective.

Lerna extracts parallelism when possible. There are scenarios where, without the program-
mer handing the application’s logic on the refactoring process, Lerna encounters some hin-
drance (e.g., single point of contention) that cannot automatically break due to the lack of
“semantic” knowledge. Examples of that include complex data structure operations. Exam-
ples of that include Labyrinth, Intruder and Ferret as explained before, or data-level conflicts
as in Fluidanimate. We also looked into SPEC [88] applications, and we found that most of
them use data structures iterators.

The primary factors of overhead are: ordering transactions, contention on accessing shared
data (e.g., implied constraint by underlying bus-based architecture), and aborting conflicting
transactions because of true data or control dependencies, or false conflicts.

In addition, Lerna becomes less effective when: there are loops with few iterations (e.g.,
Fluidanimate) because the actual application parallelization degree is limited; there is an
irreducible global access at the beginning of each loop iteration, thus increasing the chance
of invalidating most transactions from the very beginning (e.g., Labyrinth); and workload
is heavily unbalanced across iterations. Anyway, in all the above cases, at worst, the code
produced by Lerna performs as the original.

Chapter 6

Ordered Write Back Algorithm

Ordering transactions before the execution is a known problem, mostly relevant to deploy-
ments where an external service is in charge of providing the commit order to satisfy certain
properties (e.g., equivalent semantics or system dependability). Examples of these deploy-
ments include (but are not limited to): loop parallelization [178, 73, 184, 160], and fault-
tolerance using the state machine replication (SMR) approach [169, 115]. In the former,
loops designed to run sequentially are parallelized by executing their iterations concurrently,
and guarded by TM transactions, as in [73, 160], to handle conflicts (i.e., data dependency)
correctly. In that case, providing an order matching the sequential one is fundamental to
enforce a semantic (of the parallel code) that is equivalent to the original (sequential) code.
Regarding the latter, SMR-based transactional systems order transactions (totally or par-
tially) before their execution to guarantee that a state always evolves on several computing
nodes, consistently. In order to achieve this, usually a consensus protocol is employed (e.g.,
Paxos [106]), which establishes a common order among transactions; this order must be then
enforced while processing and committing those transactions.

In this and the next chapters, we present two Software TM implementations that outperform
all baseline and specialized solutions that commit transactions in-order (e.g., STMLite [120]):
Ordered Write Back (OWB) and Ordered Undo Logging (OUL) [164]. They are based on
two widely used techniques to merge transactions modifications into the shared state, namely
write back (in OWB) and write through (in OUL). Both OWB and OUL deploy a common
design that uses a dependency-aware cooperative model : transactions employ a weaker iso-
lation level, and exchange both data and locks to increase concurrency while preserving the
commit order. More specifically, OWB uses data forwarding for transactions that finish their
execution successfully, but are not committed yet, and OUL leverages encounter time locking
with the ability to pass the lock ownership to other transactions. We also provide a variant
of OUL (OUL-Steal) that deploys a lock-stealing technique.

Given its design principle, which allows transactions to access modifications made by com-
mitting transactions that may abort later due to disorderly executions, OWB is safe as it

86

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 87

ensures TMS1 [62], a weaker consistency condition than opacity [76, 77], the most popular
consistency condition for TM. TMS1 has been proved to be sufficient to guarantee safety
in our model [13], as is the case with opacity. OUL achieves higher concurrency and there-
fore higher performance, at the cost of weakening the correctness level by ensuring Strict
Serializability [21].

In this chapter, we present an analysis that identifies the major bottlenecks in processing
transactions in parallel while guaranteeing a pre-defined commit order (Section 6.3). Next,
we propose a methodology that effectively solves this problem by combining dependency
awareness and locks forwarding with undo-log techniques, which overcomes competitors’
drawbacks (Section 6.4). Finally, we present OWB, which is, to the best of our knowledge,
the first TM implementation1 that satisfies TMS1.

6.1 Commit Order

In Chapters 4 and 5, we exploit Transactional memory (TM) as a technique for protecting
speculative code [93, 120], and extracting parallelization from sequential code [178, 73, 184,
160]. A conflict is handled by aborting (and re-executing) the transaction which ran code
with the later chronological ordering. The key idea is that code blocks run as transactions
and commit in the program’s chronological order. The techniques for supporting the afore-
mentioned ordering are classified as: blocking [73, 120, 185] or freezing [190] techniques.
These techniques are described in detail in Section 6.3.

Using blocking, the thread executing the transaction with the lowest age commits. While
a thread is committing, other threads wait until the commit completes. Upon a successful
commit, the subsequent thread with the lowest age performs the commit. As an example
of the blocking approach, Mehrara et al. [120] proposed a TM with a separate thread, the
Transaction Commit Manager (TCM), that detects conflicts among transactions waiting for
their turn to commit. TCM orchestrates the in-order commit process with the ability to
have concurrent commits. Workers threads poll and stall to wait for the TCM’s permission.
Gonzalez et al. [73] use a distributed approach for handling the commitment order. Each
thread employs a bounded circular buffer to store its completed transactions. If all buffer
slots are exhausted, the thread stalls until one of the pending executed transactions reaches
the correct commit order. TCC [81] is a hardware model for supporting transactions ordering.
The key idea is employing local-buffering, using the processors cache, for keeping transaction
changes, then wait for its order and flush (commit) its buffer if it is still valid.

Another existing solution lets threads freeze completed transactions and proceed to execute
the higher age transactions, with the disadvantage of increasing the transaction lifetime
(hence, a higher conflict probability). Zhang et al. [190] introduced this technique to support

1 Such a TM is released as an open-source project at: https://bitbucket.org/mohamed-m-saad/

ordertm

https://bitbucket.org/mohamed-m-saad/ordertm
https://bitbucket.org/mohamed-m-saad/ordertm

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 88

a pre-determined total order of transactions. A next-to-commit shared variable is used to
preserve this order.

The level of atomicity could be an orthogonal classification for the aforementioned techniques.
The classical TM model mandates transactions to see only committed values. However,
concurrent transactions can cooperate and construct a dependency graph of uncommitted,
yet exposed, values. Based on this graph, the transactions commit in the constructed order.
Although this approach defines the inverse problem of the in-order commit, it is fruitful
for us to exploit that. Ramadan et al. [143] proposed a cooperative approach for executing
transactions using a Dependency Aware STM model (DASTM). In DASTM, transactions
forward their uncommitted changes, and based on that, the runtime defines the commit
order. Interestingly, transactions never abort (only stall their commit) – except in the case
of deadlock. Both OWB and OUL algorithms employ data forwarding to permit read after
write operations, and they do not suffer from the high overhead of maintaining the conflict
graph.

Deterministic execution of TM may be seen as a distant related topic. Recently, in [147] it has
been proposed an STM implementation that improves performance in case of deterministic
execution. Deterministic execution is meant for reducing the possible parallelism in the
system, whereas our approaches aim at introducing parallelism when a specific commit order
is enforced.

6.2 Execution and Memory Model

A transaction is a unit of work that executes atomically (i.e., all or nothing) and in isolation
from the concurrent work. Memory transactions run optimistically, and thus in parallel,
even if they may access the same shared objects. However, when a conflict is detected, one
of the transactions is aborted and restarted. Our model assumes a set of transactions T =
{T1, T2, . . . , TN}. Transactions access shared objects using read and write operations, with
their usual meaning [93]. We denote the sets of shared objects accessed by transaction Tk
for read and write as read-set(Tk) and write-set(Tk), respectively.

A transaction execution is defined as a sequence of operations, where each operation is
represented by a pair of invoke and return events. Besides the read and write operations,
whose semantics is the usual one, it also includes a commit operation that starts by invoking
the try-commit event, whose return value is either commit or abort. Note that a transaction
can also be aborted before invoking the try-commit event. A transaction that begins its
execution and did not invoke the try-commit event yet is called live. A transaction that
invoked the try-commit event but did not committed or aborted yet is called commit-pending.
When a transaction is categorized as committed, it means that all its write operations have
been executed permanently on the shared state; and when it is categorized as aborted, it
means that its operations have no permanent effect. In both the cases, all meta-data is

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 89

Begin Read Write Try-commit Commit

Transaction	Execution

Live

Exposed

OWB

OWB	&	OUL

Commit-pending

Validation	&
Write-set	pub

…

Figure 6.1: States of a transaction execution in OWB and OUL.

cleaned before proceeding or re-executing. Figure 6.1 summarizes the transaction states.

A shared object has a value and a (versioned) lock associated with it. We say that a shared
object is exposed if it is locked by some live or commit-pending transaction. Intuitively, a
shared object is exposed if some other transaction can already read it although its creator
is still executing. We call the state of a transaction that is commit-pending and has all its
written objects exposed as exposed.

Two transactions are said to be conflicting on an object X, if both are concurrent (i.e, non-
committed or non-aborted yet) and access an object X, and at least one of them writes on
X. Note that two transactions are conflicting even if both write the same object without
reading it. Tracking such a dependency is fundamental, as motivated in the next paragraph.
A conflict is handled by aborting one of the transactions, or postponing the access generating
the conflict (if possible), until the other transaction commits.

6.2.1 Age-based Commit Order (ACO)

In this chapter, we focus on TM implementations providing a specific order of transaction
commits, which is assumed to be known prior to the transaction execution. We denote
such an order as the transaction age. The age of a transaction should not be confused
with the transaction timestamp taken from a global timestamp, as used by many existing
TM implementations (e.g., Transactional Locking 2 Algorithm (TL2) [59], Lazy Snapshot
Algorithm (LSA) [150]). That timestamp is defined by the concurrency control according

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 90

to the actual state of execution and not externally (e.g., by the application) as age. In
fact, in those solutions the transaction timestamp is leveraged to efficiently capture the
modifications which happened to the shared state after the transaction’s starting time. An
illustrative distinction between age and such a timestamp is that when a transaction aborts,
its timestamp is updated before retrying (as in TL2); the age cannot be updated.

The age is assumed to be defined by external factors before activating any transaction (e.g.,
an ordering layer deployed on top of the TM implementation), and must match the transac-
tions commit order. Assigning ages to transactions establishes a total order on their commits.
Let ≺ be the relation representing the total order on transaction ages, and let those ages be
denoted as subscripts (e.g., Tx). An aborted transaction is restarted with the same value of
age.

A concurrency control that enforces an order of commits ensures that when two operations
oi and oj, issued by transactions Ti and Tj, respectively, are conflicting, then oi must happen
before oj if and only if Ti ≺ Tj (i.e., i precedes j) [148]. We deploy this idea into our execution
model by introducing an Age-based Commit Order (ACO) – also known as timestamp-based
Commitment Ordering (TCO) in [148]. ACO mandates a customization of the classical
TM model. As an example, the transaction conflict detection should guarantee that when
Ti ≺ Tj, Ti must not read a value written by Tj. We define a transaction Tj as reachable
if all lower age transactions Ti, with i < j, are committed. This term depicts the fact that
Tj has been reached by a serial execution where all transactions T1,. . . ,Ti committed in the
order {1, . . . , i, j}. Note that every transaction eventually commits in our model. This is
due to the fact that as soon as a transaction aborts, it is restarted by the TM library.

6.3 Analyzing the Ordering Overhead

In this section, we analyze the overhead introduced by deploying a concurrency control that
enforces a specific and pre-defined commit order. Assume an ACO where transaction Ti
precedes transaction Tj (Ti ≺ Tj). Although Tj may finish executing its operations before
Ti, it must wait for Ti to commit first; then Tj can start committing (and validating if
needed) its changes. This strategy forces the thread executing transactions with higher age
to either: block [73, 120, 185] or freeze [190]. In both the strategies, an additional delay for
the higher age transactions is introduced.

In the blocking approach, the thread spins waiting for the correct commit order [185], while
the freeze approach allows threads to execute higher ordered transactions, and periodically
check the commit-pending lower age transactions. In both the cases, the overall utilization is
negatively affected: either by wasting processing cycles in waiting (stalling), or through re-
executing the aborted transactions (as a result of increasing the conflict probability). Also,
in the freeze approach, the overall performance is limited by the sum of the time consumed in
performing commits, as they cannot trivially run in parallel. This is why in Figure 6.3, each

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 91

set of green rectangles (commits) is synchronized with the next batch of green rectangles
(execution).

In the rest following, we show analytically the stalling periods (which we name ord-delay and
indicate as Σδ) experienced by transactions in these techniques given the ordering constraints,
using the best-case scenario, when there are no aborts among concurrent transactions. For
simplicity, we assume that all transactions execute code equally long, and that the total
number of active threads is equal to the number of cores to avoid the overhead of scheduling
executions.

Let αk be the time taken by Tk to execute all its operations when there are no conflicts.
Let βk be the time taken by Tk to commit its changes to the shared memory and to notify
its successor transaction about the completion of the commit. Let δk be the idle time of
the thread executing Tk before starting doing any useful work, such as committing Tk or
executing Tk+n.

6.3.1 Blocking/Stall Approach

Assuming Tk is the last committed transaction, and transactions Tk+1, . . . , Tk+n are running
in parallel on n processors. Given two transactions Tk+i and Tk+j, where i < j ≤ n, if Tk+j

completes its execution before Tk+i finalizes its commit, then Tk+j has to wait for δk+j time.
The following expression shows the total wait time for N transactions distributed over n
processors, and therefore activated at most n in parallel.

Σδ = (N − n) ∗ ((n− 1) ∗ β − α) + β ∗ n ∗ (n− 1)/2

The first n transactions (i.e., T1, . . . , Tn) start at the same time but they commit in order,
causing the delay captured by the second term in the equation. For all other transactions (i.e.,
Tn+1, . . . , TN), although they have to wait for all their predecessors to commit, there could
be an overlap between the transaction execution period and the commit of its predecessors.
This (possible) delay is included in the first term of the formula.

Figures 6.2a and 6.2b show the execution of ordered transactions running over 4 and 8 threads
respectively, where β = 0.25 α. Assume the transactions are distributed evenly over worker
threads in round-robin, and the rightmost thread executes the lowest age transactions. With
4 threads, the stall occurs only at the beginning (the second term of the above equation),
while 8 threads suffer from a continuous delay along the execution. Using the above formula,
we can see that up to 5 threads, there is no continuous delay during the execution. The total
ord-delay exhibits quadratic growth with an increasing number of threads, and it is affected
by the ratio between the commit time (i.e., β) and the execution time (i.e., α).

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 92

Tx 9

Tx 10

Tx 11

Tx 12

Tx 13

Tx 14

Tx 15

Tx 16

Tx 5

Tx 6

Tx 7

Tx 8

Commit 1

Commit 2

Commit 3

Commit 4

Commit 5

Commit 6

Commit 7

Commit 8

Commit 9

Commit 10

Commit 11

Commit 12

Commit 13

Commit 14

Tx 2Tx 3Tx 4 Tx 1

Thread 1Thread 2Thread 3Thread 4

β

α

.

(a) 4 Threads

Commit 1

Commit 2

Commit 3

Commit 4

Commit 5

Commit 6

Commit 7

Commit 8

Commit 9

Commit 10

Commit 11

Commit 12

Commit 13

Commit 14

Commit 15

Commit 16

Tx 9

Tx 10

Tx 11

Tx 12

Tx 13

Tx 14

Tx 15

Tx 16

Tx 17

Tx18

Tx 19

Tx 20

Tx 21

Tx 22

Tx 2Tx 3Tx 4Tx 5Tx 6Tx 7Tx 8 Tx 1

Thread 1Thread 2Thread 3Thread 4Thread 5Thread 6Thread 7Thread 8

Ordering

T
im

e

(b) 8 Threads

Figure 6.2: The Execution of Ordered Transactions using Blocking/Stall Approach

6.3.2 Freeze/Hold Approach

In contrast to the blocking approach, in the freeze approach, a thread transitions finished
transactions into a freeze (hold) state [190], and executes their commit phases later on when
all its preceding transactions (i.e., those with lower ages) become reachable (see Figure 6.3).
Without loss of generality, we assume that a designated thread performs all the “frozen”
commit phases. Similar to the blocking approach, we observe that threads stall to enable the
committer thread. The following expression shows the ord-delay in case of N transactions.

Σδ = α +max(0, N ∗ β − α ∗ d(N − n)/ne)

Note that, similarly to the blocking approach, the total delay is affected by the ratio be-
tween the commit time (β) and the execution time (α). However, the delay is relatively

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 93

Commit 1

Commit 2

Commit 3

Commit 4

Commit 5

Commit 6

Commit 7

Commit 8

Commit 16

Tx 2Tx 3Tx 4Tx 5Tx 6Tx 7 Tx 1

Thread 1Thread 2Thread 3Thread 4Thread 5Thread 6Thread 7Thread 8

Ordering

T
im

e

Tx 9Tx 10Tx 11Tx 12Tx 13Tx 14 Tx 8

Commit 9

Commit 10

Commit 11

Commit 12

Commit 13

Commit 14

Commit 15
Tx 16Tx 17Tx 18Tx 19Tx 20Tx 21 Tx 15

Figure 6.3: The Execution of Ordered Transactions using Freeze/Hold Approach

smaller than the blocking approach, and the number of live transactions doubled, increasing
the probability of experiencing a conflict given the extended transaction lifetime (locks on
accessed objects are held for longer).

Analyzing the results illustrated in this section, we can conclude that ordering transactions’
commits negatively affects the overall resource utilization and may nullify any potential gain
due to threads’ parallelism.

In the following sections, we detail our proposals to overcome the above drawbacks, which
introduce a new execution model and algorithms to reduce the ordering delay.

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 94

6.4 General Design

In this section, we present our co-operative model for supporting ACO. The most important
factor that affects the transaction ord-delay, analyzed in the previous section, is the commit
latency. In fact, the time required to execute the commit phase sets a lower bound on the
ord-delay, while deferring the commit phase to a later point in time allows for more conflicts.

The core idea is to relax the common practice of letting transactions access values written by
only committed or commit-pending transactions that will surely commit. In our proposed
solutions, we weaken this assumption while still preserving the consistency according to
ACO. Depending on the desired correctness and performance level, we permit a transaction
to expose its changes either:

• after it invokes the try-commit event and performs a validation to make sure its execu-
tion is consistent, but still allowing it to abort later due to ACO violation (in OWB);
or

• right after the write operation takes place during the execution and aborting any
dependent transaction as soon as a further modification on the same early exposed
value happens (in OUL).

The above idea allows transactions with higher age to use such visible changes. Although
it speeds up the flow of values from lower age transactions to the higher age ones, it also
creates a possible dependency chain with other live and commit-pending transactions that
accessed those values. Therefore when an abort occurs, the abort event should be immedi-
ately triggered to all the dependent transactions (cascading abort).

Let T1 and T2 be concurrent transactions, where T1 ≺ T2, and let X be a shared object
accessed by both the transactions using write (Wi) and read (Ri) operations, where the
suffix refers to the transaction Id. Let the operator → indicate the real-time order for the
operations on X. In Table 6.1, we identify three different transactional models to handle
concurrent read and write operations: the classical, the cooperative ordered (our proposed
model), and the conflict serialization model (DASTM [143]).

The classical transactional model prohibits the co-existence of read and write operations
on the same object issued by concurrent transactions, while the conflict serialization per-
mits all combinations and enforces the commit order based on the transaction dependency.
In contrast, the cooperative ordered model restricts the memory snapshot seen by current
transactions to only the values exposed by older transactions. Under the conflict serializa-
tion model, transactions are aborted only when a mutual dependency (i.e., a cycle in the
transaction dependency graph) exists; while in ACO, the graph is necessarily acyclic.

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 95

6.4.1 Cooperative Ordered Transactional Execution

To construct our cooperative model, we start by highlighting the following two events of a
transaction execution.

• A transaction becomes exposed, when all its written objects have been exposed, and it
is in the commit-pending state by having all its read operations consistent according
to the ACO, therefore no conflict with any lower age transaction occurred.

• A transaction becomes reachable, when all the lower age transactions have been com-
mitted.

Exposing written objects before being sure that a transaction eventually commits may vio-
late the ACO if all lower age transactions are not committed yet, or when the transaction
conflicts with a lower age transaction that did not run at the time of becoming exposed. For
this reason, we postpone releasing the transaction meta-data until the transaction becomes
reachable, thus providing a safe point to decide whether a commit or abort should be trig-
gered. The main difference between an exposed transaction and a reachable transaction is
that: the former, although it has already published its modifications, it can still be aborted
(and trigger the cascading abort of other transactions), whereas the latter cannot be aborted
anymore. Therefore, it is safe to release all its meta-data without violating the ACO.

Figure 6.4 shows a possible execution using our transactional model. Let γ be the time
required for executing the commit operation. The following expression shows the total wait
time in the case of N transactions.

Σδ = α + β +max(0, N ∗ γ − (α + β) ∗ d(N − n)/ne)

The ord-delay is now limited to the latency of the commit, rather than the time required to
make the transaction exposed. Note that a transaction requires less time to commit after
being exposed, than to become exposed after executing the try-commit (see Sections 6.5
and 7.1). This implies that the execution time for executing commit (γ) should be less,
which also reduces the ord-delay. Besides that, threads invest a portion of the stall time
executing the operations required to make the transaction exposed, which makes δ negatively
proportional with β, unlike other approaches.

Supporting this new model requires handling the following scenarios: i) aborted transactions
should be able to abort other transactions that accessed their exposed updates; and ii) lower
age transactions should conflict (and thus abort) with exposed higher age transactions.
Accomplishing the above goals requires maintaining some transactional meta-data (e.g.,
read and write sets, including any acquired locks) even after a transaction is exposed. Those
meta-data help in identifying conflicts (or aborting) exposed transactions, and they should
be kept accessible until a transaction becomes reachable. Additionally, we need to support

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 96

Try-Commit

1

Tx 2Tx 3Tx 4Tx 5Tx 6Tx 7 Tx 1

Thread 1Thread 2Thread 3Thread 4Thread 5Thread 6Thread 7Thread 8

Ordering

T
im

e

Tx 9Tx 10Tx 11Tx 12Tx 13Tx 14 Tx 8

Tx 16Tx 17Tx 18Tx 19Tx 20Tx 21 Tx 15

Try-Commit

2

Try-Commit

3

Try-Commit

4

Try-Commit

5

Try-Commit

6

Try-Commit

7

Commit 1

Commit 2

Commit 3

Commit 4

Commit 5

Commit 6

Commit 7

Commit 8

Try-Commit

8

Try-Commit

9

Try-Commit

10

Try-Commit

11

Try-Commit

12

Try-Commit

13

Try-Commit

14

Commit 9

Commit 10

Commit 11

Commit 12

Commit 13

Commit 14

Commit 15

Commit 16

Try-Commit

15

Try-Commit

16

Try-Commit

17

Try-Commit

18

Try-Commit

19

Try-Commit

20

Try-Commit

21

Commit 17

Commit 18

Commit 19

Commit 20

Commit 21

Tx 23Tx 24Tx 25Tx 26Tx 27Tx 28 Tx 22

Try-Commit

22

Try-Commit

23

Try-Commit

24

Try-Commit

25

Try-Commit

26

Try-Commit

27

Try-Commit

28

γ

Figure 6.4: The Execution of Ordered Transactions using our approach

the cascading abort of multiple live or exposed transactions that share elements in their read-
sets and write-sets. Consequently, transactions must be aware of their interdependencies and
construct dependency relations to be able to recover from such situations.

6.5 The Ordered Write Back (OWB)

The Ordered Write Back Algorithm (OWB) employs a write-buffer approach; a transaction
writes its modifications into a local buffer. While entering the try-commit phase, the trans-
action acquires a versioned-lock for each object in its write-set and writes its changes to
the shared memory, and becomes exposed. To avoid concurrent writers, the locks are not
released until the transaction becomes committed or is aborted. However, to allow an early

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 97

Operation Ordering Semantics

C
la

ss
ic

al
T

x

O
rd

er
ed

T
x

C
on

fl
ic

t
S

er
ia

li
za

ti
on

O
W

B

O
U

L

O
U

L
-S

te
al

W1 → R2 Speculative Read X X X X X
W1 → W2 Steal Exclusive Lock X X X
R2 → W1 Invalid Read X X X X
W2 → W1 Overwritten Value X X X X
R1 → R2 X X X X X X
R2 → R1 X X X X X X
R1 → W2 Steal Shared Lock X X X X X
W2 → R1 Invalid Read X X X X

Table 6.1: Handling of Read/Write between concurrent transactions.

propagation of the modifications, higher age transactions can access these locked objects.
In case an abort is triggered, the exposed transaction is responsible to abort any dependent
transaction that has read the exposed values. We use versioning to detect conflicts between
concurrent transactions. The transaction performs a validation before exposing its values,
and before releasing its locks to approach the final commit.

In practice, for OWB a transaction is exposed if: it is executed until the end without any
conflict with other concurrent transactions; it acquired the locks on its modified objects
successfully; it exposed their new values to the shared memory; and it is waiting to be
reachable. A transaction can commit only if it is reachable and passes the validation of its
read operations. The transaction also releases its acquired locks at this stage. As stated
earlier, an exposed transaction can still be aborted.

A transaction keeps these meta-data: 1) read-set, which stores read objects and their read
version; 2) write-set, which stores the modified objects and their new values; and 3) depen-
dencies list : a list of transactions who read the changes done by this transaction after it
becomes exposed. Shared objects are associated with a versioned lock. The lock stores the
version number and a reference to the writer transaction (if it exists) that currently owns it.
The version is incremented when a new value for the object is exposed.

Algorithms 1, 2 and 3 show the pseudo code of the OWB algorithm. The Write operation
simply adds the object and its new value to the write-set. The Read operation first checks
if the object has been earlier modified by the transaction itself. If so, the new value from
the write-set is returned; otherwise the object, along with its version, is fetched from the
shared memory. If the object is currently exposed, then the writer is aborted only if its age
is higher (W2 → R1), and the read operation is retried. If the transaction that holds the lock
is older than the reading transaction, we let the latter read the written value (W1 → R2)

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 98

Algorithm 1 OWB - Read, Write & Validate
1: procedure Begin(Transaction tx)
2: tx.lastObserved = lastCommitted
3: end procedure

4: procedure Read(SharedObject so, Transaction tx)
5: readVersion = so.lock.version
6: currentWriter = so.lock.writer
7: if tx.writeSet.contains(so) then
8: tx.readSet.add(so, readVersion)
9: return tx.writeSet.get(so).value . Read written value
10: else if currentWriter 6= NULL then . Check speculative write
11: if currentWriter.age > tx.age then
12: ABORT(currentWriter) . W2 → R1; Read after Speculative Write
13: go to 5
14: else . W1 → R2; Add Tx to its dependencies
15: currentWriter.dependencies.add(tx)
16: if currentWriter.status 6= ACTIVE then . Double check writer
17: ABORT(tx) . Writer got aborted while registration
18: end if
19: end if
20: end if
21: if readVersion 6= so.lock.version then
22: go to 5
23: end if
24: Validate Reads(tx)
25: tx.readSet.add(so, readVersion)
26: return so.value
27: end procedure

28: procedure Write(SharedObject so, Object value, Transaction tx)
29: tx.writeSet.add(so, newValue) . Save new value
30: end procedure

31: procedure Validate Reads(Transaction tx)
32: if tx.lastObserved 6= lastCommitted then
33: tx.lastObserved = lastCommitted
34: for each Entry entry in tx.readSet do . Validate Read Set
35: SharedObject so = entry.so
36: if so.lock.version 6= entry.readVersion then
37: return ABORT(tx) . Read a wrong version
38: end if
39: end for
40: end if
41: return VALID
42: end procedure

43: procedure Validate Locked Reads(Transaction tx)
44: for each Entry entry in tx.readSet do . Validate Write Set
45: SharedObject so = entry.so
46: if so.lock.writer = tx ∧ so.lock.version 6= 1 + entry.readVersion then
47: return ABORT(tx) . Concurrent Expose/Commit Occurs
48: end if
49: end for
50: return VALID
51: end procedure

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 99

Algorithm 2 OWB - Abort.
52: procedure Abort(Transaction tx)
53: if tx.status = ABORTED then return false; end if . Already got aborted
54: if tx.status = INACTIVE then return false; end if . Already compeleted
55: while ! CAS(tx.status, ACTIVE, TRANSIENT) do . Try Abort
56: repeat until tx.status 6= TRANSIENT . Spin Wait
57: go to 53
58: end while
59: for each Transaction dependency in tx.dependencies do
60: ABORT(dependency) . Abort dependent transactions
61: end for
62: for each Entry entry in tx.writeSet do
63: SharedObject so = entry.so
64: if so.lock.writer = tx then . Aquired lock
65: so.value = entry.newValue . Revert value
66: so.lock.writer = NULL . Release the lock
67: end if
68: end for
69: tx.status = ABORTED
70: return true
71: end procedure

and add itself to the writer’s dependencies list. That way, if the writer will be aborted in
the future, it can cascade its abort to the affected transactions who read its modified objects
(see Algorithm 2). It is worth noting that, to avoid inconsistencies while reading from an
exposed writer, we let the reader double check the writer state (if it is aborted) after it
registers itself in the writer dependencies list; also the dependencies list must provides a
thread-safe insertion.

To enter the exposed state, a validation of the read-set is executed to make sure the trans-
action reads a consistent view of the memory before exposing the locally buffered written
objects. Validate Reads (Algorithm 1) compares the current versions of the read objects
with the value of the corresponding versions stored in read-set. If the current version is
different, then this means that the object was modified after the read, i.e., a Write after
Read (WAR) conflict. This modification could be: speculative, i.e., the writer is exposed,
therefore R1 → W2 or R2 → W1, or valid, i.e., the writer committed. In the latter case, the
committed writer must have an age older than the current transaction, which means that
the current transaction has read an invalid value and it needs to be aborted.

Upon passing a read-set validation, the Try Commit procedure (Algorithm 3) acquires the
locks and then writes the write-set to the memory. If the locks are already acquired by
another concurrent exposed writer (W1 → W2 or W2 → W1), we handle that by favoring the
lower age transaction, and aborting the other. Given that exposed transactions can still be
aborted by other transactions, we need to store the old value of modified objects. This is
done by swapping the write-set stored values with the old objects’ values at commit.

Finally, at Commit time we call Validate Reads again to prevent the WAR anomaly. How-
ever, given that write-set elements are already locked, we can leverage that to reduce the
validation overhead. Consider Ti is executing the commit operation. Let X ∈ read-set(Ti) ∩
write-set(Ti). As Ti is still acquiring the locks over its write-set (including X), Ti is sure that

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 100

Algorithm 3 OWB - Commit.
72: procedure TryCommit(Transaction tx)
73: if tx.status = ABORTED then return false; end if . Already got aborted
74: while ! CAS(tx.status, ACTIVE, TRANSIENT) do . Try Commit
75: repeat until tx.status 6= TRANSIENT . Spin Wait
76: return false
77: end while
78: if VALIDATE READS(tx) 6= VALID then return false; end if
79: for each Entry entry in tx.writeSet do . Lock Write Set
80: SharedObject so = entry.so
81: currentWriter = so.lock.writer
82: if currentWriter 6= NULL then
83: if tx.age < currentWriter.age then
84: ABORT(currentWriter) . W2 →W1; Write after Specu. Write
85: else
86: ABORT(tx) . W1 →W2; Write after Write
87: return false
88: end if
89: if ! CAS(so.lock.writer, NULL, tx) then . Acquire Lock
90: go to 81
91: end if
92: end if
93: end for
94: for each Entry entry in tx.writeSet do
95: SharedObject so = entry.so
96: so.lock.version + +
97: temp = so.value . Save old value
98: so.value = entry.newValue . Expose written value
99: entry.newValue = temp
100: end for
101: if Validate Locked Reads(tx) 6= VALID then return false; end if
102: tx.status = ACTIVE . Transaction Exposed
103: return true
104: end procedure

105: procedure Commit(Transaction tx)
106: if tx.status = ABORTED then return false; end if . Already got aborted
107: while ! CAS(tx.status, ACTIVE, TRANSIENT) do . Try Complete
108: repeat until tx.status 6= TRANSIENT . Spin Wait
109: return false
110: end while
111: if VALIDATE READS(tx) 6= VALID then return false; end if
112: for each Entry entry in tx.writeSet do
113: SharedObject so = entry.so
114: so.lock.writer = NULL . Unlock
115: end for
116: tx.status = INACTIVE . Transaction Committed
117: return true
118: end procedure

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 101

the value of X is unchanged since its lock acquisition, thereby it could be excluded from the
commit-time read-set validation. To do so, it requires checking that read-set objects have
not been changed while acquiring locks, thus Validate Locked Reads is called after that.

Keeping the commit execution time short is fundamental as it impacts the ord-delay (as
shown in Section 6.4.1); therefore, the optimization just described shrinks the commit execu-
tion at the price of adding an extra check in the Try-Commit procedure (i.e., Validate Locked Reads

call). However, having an object read and written in a transaction is a common pattern,
which makes this optimization fruitful. In addition, if there is no concurrent transac-
tion that committed since the beginning of the execution, invoking Validate Reads and
Validate Locked Reads can be avoided (For clarity, this optimization is not included in the
pseudo code). To do so, the transaction stores the age of the last committed transaction at
its beginning, and checks if it is changed before the validation. Finally, when a transaction
becomes reachable and the re-validation succeeds, the commit operation releases its acquired
locks and reclaims any transactional meta-data.

As correctness guarantee, OWB guarantees TMS1 [62]. The intuition is that: if for a the
history generated by OWB, every exposed transaction is committed, then the history is
opaque [76]. First of all, transactions can commit only in the ACO order, serializing all
the committed transactions, making OWB strict serializable. Moreover, OWB allows trans-
actions to read only from commit-pending (exposed) and committed transactions, and any
time a transaction enters the exposed state, it aborts all concurrent transactions that has
read a value that violates the ACO. However, exposed transactions can abort after some live
transaction already read those values. This is not allowed by Opacity, but TMS1 allows that
as long as the live transactions do not perform any operation after the exposed transaction
is aborted. OWB implements that through an atomic cascading abort. We give more details
about correctness in Section 6.7.

6.6 Implementation

6.6.1 Lock Structure

In this section, we detail the implementation of the locks. Each memory address is associated
with a 32-bit lock. The mapping between addresses and locks is made by leveraging the least
significant bits, so a single lock is able to cover multiple addresses. The lock is divided into
two sections: the most significant N bits represent the reference to the writer, and the
remaining bits represent the version number.

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 102

Algorithm 4 Thread Execution
1: for each Transaction tx in WorkQueue do
2: if validator = IDLE ∧ CAS(validator, IDLE, BUSY) then

. Try to be the validator
3: tx = ExposedList[last committed]
4: if tx = NULL then . Tx is not exposed yet
5: go to 16 . Stop validation
6: end if
7: if tx.commit() = FAIL then . Perform Tx commit
8: tx.start()
9: tx.execute() . Reexecute failed transaction
10: tx.tryCommit() . Commit without validation
11: tx.commit()
12: end if
13: last committed++
14: CommittedQueue.enqueue(tx)
15: go to 3 . Validate next exposed Tx
16: validator = IDLE . Release the validator role
17: end if
18: if aborts>LIMIT ∨ tx.age - last committed > MAX then
19: while tx.age - last completed > MIN do
20: for each Transaction tx in CommittedQueue do
21: tx.clean() . Do housekeeping
22: end for
23: end while
24: end if
25: tx.start()
26: tx.execute() . Execute transaction
27: if tx.tryCommit() = FAIL then . Try to expose transaction
28: go to 25 . Retry
29: end if
30: ExposedList[tx.age] = tx . Add to pending transactions
31: end for

6.6.2 Thread Execution

In our implementation, a single executing thread plays multiple roles: worker, validator, or
cleaner. Switching between different roles is done according to the procedure in Algorithm 4.
A worker thread executes the transaction (creation, reads, and writes) and performs the
try-commit; while a thread in the cleaner role takes care of the housekeeping (reclaiming
transactional meta-data). There is a single thread at a time in the validator role, which is
responsible for moving commit-pending (exposed) transactions to the committed state and
also re-executes invalid transactions. We adopt the flat combining [87] technique for enabling
threads to take the validator role as shown.

In OWB, exposed transactions acquire locks on their write-set, which limits concurrency and
increases the conflict probability. For this reason, it is highly desirable for a transaction to
stay a short time in the state between exposed and committed. Therefore, the worker threads
should avoid overwhelming the validator by executing (and exposing) many transactions. In
line 18, if the count of pending exposed transactions exceeds a threshold or the number of
aborts increases, a worker thread spends its cycles cleaning the committed transactions (i.e.,
it switches its role from worker to cleaner). It continues cleaning until a minimum threshold

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 103

for the count of those pending transactions is reached (line 19).

6.7 Correctness

In this section, we discuss the correctness guarantees of the given algorithms.

First, we show how OWB preserve the ACO. Suppose by contradiction that the ACO is
violated. Let Ti and Tj be two transactions such that Ti ≺ Tj. The interesting case is if Ti
successfully reads a value of an object X written by Tj. This implies that Ri(X) happened
after Tj exposes X’s value. In OWL, Ti acquires a shared lock on X at the time of the read
operation, by checking if there is no writer. In order to have a successful read, the shared
lock must be acquired, thus the write lock should not be already granted. This implies that
Tj has released all its locks. As a transaction does not release its acquired locks until it
commits, Tj must be necessarily committed. Therefore Ri(X) must occur after commit(Tj).
Since a transaction cannot perform any step after it commits, Ri(X) → commit(Ti). This
means commit(Tj) → commit(Ti), which cannot be the case since they must commit in
order, according to their ages.

Now we prove that OWB is serializable. In order to prove that, we define DG(i, j) as a
predicate defining a dependency between Ti and Tj, when Tj reads a value written by Ti, or
Tj overwrites a value written by Ti. Using this definition, we can construct a dependency
directed graph DG(T,D), where T is the set of all committed transactions, and D is the
set of dependency relations. It is easy to see that DG ⊂ SG, where SG is the conflict
serialization graph [21]. A history is serializable if and only if its SG is acyclic. Note that
serializability is not guaranteed if DG is acyclic. Assume by contradiction that an execution
of our algorithms produce a cyclic DG, which implies having an edge D(i, j) where i > j. By
definition of dependency, this means that either Tj reads a value written by Ti (i.e., Wi(X)
→ Rj(X)), or Tj overwrites a Ti’s written value (i.e., Wi(X)→ Wj(X)). In all the proposed
algorithms, exclusive locks must be acquired when we expose the written values (at commit
time) and released only at commit, or passed to a higher age transaction (which is not the
case here). We can rewrite the previous situations as commit(Ti) → Rj(X) or commit(Ti)
→ Wj(X). Since a transaction cannot perform any step after it commits, commit(Ti) →
commit(Tj), which cannot be the case as mentioned earlier; therefore, DG is a acyclic.
Assume e ∈ E = SG \ DG, this edge represents the case where Ri(X) → Wj(X), which
means Ri(X) → commit(Tj). In OWB, the procedure Validate Reads captures this by
comparing the read version with the current version of the accessed object (Algorithm 1).
So E = ∅ ⇒ SG = DG⇒ SG is acyclic, making the algorithms serializable.

Note that the serialization point for OWB is line 116 in Algorithm 1. As the serialization
point is inside the transaction execution, all the algorithms preserve the real-time order, and
are strict serializable.

In addition to being strict serializable, OWB is also TMS1 [62], a stronger condition than

Mohamed M. Saad Chapter 6. Ordered Write Back Algorithm 104

T1 W2(x, 1) C

T2 R3(x, 0) W3(z, 1) A

T3 R4(y, 0) R4(z, 1) A

Figure 6.5: An execution of OWB, which is TMS1. Initial value of all the shared variables
is 0. The ACO is T1 ≺ T2 ≺ T3

strict serializability. This means that every history produced by OWB is TMS1. Being
TMS1, OWB ensures that response of every object operation, even by aborted and live
transactions, is consistent with a serial execution. Informally, for a history to be TMS1,
it must be strict serializable, and for every successful response of an object operation by a
transaction T , there must exist a serialization of a subset of the transactions, justifying the
response. This subset must contain T (till the response) and all the committed transactions
that completed before T started. In addition to them, the serialization can also contain some
commit-pending transactions, and some committed and even aborted transactions, that are
concurrent to T . We have already shown earlier that OWB is strict serializable. Since
OWB allows a read operation to return a value written by an exposed transaction, which
may get aborted later, it justifies including concurrent aborted transaction for the response.
Recall that OWB allows reading values written by committed and exposed transactions
only, but not from aborted transactions. The intuition is that if a transaction reads from an
exposed transaction, which gets aborted later, the reading transaction is also aborted without
executing any further operations. This is done using cascading mechanism in OWB (line 60
in Algorithm 1). Figure 6.5 shows an execution of OWB. In this execution, the transaction
T3 reads the value of z written by an exposed transaction (T2), which gets aborted later due
to the commit of T1 that writes a new value of x.

6.8 Evaluation

We implemented OWB, the ordered version of four existing well-known TM designs (i.e.,
TL2 [59], NOrec [53], and UndoLog [69] with and without visible readers) and STMLite [120],
and compared their performance using a set of micro-benchmarks and STAMP [37], where
an order has been enforced. The evaluation of OWB is postponed to Section 7.4 after
introducing the OUL algorithm in the next chapter.

Chapter 7

Ordered Undolog Algorithm

The Ordered Undo Log (OUL) Algorithm is an undo-log algorithm that preserves the ACO.
Here, transactional updates affect the shared memory at encounter time, while the old value
is kept in a local undo-log. Such a scheme implies that the transactions’ order is guaranteed
while operations are invoked, and not at commit time as in OWB. In order to deploy the
above idea, each object is associated with a read-write lock. The transaction acquires a read
or write lock according to its need, as explained later. Also, each lock stores the reference
to the (single) writer transaction, which can be either the current transaction holding the
lock or the one that committed that version, and a list of concurrent readers, namely those
transactions that accessed the version for reading it, and they are still live or commit-pending.
Note that the size of the readers list impacts the efficiency of the protocol, thus it should be
bounded.

As in OWB, every transaction in OUL maintains a write-set, but here the write-set stores
the old values of the written objects (undo-log). Regarding the transaction read-set, it is
implicitly represented by the object lock’s readers list.

7.1 Ordered Undolog Algorithm (OUL)

In OUL, we use an immediate update approach with undo logging for recovery from aborts.
Accessed objects are locked at encounter time using a variant of read-write locks. Our lock
permits a single writer to co-exists with multiple readers under certain conditions. The lock
keeps a bounded list of the reader transactions, visible readers, and a reference to the writer
transaction, hence, dependency between transactions is preserved through the read-write
locks.

Algorithms 5 and 6 show the OUL core operations1. In the Read, we allow Read after Write

1We omitted the necessary FENCE instructions to prevent out-of-order execution. Those can be found

105

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 106

(RAW) conflicts only if the writer transaction has a lower age (W1 → R2); otherwise the
speculative writer is aborted (W2 → R1). The Write operation enforces that only a single
transaction can hold the write lock on the object at a time. A Write-Write conflict is solved
by aborting the transaction with the lowest age. As readers are visible, the writer transaction
can check if there is any (wrong) speculative reader, and abort it accordingly (R2 → W1).

Algorithm 5 OUL - Read & Write
1: procedure Read(SharedObject so, Transaction tx)
2: if tx.status = TRANSIENT then return ABORT(tx) end if
3: Transaction currentWriter = so.lock.writer;
4: if currentWriter = BUSY then go to 9 end if
5: if currentWriter 6= NULL ∧ currentWriter.status 6= INACTIVE ∧ currentWriter.age > this.age then
6: ABORT(currentWriter) . W2 → R1; Read after specu. Write
7: go to 9
8: end if
9: registered = false
10: repeat
11: for i=0 to MAX READERS do
12: Transaction readerSlot = so.lock.reader[i]
13: if readerSlot 6= ACTIVE ∧ readerSlot 6= PENDING ∧ CAS(so.lock.reader[i], readerSlot, tx) then
14: registered = true . Found empty reader slot
15: end if
16: end for
17: until registered
18: if currentWriter 6= so.lock.writer then . Writer was changed
19: go to 9
20: end if
21: return so.value
22: end procedure

23: procedure Write(SharedObject so, Object value, Transaction tx)
24: if tx.status = TRANSIENT then ABORT(tx); end if
25: Transaction currentWriter = so.lock.writer;
26: if currentWriter = BUSY then go to 24 end if
27: if currentWriter 6= tx then . Already in write-set
28: if currentWriter 6= NULL ∧ currentWriter.status 6= INACTIVE then
29: if currentWriter.age > this.age then
30: ABORT(currentWriter) . W2 →W1; Write after specu. Write
31: go to 24
32: else
33: ABORT(tx) . W1 →W2; Write after Write
34: end if
35: end if
36: if ! CAS(so.lock.writer, currentWriter, BUSY) then
37: go to 24 . Failed to aquire the lock
38: end if
39: tx.writeSet.add(so, so.value) . Save old value
40: end if
41: for i=0 to MAX READERS do
42: Transaction readerSlot = so.lock.reader[i]
43: if readerSlot 6= INACTIVE ∧ readerSlot.age > tx.age) then
44: ABORT(readerSlot) . R2 →W1; Abort specu. reader
45: end if
46: end for
47: so.value = newValue . Write new value
48: so.lock.writer = tx . Save me as the new writer
49: end procedure

in the source code at: https://bitbucket.org/mohamed-m-saad/ordertm.

https://bitbucket.org/mohamed-m-saad/ordertm

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 107

Active

Inactive

TransientPending

Expose

Abort

Abort

RollbackCommit

Figure 7.1: OUL Transaction States

One of the major benefit of a write through protocol is that the Try-Commit procedure is
simple because the values are already in the shared memory. However, in OUL exposing a
transaction only means that it did not conflict with other transactions so far – but it could
be still aborted to preserve the ACO. In the Commit procedure, the transaction is marked
as Inactive and locks are released. As we said before, given that a lock is maintained with
a back-reference to the transaction that holds it, setting the transaction status is sufficient
to release all the locks held by that transaction with a single step. On the other hand, in
Abort the transaction has to restore old values from the undo-log (Rollback), and release all
the locks (switches to the Inactive state).

Algorithm 6 OUL - Commit & Abort
50: procedure TryCommit(Transaction tx)
51: if !CAS(tx.status, ACTIVE, PENDING) then ABORT(tx) end if
52: end procedure

53: procedure Commit(Transaction tx)
54: if CAS(tx.status, PENDING, INACTIVE) then return true end if
55: repeat until tx.status 6= TRANSIENT

. Wait till be aborted
56: end procedure

57: procedure Abort(Transaction tx)
58: if tx.status = INACTIVE then return true; end if

. Check if already aborted
59: if CAS(tx.status, PENDING, TRANSIENT) then

. Rollback
60: for each Entry entry in tx.writeSet do
61: SharedObject so = entry.so
62: Object value = entry.value
63: so.value = value . Restore old value
64: for i=0 to MAX READERS do
65: Transaction readerSlot = so.lock.reader[i]
66: if readerSlot 6= INACTIVE ∧ readerSlot.age > tx.age) then
67: ABORT(readerSlot) . Abort specu. reader
68: end if
69: end for
70: end for
71: tx.status = INACTIVE
72: else . Set aborted
73: return CAS(tx.status, ACTIVE, TRANSIENT)
74: end if
75: end procedure

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 108

Figure 7.1 recaps the different states of OUL transactions, and their transitions. The Active,
Pending and Inactive states correspond to the live, exposed, and committed (or aborted)
situations respectively, while the Transient state indicates the to-be-aborted event, which
could be triggered by another conflicting transaction.

7.1.1 The OUL-Steal Algorithm

In this section, we introduce OUL-Steal, a variant of the OUL algorithm where we relax the
aforementioned multiple-writers restriction and allow write-writer conflicts while guarantee-
ing ACO. In both OWB and OUL, conflicting transactions co-operate to commit as they are
allowed to proceed without aborts even in the presence of some read-write conflict, as long
as ACO is still preserved. However, a writer transaction holds the locks until reaching the
commit state, which sometimes limits the overall concurrency.

Let Ti and Tj be two conflicting writers on an object X, and Ti ≺ Tj. In OUL, if Ti finds X
already locked by Tj (W1 → W2), Ti should abort Tj. However, ACO could be still preserved
if Tj overwrites the value of Ti, as long as there is no other transaction Tk, with Ti ≺ Tk ≺ Tj,
that will read X in the future.

OUL-Steal allows a transaction with higher age to overwrite the value written by a concurrent
transaction with lower age (W1 → W2), and steal its lock. The newer transaction stores the
stolen lock in a local list so that it can be returned back to the original writer (the transaction
with the lower age) in case of abort. That way, if a mid-age reader Tk needs the value of
an older age transaction, then it can abort the newer transaction(s) which stole the lock(s);
otherwise (i.e., without Tk), the value written by the newer age transaction will be used by
the higher age readers. This operation could be repeated at multiple levels until the reader
reaches the correct writer transaction. More formally, ∀i > k, if X ∈ read-set(Tk) and Ti ∈
writers(X), then Tk aborts Ti.

In Write, the lock is passed to the higher age writer and is saved in its write-set. As a
consequence, the written address exists in the undo-log of both the writers (the original and
the one which stole the lock). During the Abort, the transaction uses Rollback to revert its
changes using its undo-log. An undo-log entry can be:

• stolen by another writer: which means the transaction does not have the ownership
record at the abort time. In this case, the transaction does not do any action, although,
it keeps the undo-log entry, which contains the address value before the current trans-
action modifications.

• exclusively modified by the current transaction, reverting the old value from the undo-
log, and aborting the speculative readers.

• stolen from another writer: in addition to the steps done in the exclusively modified
case, the lock ownership is passed back to the old writer, and the current transaction

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 109

checks the state of the old writer. If it was not aborted, then no further action is
needed. Otherwise, the transaction calls the Rollback of the old owner. At this stage,
the old writer will treat the entry as the cases of exclusively modified or stolen from,
accordingly.

The complete pseudo code of the OUL-Steal algorithm is shown in Algorithms 7 and 8.

Algorithm 8 OUL-Steal - Abort
58: procedure Rollback(Transaction tx)
59: tx.aborted = true
60: for each Entry entry in tx.writeSet do
61: SharedObject so = entry.so
62: if CAS(so.lock.writer, tx, BUSY) then
63: Object value = entry.value
64: so.value = value . Restore old value
65: so.lock.writer = entry.originalOwner . Release lock, or return the original owner
66: if entry.originalOwner != NULL ∧ entry.originalOwner.aborted then
67: ROLLBACK(entry.originalOwner)
68: end if
69: end if
70: for i=0 to MAX READERS do
71: Transaction readerSlot = so.lock.reader[i]
72: if readerSlot 6= INACTIVE ∧ readerSlot.age > tx.age) then
73: ABORT(readerSlot) . Abort speculative readers
74: end if
75: end for
76: end for
77: end procedure

78: procedure Abort(Transaction tx)
79: if tx.status = INACTIVE then return true; end if . Already Aborted
80: if CAS(tx.status, PENDING, TRANSIENT) then
81: Rollback(tx) . Rollback
82: tx.status = INACTIVE
83: else
84: if CAS(tx.status, ACTIVE, TRANSIENT) then . Set aborted
85: return true
86: end if
87: end if
88: return false . Failed to abort
89: end procedure

In Write, the lock is passed to the higher age writer and is saved in its write-set (Lines 34
and 40). The Abort procedure checks that the current transaction is still holding the lock. If
so, in addition to reverting the old value or the written objects and aborting the speculative
readers, the lock is passed back to the old owner (if exists). If the lock has been stolen by
some other transaction, that transaction is now in charge of restoring the value by calling
Rollback recursively over the chain of previously aborted owner(s) transaction(s) (if exists)
(Line 67). However, if the original owner of the lock is still alive (or committed), then it is
sufficient for the current owner to just revert the newly written value of the object from the
undo-log.

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 110

Algorithm 7 OUL-Steal - pseudo code
1: procedure Read(SharedObject so, Transaction tx)
2: if tx.status = TRANSIENT then return ABORT(tx) end if
3: Transaction currentWriter = so.lock.writer;
4: if currentWriter = BUSY then go to 2 end if
5: if currentWriter 6= NULL ∧ currentWriter.status 6= INACTIVE ∧ currentWriter.age > this.age then
6: ABORT(currentWriter) . W2 → R1; Read after Speculative Write
7: go to 2
8: end if
9: registered = false
10: repeat
11: for i=0 to MAX READERS do
12: Transaction readerSlot = so.lock.reader[i]
13: if readerSlot 6= ACTIVE ∧ readerSlot 6= PENDING ∧ CAS(so.lock.reader[i], readerSlot, tx) then
14: registered = true . Found empty reader slot
15: end if
16: end for
17: until registered
18: if currentWriter 6= so.lock.writer then . Writer got changed meanwhile
19: go to 2
20: end if
21: return so.value
22: end procedure

23: procedure Write(SharedObject so, Object value, Transaction tx)
24: if tx.status = TRANSIENT then ABORT(tx); end if
25: Transaction currentWriter = so.lock.writer
26: if currentWriter = BUSY then go to 24 end if
27: if currentWriter 6= tx then . Already in write-set
28: steal = false
29: if currentWriter 6= NULL ∧ currentWriter.status 6= INACTIVE then
30: if currentWriter.age > this.age then
31: ABORT(currentWriter) . W2 →W1; Write after Specu. Write
32: go to 24
33: else
34: steal = true . W1 →W2; Lock Steal, Write after Write
35: end if
36: end if
37: if ! CAS(so.lock.writer, currentWriter, BUSY) then . Aquire the lock
38: go to 24
39: end if
40: tx.writeSet.add(so, so.value, steal ? currentWriter : NULL) . Save old value, and old writer when stealing the lock
41: end if
42: for i=0 to MAX READERS do
43: Transaction readerSlot = so.lock.reader[i]
44: if readerSlot 6= INACTIVE ∧ readerSlot.age > tx.age) then
45: ABORT(readerSlot) . R2 →W1; Abort speculative readers
46: end if
47: end for
48: so.value = newValue . Write new value
49: so.lock.writer = tx . Save me as the new writer
50: end procedure

51: procedure TryCommit(Transaction tx)
52: if !CAS(tx.status, ACTIVE, PENDING) then ABORT(tx) end if
53: end procedure

54: procedure Commit(Transaction tx)
55: if CAS(tx.status, PENDING, INACTIVE) then return true end if
56: repeat until tx.status 6= TRANSIENT . Wait till be aborted
57: end procedure

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 111

7.2 Implementation

7.2.1 Lock Structure

Each memory address is associated with a 32-bit lock. The mapping between addresses and
locks is made by leveraging the least significant bits, so a single lock is able to cover multiple
addresses. The lock is divided into two sections: the most significant N bits represent the
reference to the writer, and the remaining bits represent the header address of the readers
list. We use a bounded list of readers to limit the number of concurrent readers, which is
set to 10 transactions in our experiments.

7.2.2 Thread Execution

Threads executes similarly to the mechanism discussed in Section 6.6.2. However, the situa-
tion is different in OUL (and its variant), as it uses encounter time locking, thus the duration
of the period where the transaction is in the state between exposed and committed does not
affect the performance. Nevertheless, moving the transaction to the committed state releases
the locks earlier, hence reducing the conflict probability.

7.3 Correctness

As correctness guarantee, OUL guarantees Strict Serializability [139]. Unlike OWB, OUL
allows reading from live transactions, which is not allowed by TMS1 (and hence opacity).
However, similar to OWB, OUL restricts transactions to commit only in the ACO order,
making OUL strict serializable.

In order to show how OUL and OUL-Steal preserve the ACO, we will borrow the same idea
we used in Section 6.7. Suppose by contradiction that the ACO is violated. Let Ti and Tj
be two transactions such that Ti ≺ Tj. The interesting case is if Ti successfully reads a value
of an object X written by Tj. This implies that Ri(X) happened after write(Tj) in OUL. In
both OUL and OUL-Steal, Ti acquires a shared lock on X at the time of the read operation
using visible reads. In order to have a successful read, the shared lock must be acquired,
thus the write lock should not be already granted. This implies that Tj has released all
its locks. As a transaction does not release its acquired locks until it commits, Tj must be
necessarily committed. Therefore Ri(X) must occur after commit(Tj). Since a transaction
cannot perform any step after it commits, Ri(X)→ commit(Ti). This means commit(Tj)→
commit(Ti), which cannot be the case since they must commit in order, according to their
ages.

The serializablility guarantee for both OUL and OUL-Steal is proved using the same tech-

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 112

nique used in Section 6.7 (i.e., using the conflict serialization graph). Assume e ∈ E =
SG \ DG, this edge represents the case where Ri(X) → Wj(X), which means Ri(X) →
commit(Tj). In both OUL and OUL-Steal, the readers’ visibility enables Tj to detect the
Ri(X) and aborts it (line 43 in Algorithm 5). So E = ∅ ⇒ SG = DG ⇒ SG is acyclic,
making the algorithms serializable.

Note that the serialization point for OUL is line 54 in Algorithm 6. As the serialization point
is inside the transaction execution, all the algorithms preserve the real-time order, and are
strict serializable.

Opacity [76] is an important correctness property for TM implementations however, given the
fundamental characteristic of our proposals of letting threads cooperate before transactions
are actually completed, we cannot claim to ensure opacity. More specifically, the two OUL
algorithms forward a written value encounter time, thus they allow doomed transaction to
observe inconsistent state.

7.4 Evaluation

We compare our algorithms with STMLite [120]: a light-weight STM with ACO support used
to support code parallelization, and an ordered version of three state-of-art TM algorithms:
TL2 [59], NOrec [53] and UndoLog [69] (with and without visible readers). Both TL2
and NOrec follow the write-back design strategy and validate transactions at commit time.
Given that, ordering commit operations according to ages guarantees that transactions see a
consistent view of the memory before modifying the shared state. In order to aid the ordering
for UndoLog, we exploit an age-based contention policy (i.e., always favor transactions with
the lower age) to handle write-write conflicts. In the visible readers variant, the writer
transaction aborts all active readers, while when readers are invisible the writer retries
multiple times if the object is locked, then it backs off.

STMLite uses a write-back implementation and replaces the need for constructing a read-set
by leveraging signatures (Bloom Filters). There is a tradeoff in determining the effective
size of signatures, but the authors recommended a range of 32 to 1024. In our experiments,
we used a signature of size 64 with the STL hashing function because it provided the best
performance. The number of threads in STMlite also includes its commit manager.

All competitors, including STMLite, have been re-implemented using the same baseline
software framework, so that all take advantage of the same low-level optimizations.

We conducted the experiments on an AMD machine equipped with 2 Opteron 6168 CPUs,
each with 12-core running at 1.9 GHz. The total memory available is 12 GB and the cache
sizes are 128 KB for the L1, 512 KB for the L2, and 12 MB for the L3. Results are the
average of five runs. We report the throughput for micro benchmarks and the application
execution time for STAMP by varying the number of threads used (the datapoint at 1 thread

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 113

shows the performance of the single-threaded transactional execution). For completeness,
the performance of the non-transactional single-threaded execution (green line) has also been
included. In all the benchmarks, experiments are conducted by parallelizing the main for-
loop that activates all transactions. The ACO is defined according to the index of the loop.
In other words, the first iteration of the loop activates the transaction that must commit
first, and so on. Note that this technique is the standard way to parallelize sequential code
(e.g., [120]). Also, it does not introduce any additional contention on the benchmark itself.

7.4.1 Micro Benchmark

In our first set of experiments we consider the RSTM micro-benchmarks [2] to evaluate the
effect of different workload characteristics, such as the amount of operations per transaction,
the transaction length, and the read/write ratio, on the performance. Each experiment
included running half million transactions. For all micro benchmarks, we configured three
types of transactions: short, long, and heavy. Both short and heavy have the same number
of accesses, but the latter adds more local computation in between them. Such a workload
is representative of workloads produced by parallelization frameworks. Long transactions
simply produce more transactional accesses.

Figure 7.2 summarizes the peak performance of all competitors. From that we can see the
gap in performance between the ordered and unordered versions of the same algorithm:
26-56% for TL2, 13-41% for NOrec, 12-88% for UL-vis, and 28-74% for UL-invis.

As a general comment on the results, OUL and OUL-Steal outperform all other ordered
versions of the algorithms. OUL-Steal excels for write loads and performs equally to OUL in
read loads; OWB outperforms all write-back based implementations in most benchmarks. At
high thread count, STMLite suffers from false conflicts due to the use of signatures. However,
at low number of threads (less than 8) and with Long transactions it achieves a higher
peak throughput than Ordered TL2 and Ordered NOrec, because it benefits from the quick
validation using signatures. For the UL-inv algorithm, we found that the readers’ visibility
was crucial; without this information, the algorithm may abort a lower age transaction (using
timeout) while some higher age transaction holds the read shared lock. On the other hand,
these higher age transactions cannot commit before their order comes, hence they timeout.

In configurations where the performance of the sequential (non-transactional) execution is
faster than many ordered algorithms, our solutions outperform it, letting parallelism pay off.
However, there are two benchmarks configured with long transactions where the sequential
execution is faster. These workloads are not suited to be parallelized while providing a
commit order because of the high abort cost, which is more impacting given the chance to
encounter context switches, threading overhead, and cache thrashing.

The DisjointBench (Figures 7.3a-7.3c) produces a workload with no conflict between concur-
rent transactions. Every transaction accesses a different set of addresses with read and write

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 114

TL2
Ordered TL2

NOrec
Ordered NOrec

UndoLog-visible
Ordered UndoLog-vis

UndoLog-invis
Ordered UndoLog-invis

OUL
OUL-steal

OWB

TL2
Ordered TL2

NOrec
Ordered NOrec

UndoLog-visible
Ordered UndoLog-vis

UndoLog-invis
Ordered UndoLog-invis

OUL
OUL-steal

OWB

 16

 32

 64

 128

 256

 512

 1024

Disjoint RNW1 RWN MCAS

T
h
ro

u
g
h
p
u
t

(T
x
/m

S
e
c
)

(a) Long Transaction

 32

 64

 128

 256

 512

 1024

 2048

Disjoint RNW1 RWN MCAS

T
h
ro

u
g
h
p
u
t

(T
x
/m

S
e
c
)

(b) Short Transaction

 64

 128

 256

 512

 1024

 2048

Disjoint RNW1 RWN MCAS

T
h
ro

u
g
h
p
u
t

(T
x
/m

S
e
c
)

(c) Heavy Transaction

Figure 7.2: Peak performance of all competitors (including unorderd) using all micro bench-
marks (Y-axis is log scale).

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 115

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) Disjoint-Long

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(b) Disjoint-Short

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) Disjoint-Heavy

Figure 7.3: Disjoint Benchmark.

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 116

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

 0

 100

 200

 300

 400

 500

 600

 700

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) RNW1-Long

2 4 6 8 10 12 14 16 18 20
 0.1

 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(b) RNW1-Long Aborts

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) RNW1-Short

2 4 6 8 10 12 14 16 18 20
 0.01

 0.1

 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(d) RNW1-Short Aborts

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(e) RNW1-Heavy

2 4 6 8 10 12 14 16 18 20
 0.01

 0.1

 1

 10

 100

 1000

 10000
A

b
o
rt

s
 %

Threads

(f) RNW1-Heavy Aborts

Figure 7.4: ReadNWrite1 Benchmark.

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 117

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

 0

 20

 40

 60

 80

 100

 120

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) RWN-Long

2 4 6 8 10 12 14 16 18 20
 1

 10

 100

 1000

 10000

 100000

A
b
o
rt

s
 %

Threads

(b) RWN-Long Aborts

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) RWN-Short

2 4 6 8 10 12 14 16 18 20
 0.1

 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(d) RWN-Short Aborts

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(e) RWN-Heavy

2 4 6 8 10 12 14 16 18 20
 0.01

 0.1

 1

 10

 100

 1000

 10000
A

b
o
rt

s
 %

Threads

(f) RWN-Heavy Aborts

Figure 7.5: ReadWriteN Benchmark.

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 118

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

Ordered UndoLog-visible
OUL

OUL-steal
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

OWB
STMLite

Sequential

 0

 20

 40

 60

 80

 100

 120

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) MCAS-Long

2 4 6 8 10 12 14 16 18 20
 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(b) MCAS-Long Aborts

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) MCAS-Short

2 4 6 8 10 12 14 16 18 20
 0.1

 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(d) MCAS-Short Aborts

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(e) MCAS-Heavy

2 4 6 8 10 12 14 16 18 20
 0.01

 0.1

 1

 10

 100

 1000

 10000
A

b
o
rt

s
 %

Threads

(f) MCAS-Heavy Aborts

Figure 7.6: MCAS Benchmark.

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 119

operations. In all configurations, OUL achieves the best throughput, while OUL-Steal suffers
from the overhead of its lock management scheme without actually gaining from that, as the
disjoint transactions do not have any shared accesses. UL-vis achieves a throughput near to
OUL-Steal, thanks to the simplicity of its immediate write strategy. Given the absence of
aborts, we can show the transactional access overhead for each of these algorithms. It is in-
tuitive that UndoLog algorithms (including UL-vis, UL-inv, OUL, OUL-Steal) benefit from
having the values already in memory, thus they outperform others. In fact, the UndoLog’s
main drawback is the costly abort, which never happens in this benchmark. With Long
transactions (Figure 7.3a), STMLite benefits from eliminating lock usage at the write-back
phase and it has minimal overhead at low numbers of threads. On the other hand, for Short
transactions (Figures 7.3b and 7.3c) the Ordered TL2 algorithm performs better. OWB has
a moderate overhead relative to the other write-back algorithms.

In ReadNWrite1Bench (Figures 7.4a-7.4f), the transaction write-set is very small, hence it
implies a low number of aborts. Similarly, UndoLog algorithms excel here as well. With long
and heavy transactions (Figure 7.4a, 7.4e), the processing done by workers is balanced with
the validator overhead, so both OUL and OUL-Steal scales well with increasing the number
of workers. On the other hand, the validator represents a performance bottleneck for short
transactions (Figure 7.4c), resulting in a slightly lower scalability.

In ReadWriteN (Figures 7.5a-7.5f), the large transaction write-set introduces a challenge
for both undo-log (increases the number of aborts) and write-buffer algorithms (delay at
commit time). The cooperative execution enables OUL, OUL-Steal and OWB to outper-
forms all other algorithms at all workloads. OUL-Steal outperforms OUL by 10% because
it significantly reduces the number of aborts (Figures 7.5b, 7.5d, and 7.5f.

Similar to ReadWriteN, MCASBench has a large write-set but the abort probability is lower
than before because each pair of read/write acts on the same location. Figures 7.6a-7.6f
illustrate the impact of increasing workers with the different workloads. We noticed a similar
trend to ReadWriteN.

Analyzing The aborts reasons and breakdown

The breakdown of the abort reasons for OWB, OUL, and OUL-Steal is shown in Figure 7.7.
Aborts are measured for the number of workers that achieved the maximum throughput.

In OWB (Figure 7.7a), with RNW1bench aborts due to validation failure represent the main
reason; while in write-intensive benchmarks, such as RWNbench and MCASbench, aborts are
mainly (65%-82%) due to concurrent commits (Locked Write). However, only 3% of these
cases falls in WAW, which means that OWB can benefit from the lock-steal optimization
and save a considerable amount of aborts. However, applying lock-steal on OWB would
complicate the design and the validation procedure. The reason is that transactions use
commit-time locking and rely on the version number to validate their read-set. With lock-

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 120

Read After Write
Write After Write

Cascade
Locked Write

Validation Fails

 0

 0.2

 0.4

 0.6

 0.8

 1

RNW1
Short

RNW1
Long

RWN
Short

RWN
Long

MCAS
Short

MCAS
Long

(a) OWB Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

RNW1
Short

RNW1
Long

RWN
Short

RWN
Long

MCAS
Short

MCAS
Long

(b) OUL Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

RNW1
Short

RNW1
Long

RWN
Short

RWN
Long

MCAS
Short

MCAS
Long

(c) OUL-Steal Algorithm

RNW1
Short

RNW1
Long

RWN
Short

RWN
Long

MCAS
Short

MCAS
Long

 0.1

 1

 10

 100

 1000

A
b
o
rt

s
 %

OWB
OUL

 OUL-Steal

(d) Total Number of Aborts

Figure 7.7: Aborts Breakdown

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 121

steal, multiple writers would increment the version number, thereby readers would not be
able to do the validation simply.

For OUL and write-intensive benchmarks, concurrent writes generate between 70% to 85%
of total aborts; a WAW represents at most 10% of them. In OUL-Steal, stealing the lock
eliminates the problem of concurrent writes, and narrows write-write conflicts to only the
WAW anomaly. However, it introduces several changes to the abort characteristics: a
writer transaction that steals the lock becomes able to abort any invalid speculative read-
ers earlier than before. This was reflected on increasing the number of Read After Write
aborts; the probability of triggering cascading aborts is increased if compared to OUL (Fig-
ures 7.7b, 7.7c); and the total number of aborts of OUL is reduced by one order of magnitude
(Figures 7.4b, 7.4d, 7.5b, 7.5d, 7.6b, 7.6d, 7.7d).

Although OUL-Steal substantially reduces the number of aborts, the speed-up is on average
20%. The reasons for that are: the abort procedure for OUL-Steal is longer than OUL (2-4×
in our experiments) because it involves recursive rollback for stolen locks. This outweighs
the reduction of the number of aborts; and OUL uses encounter time locking, thus aborts are
detected at an early stage. This reduces the impact of aborting. In contrast, lazy algorithms
(e.g., OWB) are greatly affected by aborts because the whole transaction needs to be re-
executed given that the invalidation is detected at commit time. It is worth noting that, in
OUL algorithms the abort cost differs according to the transaction type. In fact, aborting
a write transaction requires restoring its original value, thus forcing the other transaction
involved in the conflict to wait for the restoration of old written values; whereas aborting
the readers is cheaper.

Figure 7.7d shows the total number of aborts in the maximum throughput scenario. OUL
experiences higher aborts than OWB because of the eager accesses, while OUL-Steal avoids
this drawback and experiences lesser, yet longer, aborts.

7.4.2 STAMP Benchmark

Stanford Transactional Applications for Multi-Processing (STAMP) [37] is a benchmark suite
with applications covering a variety of domains (see Section 5.9.2). Figures 7.8 and 7.9 shows
the execution time of the aforementioned algorithms (lower is better). Two applications
(Yada and Bayes) have been excluded because they expose non-deterministic behaviors,
thus their evolution is unpredictable. The datapoints for competitors that do not scale
in some configuration are omitted to preserve the scale and readability of the plot. For
completeness, we also included the performance of the unordered STM algorithm (among
those in Figure 7.2) that behaves best in each plot.

In Kmeans, both OUL and OUL-Steal scale when increasing the number of workers, while
under high contention OUL-Steal performs better (Figure 7.8b). OWB and Ordered NOrec
have similar performance, but OWB does not degrade at high thread count.

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 122

OWB
OUL

OUL-steal
STMLite

Ordered UndoLog-visible
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

Best Unordered
Sequential

1 2 4 6 8 10 12 14 16 18 20
 1

 10

 100

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(a) Kmeans Low

1 2 4 6 8 10 12 14 16 18 20
 1

 10

 100

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(b) Kmeans High

Figure 7.8: Execution time of STAMP Kmeans (Y-axis log scale).

Genome exhibits a little contention which makes OUL and OUL-Steal perform similarly
(Figure 7.9a).

The amount of contention in SCAA2 is low as the large number of graph nodes leads to
infrequent concurrent updates. Figure 7.9b shows that all algorithms perform almost equally
and benefit from optimistic concurrency.

With Vacation, our cooperative model boosts the performance of the proposed algorithms,
and they scale well when increasing the number of workers (clients) (Figures 7.9c and 7.9d).

Labyrinth is a multi-path maze solver. The maze is represented as a three-dimensional
uniform grid, and each thread tries to connect input pairs by a path of adjacent maze points.
Upon finding a path, it is is highlighted at a shared output grid. Transactions conflict when
their paths overlap. In Figure 7.9e, NOrec outdoes other algorithms because of two reasons:
1) as Labyrinth updates adjacent addresses for the path, it is prone to produce false sharing
for all other algorithms that use locks; and 2) NOrec employs a value-based validation, thus
when two conflicting transactions updating a maze point with the same value, they commit
successfully.

Intruder, a network intrusion detection system using signatures. It compares the cap-
tured packets against a dictionary of intrusion signatures. Packets are processed in parallel,
grouped in sessions, and stored in a self-balanced (red-black) tree. Transactions guard the
tree operations, and the contention is high and depends on the frequency of the rebalance op-
eration. Figure 7.9f shows that not all algorithms scale well; besides, the sequential execution
outperforms all of them (except the unordered).

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 123

OWB
OUL

OUL-steal
STMLite

Ordered UndoLog-visible
Ordered UndoLog-invisible

Ordered TL2
Ordered NOrec

Best Unordered
Sequential

1 2 4 6 8 10 12 14 16 18 20

 10

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(a) Genome

1 2 4 6 8 10 12 14 16 18 20

 10

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(b) SSCA2

1 2 4 6 8 10 12 14 16 18 20

 10

 100

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(c) Vacation Low

1 2 4 6 8 10 12 14 16 18 20

 10

 100

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(d) Vacation High

1 2 4 6 8 10 12 14 16 18 20

 100

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(e) Labyrinth

1 2 4 6 8 10 12 14 16 18 20
 1

 10

T
im

e
 (

S
e
c
o
n
d
s
)

Threads

(f) Intruder

Figure 7.9: Execution time of STAMP applications (Y-axis log scale).

Mohamed M. Saad Chapter 7. Ordered Undolog Algorithm 124

Begin
Read l a s t−committed t r a n s a c t i o n

Read X
Search in write−s e t
Or
Read from memory i f unlocked
Or
Read s p e c u l a t i v e va lue and
add−to−dependency− l i s t
Or
Abort h igher age s p e c u l a t i v e wr i t e
and read from memory
i f l a s t−committed was changed

Val idate ReadSet

Write X
Buf f e r wr i t e in write−s e t

TryCommit
Val idate read−s e t
Acquire l ock on write−s e t
Expose va lue s in write−b u f f e r
Va l idate read−s e t wr i t t en l o c a t i o n s

Commit
Val idate read−s e t
Re lease l o c k s

−−− METADATA −−−
Read Set
Write Buf f e r
Dependency L i s t

(a) OWB Algorithm

Begin
Set Tx s t a t e as a c t i v e

Read X
Read from memory i f unlocked
Or
Read s p e c u l a t i v e locked value
Acquire read lock
Or
Abort h igher age s p e c u l a t i v e wr i t e
and read from memory

Write X
Acquire wr i t e l ock
Backup value to the undo−l og
Write the value

TryCommit
Set Tx s t a t e as pending

Commit
Set Tx s t a t e as i n a c t i v e

−−− METADATA −−−
Undo Log
RW−Lock

(b) OUL Algorithm

Figure 7.10: OWB and OUL Algorithms Summary

7.5 Discussion

In the past two chapters, we presented OWB, OUL, and OUL-steal algorithms that effectively
address the problem of committing transactions with an order defined prior to execution.
Our results show that even if a system requires a specific commit order, it is possible to
achieve high performance exploiting parallelism with data conflicts. Figure 7.10 summarizes
the high level methods of the main two algorithms: OWB and OUL.

Chapter 8

Extending TM Primitives using Low
Level Semantics

In order for a TM implementation to be generic, conflicts are usually detected at the level
of memory addresses. For this reason, the TM abstraction can be expressed using four
instructions: TM BEGIN, TM END, TM READ, and TM WRITE. The first two identify the trans-
action boundaries while the last two define the barriers for every memory read and write
that occurs within those boundaries. TM algorithms differ in the way those instructions
are implemented. Although frameworks may add other features, such as allowing external
aborts, non-transactional reads/writes, or irrevocable operations, the above four instructions
are used to form the body of most TM solutions.

Despite TM’s high programmability and generality, its performance is still not yet as good as
(or better than) optimized manual implementations of synchronization. To overcome that,
researchers have investigated various approaches with different design choices. Regarding
STM, they mostly varied the internal granularity of locking and/or validation of accessed
memory addresses. Examples of those solutions include coarse-grained mutual exclusion of
commit phases, as used in NOrec [53]; compact bloom filters [25] to track memory accesses, as
used in RingSTM [174]; and fine-grained ownership records, as used in TL2 [59]. On the other
hand, current HTM processors [149, 35] have a “best effort” nature because transactions are
not guaranteed to progress in HTM (even if they are executed alone without any actual
concurrency). That is why an efficient software “fallback” path is needed (i.e., hybrid TM)
when hardware transactions repeatedly fail [61]. Recent literature proposes many compelling
solutions that make the fallback path fast under different conditions [52, 152, 36, 61, 119].

The key commonality of all the aforementioned approaches is that they do not challenge the
main objective of TM itself, which is providing generality at the application level. This is
also the reason why those smart and advanced solutions still retain some of the fundamental
inefficiency of TM. On the other hand, providing high performance in multi-threaded ap-
plications before the advent of TM, when thread synchronization was manually done using

125

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 126

fine-grained locks and/or lock-free designs, depended upon the specific application seman-
tics. For example, identifying the critical sections and the best number of locks to use are
design choices that can be made only after deeply knowing the semantics of the application
itself (i.e., what the application does).

A related question that arises in this regard is: Is there some room for including semantics
in TM frameworks without sacrificing their generality? If the answer is “yes”, which is what
we claim and assess in this chapter, then we will finally be able to overcome one of the main
obstacles that has existed alongside TM since its early stages, and boost its performance
accordingly. Recent literature provides a few semantic-based concurrency controls, which
will be detailed in Section 8.1. However, they either solve specific application patterns [156],
break the high abstraction of TM [92, 70], or are orthogonal to TM [90, 85].

Motivated by the above question, this chapter provides three major contributions. First, we
identify a set of semantics that can be included in TM frameworks without impacting the
generality of the TM abstraction (we call them TM-friendly semantics), and we extend the
existing TM API to include such semantics. Second, we show how to modify STM algo-
rithms to exploit such semantic-based APIs. Finally, we illustrate how we embedded those
extensions in compiler passes (using GCC) so that the application developing experience will
not be altered.

Regarding the first point, with TM-friendly semantics we mean those optimizations that
can be decoupled from the application layer. In particular, this work focuses on optimizing
conditional statements (e.g., if x > 0), and increments/decrements (e.g., x++), which are
commonly used in legacy applications. More details about those semantics are presented in
Section 8.2.

The second contribution involves deploying those TM-friendly semantics with existing state-
of-the-art STM algorithms. Roughly, STM algorithms can be classified into two groups
according to the technique used for validating transactions. The first group uses version-
based validation, where each memory location keeps a version number that is used to identify
memory changes. The second group uses value-based validation, where the content of each
location itself is leveraged to detect memory modifications. For value-based algorithms,
we propose semantic validation as a generalization of value-based validation, allowing TM
frameworks to define a specific validator for the semantic-based instructions. For version-
based approaches, we propose a methodology for adapting them to allow a hybrid (i.e.,
version/semantic) validation mechanism. In Section 8.3, we show how to modify NOrec [53]
(a value-based algorithm) and TL2 [59] (a version-based algorithm) to include semantics.
Then, in Section 8.4, we discuss the correctness of those new algorithms.

Our last contribution is to integrate semantic APIs and their corresponding STM algorithms
into current TM frameworks. We propose two approaches to achieve that:

• The first approach is to implement semantic extensions entirely as a compiler pass,
thus not exposing any API additions to the programmer. This approach has the

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 127

advantages of being entirely transparent and retaining backward compatibility with
existing applications that leverage GCC’s transactional API.

• The second approach involves exposing the new semantic APIs as TM interfaces. These
new APIs give conscious programmers an opportunity to better exploit semantics while
developing concurrent applications. Clearly, this approach increases the chance of
achieving higher performance, with the cost of reducing, although marginally, the
programmability level.

Since each of those two solutions fits specific interests, we assess both of them in this part. We
assess the latter solution (which is easier to implement) by enriching the API of RSTM [116]
framework with our semantics. Regarding the former, we show in Section 8.5 how we modified
the compilation passes of GCC to provide full compilation support with limited overhead in
terms of both compilation process and execution time.

In Section 8.6, we evaluated our semantic-based TM (using both RSTM and GCC) with the
following applications: Bank, a benchmark that simulates a multithreading application where
threads mostly perform money transfers; LRU-Cache, a benchmark that simulates a software
cache with the least-recently-used replacement policy; a hash-table benchmark; and the
STAMP benchmark suite [124]. The results show that enabling semantics boosts performance
consistently, yielding a peak of 4× improvement when semantics is highly exploited. Also,
contrasting the performance trend of GCC experiments with that of RSTM experiments
allows understanding the consequences of moving the whole TM framework, including our
semantic extensions, into the compiler level.

All the implementations used in this chapter, including the new version of GCC and RSTM,
are available as open-source projects at: https://bitbucket.org/mohamed-m-saad/extm.

8.1 The Evolution of Semantic TM

Not surprisingly, the trials to include semantics in TM started in literature as early as TM
itself. In fact, the potential objective of the first TM proposal, as it can be easily inferred
from the title of the first TM paper [93], was providing architectural support for lock-free
data structures. However, the approach proposed in that paper, as well as the subsequent
approaches, was fairly general because its main objective was improving programmability. As
a result, the performance of TM could not compete with handcrafted (i.e., very optimized)
fine-grained and lock-free designs.

In the last decade, involving semantics to improve TM performance has been an impor-
tant topic, addressed by approaches such as open nested transactions [136], elastic trans-
actions [70], specialized STM [64], and early release [92]. The main downside of all those
attempts is that they move the entire burden of providing optimizations to the programmer,

https://bitbucket.org/mohamed-m-saad/extm

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 128

and propose a modified framework to accept those programmer modifications. Since TM
has been mainly proposed to make concurrency control as transparent as possible from the
programmers standpoint, the practical adoption of the above approaches remained limited.
The innovations presented in this paper overcome those issues by providing solutions that
preserve the generality of TM, do not give up optimizations and semantics, and cope with
the current state-of-the-art TM implementations.

Another research direction focused on developing collections of transactional blocks (essen-
tially data structure operations) that perform better than the corresponding “naive” TM-
based counterparts (i.e., when the sequential specification of a data structure is made con-
current using TM). Methodologies like transactional boosting [90, 85], consistency oblivious
programming [8, 14], semantic locking [72], and partitioned transactions [188] are examples
of that direction. Despite the promising results, those approaches remain isolated from TM
as a synchronization abstraction and appear as standalone components designed mainly for
data structure.

Involving compilers in TM’s concurrency control is currently becoming mandatory given
the enhanced GCC release [180], which includes TM support. However, to the best of
our knowledge, very few works addressed the issue of detecting TM-friendly semantics at
compilation time similar to what we propose in this chapter. Among them, one recent
approach proposes a new read-modify-write instruction to handle some programming patterns
in TM [156]. However, that approach still addresses specific execution patterns and does
not generalize the problem like our attempt, which rather pushes more in the direction of
abstracting the problem and providing a comprehensive solution to inject semantics into
existing TM frameworks.

8.2 TM-Friendly API

In this section we show the proposed semantics that can be injected into TM frameworks
without hampering the generality of TM itself. As mentioned before, TM defines two lan-
guage/library constructs for reading (TM READ) and writing (TM WRITE) memory addresses.
In most cases, these constructs enforce a “conservative” conflict resolution policy; two con-
current transactions are said to be conflicting if they access the same address and at least
one access is a write. Algorithm 9 gives an example that shows why such policy may be too
conservative due to lack of semantics.

In this example, when T1 executes its first line, existing TM algorithms save x and y in the
read-set. Starting from this point, in order to preserve consistency, most TM implementa-
tions force T1 to abort as soon as any concurrent change in x or y occurs. This abort can be
triggered during the validation of T1’s next read (e.g., in NOrec), when T1 tries to commit
(e.g., in TL2), or immediately (e.g., in Intel HTM processors). In that specific example,
since T2 writes to x and y and commits before T1 reaches its commit phase, most TM im-

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 129

Algorithm 9 Two transactions conflicting at the memory level but not at the semantic
level.

Initially x = y = 5

TM BEGIN(T1)
if x > 0 ‖ y > 0 then

// Do reads/writes ...

end if
TM END

TM BEGIN(T2)
x++
y- -
TM END

plementations force T1 to abort. However, T1 has no real issue at the semantic level and can
safely commit since the boolean result of the conditional expression still holds, which means
that the conflict triggered by the TM framework is a “false conflict” at the semantic level.

TM GT(address, value|address) greater than
TM GTE(address, value|address) greater or equals
TM LT(address, value|address) less than
TM LTE(address, value|address) less or equals
TM EQ(address, value|address) equals
TM NEQ(address, value|address) not equals
TM INC(address, value) increment
TM DEC(address, value) decrement

Table 8.1: Extended TM Constructs.

Examples like the above motivated us to design extensions to the traditional transactional
constructs that enrich the TM programming model. Those constructs are classified according
to their semantics into two categories (summarized in Table 8.1). The first category includes
conditional operators, which take two operands and return a boolean state of the conditional
expression. The operands in this category can be two addresses or an address and a value.
At the memory level, a traditional execution of those constructs inside a transaction implies
one or two calls to TM READ (depending upon the type of operands). Using our constructs,
we consider the whole expression as one semantic operation, and the safety of the enclosing
transaction is preserved by validating that the return value of the condition remains the
same until the transaction commits. The second category includes increment/decrement
operations, which take an address and an offset as arguments. Unlike the first category, the
traditional way of handling transactional increment/decrement involves both TM READ and
TM WRITE. In our solution, leveraging semantics means invoking one semantic operation that
performs the actual read only at commit time, which allows for more concurrency.

Including those semantic operations in TM frameworks is appealing for two reasons. First,
they are commonly used in applications, as we show later with some examples. Second, the

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 130

A D C ZY

H(x)

Xset
state fullfull full full full fulldel free

W

Figure 8.1: Probing a hash table with open addressing

integration can be entirely done at compilation time, where the compiler can detect semantic
operators and translate them.

An interesting feature of the semantic operations listed in Table 8.1 is that they can com-
pose by having more than one operator and/or more than one variable in the conditional
expression. For example, the scenario shown in Algorithm 9 can be further enhanced if the
whole conditional expression (i.e., TM READ(x) > 0 || TM READ(y) > 0) is considered as
one semantic read operation. In this example, if the condition was initially true and then a
concurrent transaction modifies only one variable, either x or y, to be negative, considering
the clause as a whole avoids aborting T1 given the OR operator. A similar enhancement
consists of allowing complex expressions in conditional statements (e.g., x + y > 0), where
modifications on multiple variables may compensate each other so that the return value of
the overall expression remains unchanged. Although supporting such complex expressions
is appealing because it may save additional aborts, integrating them into algorithm designs
and GCC may add overheads in terms of compilation process and execution time. For that
reason, we currently do not support those complex expressions, and we plan for further in-
vestigation on them. A more detailed discussion about those operations is in Section 10.2.2.

8.2.1 TM-friendly semantics in action

Algorithm 10 Using the semantic constructs to enhance hash table probing.
TM BEGIN

. Using our constructs: while (TM NEQ(states[index], FREE) && (TM EQ(states[index], REMOVED) ‖
TM NEQ(set[index], value))
while TM READ(states[index]) != FREE && (TM READ(states[index]) == REMOVED ‖ TM READ(set[index]) != value)
do

index = (index + probe)
end while
return TM READ(states[index]) == FREE ? -1 : index;
TM END

To further support the need of injecting semantics into the classical TM abstraction, we now
show examples from real benchmarks and applications whose performance can be enhanced
by our semantic TM extensions. These examples are clearly not exhaustive, but they are
representative of programming patterns used in concurrent programming.

Hashtable with open addressing. Operations in such a hash table usually start by probing the
table in order to find a matching index for a given hash value. Figure 8.1 depicts an example

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 131

of this probing. This function can be enhanced by our approach because it consists of a chain
of conditional expressions that check specific semantics and do not impose certain values of
state or set (e.g., it may only require the checked cells to be not free and either flagged
as removed or having a different value from the hashed one). On the other hand, when
using the classical read/write TM constructs, concurrent changes to the accessed cells (e.g.,
deleting ’D’ and inserting ’B’) will abort the probing transaction. Considering semantics
through our proposed extensions avoid such aborts. Algorithm 10 depicts pseudocode of the
probing method and its transformed semantic version.

Algorithm 11 Using the semantic constructs to enhance dequeue operation.
TM BEGIN

. Using our constructs: If (TM EQ(head, tail))
if TM READ(head) != TM READ(tail) then

return false;
end if
item = array[TM READ(head) % array size];

. Using our constructs: TM INC(head, 1);
TM WRITE(head, TM READ(head) + 1)
return true;
TM END

Queues. Any efficient concurrent queue implementation should let an enqueue operation
execute concurrently with a dequeue operation if the queue is not empty. However, this case
is not allowed using traditional TM constructs because the dequeue operation compares the
head with the tail in order to detect the special case of an empty queue. Algorithm 11 shows
how we re-enable this level of concurrency in an array-based queue using our constructs.

Algorithm 12 Using the semantic constructs to enhance reservations in Vacation bench-
mark.

TM BEGIN
for n = 0; n ¡ ids.length; n++ do

res = tablePtr.find(ids[n]);
. Using our constructs: TM GT(res.numFree, 0)

if TM READ(res.numFree) > 0 then
. Using our constructs: TM GT(res.price, max price)

if TM READ(res.price) > max price then
max price = TM READ(res.price);
max id = id;

end if
end if

end for
reservation = tablePtr.find(max id);

. Using our constructs: TM INC(res.numFree, -1)
TM WRITE(res.numFree, TM READ(res.numFree) - 1));
TM END

Vacation. This application is included in the STAMP suite [124] and simulates a travel
reservation system. The workload consists of clients’ reservations; each client uses a coarse-
grained transaction to execute its session. Vacation has two main operation profiles: making
a reservation and updating offers (e.g., price changes). Although the reservation profile
checks the common attributes of the offer (e.g., the number of free slots and the range

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 132

of price), most of those checks are semantic and do not seek specific values. Using the
classical (more conservative) TM model, any update on offers will conflict with all concurrent
reservations because of those conditional statements. Using our semantic extensions, as
depicted in Algorithm 12, the reservation will not abort as long as the outcomes of the
comparison conditions hold (e.g., number of free slots > 0 and price > max price).
The key idea, which also explains well the intuition behind our proposal, is that a reservation
does not use the exact value of price or the amount of available resources, it just checks if
the price is in the right range and resources are still available.

Algorithm 13 Using the semantic constructs to enhance Kmeans benchmark.
TM BEGIN

. Using our constructs: TM INC(*new centers len[index], 1);
TM WRITE(*new centers len[index], TM READ(*new centers len[index]) + 1);
for j = 0; j < nfeatures; j++ do

. Using our constructs: TM INC(new centers[index][j], feature[i][j]));
TM WRITE(new centers[index][j], TM READ(new centers[index][j]) + feature[i][j]));

end for
TM END

Kmeans. Kmeans is another STAMP application, which implements a clustering algorithm
that iterates over a set of points and groups them into clusters. The main transactional
overhead is in updating the cluster centers, which can be enhanced using our TM INC
operation, as shown in Algorithm 13.

8.3 Semantic-Based TM Algorithms

The first step towards injecting semantics into STM algorithms is to find an abstract way to
define them. The semantic operations listed in Table 8.1 can be seen as the implementation
of two abstract methods:

bool cmp(operator, address, val)

void inc(address, delta)

where cmp and inc represent the semantic actions that replace the normal TM behavior
(delta can be positive or negative to support increment and decrement). In this abstrac-
tion, we restrict cmp operations in Table 8.1 to those that have an address and a value
as arguments. However, as we show in Section 8.5, our compilation pass also detects the
address-address case and translates it to a specific API call. Extending the STM algorithms
presented in this section to cover the address-address case is straightforward, thus we do not
include it to simplify the presentation.

In this section, we show how we integrate the above two abstract methods into two state-of-
the-art STM algorithms: NOrec [53] and TL2 [59].

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 133

8.3.1 Semantic NOrec Algorithm (S-NOrec)

NOrec is an STM algorithm that exploits value-based validation to eliminate the need for
fine-grained locks. A transaction stores the values it reads as a metadata in a local read-
set and validates this read-set before every read, as well as at the commit time of writing
transactions. The commit phase is protected by a single global timestamped lock. The
validation procedure succeeds if all accessed addresses have the same values as what is saved
in the read-set.

We extend NOrec to support our constructs as shown in Algorithm 14 (we call the new
algorithm S-NOrec), mainly by executing cmp and inc using additional procedures. The
main difference between read and cmp is that read appends the normal address/value pair to
the read-set (line 47) while cmp saves the conditional expression (or its inverse if the condition
is false) in the read-set (line 39). To simplify the validate procedure, we consider read

as a semantic TX EQ operation. Consequently, the validate procedure (lines 1-11) becomes
a generalization of the original NOrec that uses a semantic validation instead of the original
value-based one.

Both read and cmp read the address using a special readValid procedure (lines 12-19) that
performs a read-set validation (if the global timestamp changed) to ensure the consistency
of the current state of the read-set.

Supporting inc operations requires storing the delta (i.e., incremented or decremented value)
in the write-set, and applying it at commit time. In practice, we support inc by overloading
NOrec’s write-set. In particular, a flag is added to each write-set entry to indicate whether
it stores a standard write or an increment.

The cases where a variable is read/written (either semantically or non-semantically) by two
different operations in the same transaction are handled by S-NOrec as follows:

• write after write: If an inc is preceded by a write or an inc, the new delta is accu-
mulated over the entry’s value without changing the entry’s flag (line 52). If a write

is preceded by a write or an inc, it just overwrites the value and changes the flag to
indicate a write operation (line 58).

• read after write: Both compare and read check the write-set first for read-after-write
conflicts (lines 35 and 44). If the write-set entry is an increment, the inc is promoted
as a traditional read and write operation (see lines 22-24). The read part of the
promotion is also done using the readValid procedure (line 22).

• write after read: This case is inherently covered because the value of the address will
be validated anyway at commit time (because of the read) before the write takes place.
It does not matter if the read/write operations are semantic or non-semantic.

• read after read: We add two different entries in the read-set for each read. Although this
approach looks redundant and may nullify the gain of adopting a semantic validation

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 134

Algorithm 14 S-NOrec
1: procedure Validate(Transaction tx)
2: time = global lock
3: if (time & 1) != 0 then go to 2 end if
4: for each (addr, operation, val) in reads do
5: if ! (addr OP val) then . Semantic validation
6: Abort()
7: end if
8: end for
9: if time != global lock then go to 2 end if
10: return time
11: end procedure

12: procedure ReadValid(Address addr, Transaction tx)
13: val = *addr
14: while snapshot != global lock do
15: snapshot = Validate(tx)
16: val = *addr
17: end while
18: return val
19: end procedure

20: procedure RAW(Address addr, Transaction tx)
21: if writes[addr].type = INCREMENT then
22: val = ReadValid(addr, tx) . Promote increment
23: reads.append(address, val, EQUALS)
24: writes[addr] = (entry.value + val, WRITE)
25: end if
26: return writes[addr].value
27: end procedure

28: procedure Start(Transaction tx)
29: do
30: snapshot = global lock
31: while (snapshot & 1) 6= 0
32: end procedure

33: procedure Compare(Address addr, Operation op, Value operand, Transaction tx)
34: if writes[addr] then
35: return RAW(addr, tx) OP operand
36: end if
37: val = ReadValid(addr, tx)
38: result = (val OP operand)
39: reads.append(addr, operand, result ? OP : Inverse(OP))
40: return result
41: end procedure

42: procedure Read(Address addr, Transaction tx)
43: if writes[addr] then
44: return RAW(addr, tx)
45: end if
46: val = ReadValid(addr, tx)
47: reads.append(addr, val, EQUALS)
48: return val
49: end procedure

50: procedure Increment(Address addr, Value delta, Transaction tx)
51: if writes[addr] then
52: writes[addr] = (entry.value + delta, entry.type)
53: else
54: writes[addr] = (delta, INCREMENT)
55: end if
56: end procedure

57: procedure Write(Address addr, Value value, Transaction tx)
58: writes[addr] = (value, WRITE)
59: end procedure

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 135

if one read is semantic and the other is non-semantic, the overhead of discovering
duplicates may not be negligible in the normal cases.

S-NOrec is the first STM algorithm, to the best of our knowledge, that supports cmp op-
erations. For inc operations, a recent approach discusses supporting a pattern similar to
our proposal [156]. Interestingly, in contrast with [156], S-NOrec maintains the same priva-
tization and publication properties [121] of the original NOrec algorithm, since it still uses
the global timestamp at commit time. In fact, there is no considerable overhead of S-NOrec
over NOrec with respect to both processing time and memory occupied, as it only adds the
read-set operation type and the write-set flag to the algorithm’s metadata.

8.3.2 Semantic Transactional Locking 2 Algorithm (S-TL2)

TL2 is an STM algorithm that maps the shared memory locations to a table of ownership
records (orecs). Writing transactions lock the orecs of their write-set entries at commit
instead of acquiring a global lock as in NOrec. Because of that, writing transactions can
commit concurrently as long as they access different orecs, and hence TL2 is known to
scale better than NOrec. To validate reads, TL2 leverages: i) a global timestamp, which
is atomically incremented by each writing transaction at commit; ii) a start version for
each transaction, which is set at the beginning of the transaction by snapshotting the global
timestamp; and iii) an orec version for each orec, which is modified by the writing transac-
tion at commit time. This way, validation is done simply by ensuring that the orec version
of a newly read address is less than the start version of the transaction, and revalidating
the orec versions of the whole read-set at commit time (only if the transaction is a writing
transactions).

Algorithms 15 and 16 depicts our extended version of TL2 (called S-TL2). The write-set
handlers (inc, write and raw) are similar to Algorithm 14, so we did not show them in
Algorithm 15. On the other hand, supporting the cmp operation in S-TL2 is more complex
than S-NOrec. The first issue is that the actual addresses and their values are not saved in
the read-set; only the corresponding orecs are saved. To solve this problem, we first define a
separate compare-set for saving cmp operations whose structure is similar to S-NOrec’s read-
set. In particular, a read operation saves the orec of the address in the read-set (line 59),
and a cmp operation saves the actual address along with the information about the compare
operation in the compare-set (lines 21 and 41).

The second problem is that we now have two ways for validating reads: the first relies on
value-based validation (for cmp operations), and the second relies on the relation between
the read version of an orec and the start version of the enclosing transaction (for read

operations). To address this issue in an efficient way, we split the execution into three
phases. The first phase starts from the transaction begin until the first read operation. The
second one starts from the first read until right before commit. The last phase is the commit

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 136

Algorithm 15 S-TL2
1: procedure Start(Transaction tx)
2: tx.start version = global timestamp
3: end procedure

4: procedure Compare(Address addr, Operation op,
5: Value operand, Transaction tx)
6: if writes[addr] then
7: return RAW(addr, tx)
8: end if
9: orec = getOrec(addr)
10: L1 = orec.version
11: if tx.reads.isEmpty() then . Phase 1: No reads yet
12: if orec.lock /∈ {tx, φ} then
13: go to 9 . Wait until unlocked
14: end if
15: val = *addr
16: L2 = orec.version
17: if L1 6= L2 then
18: go to 9 . Retry read
19: end if
20: result = (val OP operand) . Add to compare-set
21: compares.append(addr, operand, result ? OP : Inv(OP))
22: if L1 >start version then
23: time = global timestamp
24: ValidateCompareSet()
25: if time != global timestamp then
26: go to 23 . Retry validation
27: else
28: start version = time . Extend start version
29: end if
30: end if
31: else . Phase 2: At least one pervious read occur
32: if orec.lock /∈ {tx, φ} then
33: Abort()
34: end if
35: val = *addr
36: L2 = orec.version
37: if L1 >start version ∨ L1 != L2 then
38: Abort()
39: end if
40: result = (val OP operand) . Add to compare-set
41: compares.append(addr, operand, result ? OP : Inv(OP))
42: end if
43: return result
44: end procedure

45: procedure Read(Address addr, Transaction tx)
46: if writes[addr] then
47: return RAW(addr, tx)
48: end if
49: orec = getOrec(addr)
50: L1 = orec.version
51: if orec.lock /∈ {tx, φ} then
52: Abort()
53: end if
54: val = *addr
55: L2 = orec.version
56: if L1 >start version ∨ L1 != L2 then
57: Abort()
58: end if
59: reads.append(orec) . Add to read-set
60: return val
61: end procedure

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 137

Algorithm 16 S-TL2 - cont.
62: procedure ValidateReadSet(Transaction tx)
63: for each (orec) in tx.reads do
64: if orec.lock /∈ {tx,φ} ∨ orec.version ¿ start version then
65: Abort()
66: end if
67: end for
68: end procedure

69: procedure ValidateCompareSet(Transaction tx)
70: for each (addr, operation, val) in tx.compares do
71: current = *addr
72: orec = getOrec(addr)
73: if orec.version ¿ start version then
74: if orec.lock /∈ {tx,φ} then
75: repeat until orec.lock = φ . Wait until unlocked
76: end if
77: if !(current OP val) then . Semantic validation
78: Abort()
79: end if
80: end if
81: end for
82: end procedure
83: procedure Commit(Transaction tx)
84: AcquireWriteSetLocks(tx)
85: time = global timestamp
86: if start version 6= time then
87: ValidateCompareSet(tx)
88: end if
89: if !CAS(global timestamp, time, time+1) then
90: go to 85 . Retry compare-set validation
91: end if
92: if start version + 1 6= time then
93: ValidateReadSet(tx)
94: end if
95: WriteBack(tx, time + 1)
96: ReleaseWriteSetLocks(tx)
97: end procedure

phase.

In the first phase, before the first read operation, cmp operations can be optimized similar
to S-NOrec (lines 11-30): the transaction’s start version is not used, rather the compare-set
is validated after each cmp operation (line 24). If this validation succeeds, the transaction’s
start version is extended (line 28). This way, we allow semantic validations as long as no
read operation is executed yet. Another optimization, although less important, is when
the address’s orec is observed to be locked by a concurrent transaction. In this case, the
cmp operation waits until the orec is unlocked instead of aborting the transaction (line 75).
In those cases, we employ a timeout mechanism (not shown in the algorithm) to avoid
starvation. This optimization makes sense only for cmp operations. This is because for read
operations, observing a locked orec means that its orec version will likely be updated before
it is unlocked, which also means that the read will be invalidated and the transaction will
be aborted anyway. The same optimization is made when a concurrent transaction changes
the orec version while reading the variable (line 18), and also when the global-timestamp is

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 138

changed during the compare-set validation (line 26).

In the second phase, after the first read operation, cmp operations have to preserve consis-
tency with previous reads, and therefore the transaction’s start version cannot be extended
anymore. That is why, in this phase, both read (lines 45-61) and cmp (lines 31-42) validate
that the newly read address (even if inside a cmp operation) is consistent with the previous
reads, by comparing the orec version with the transaction’s start time as the original TL2
does.

The commit phase is depicted in lines 83-97. In TL2, the commit phase starts by locking
the writes’ orecs and atomically incrementing the global timestamp. Then the reads are
re-validated. If validation succeeds, writes are published and then locks are released. The
commit phase of S-TL2 differs from that of TL2 in two points: i) the way reads are validated;
ii) the way the global timestamp is incremented.

Regarding the first point, the read-set and the compare-set are validated differently using
ValidateReadSet (lines 62-68) for the former and ValidateCompareSet (lines 69-82) for
the latter. Specifically, when the read version of an orec is greater than the start version
of the transaction, which means that the value of the address may have been changed,
ValidateReadSet aborts the transaction (line 65), while ValidateCompareSet re-computes
the expression and aborts only if the return value changes (line 78).

Second, if a concurrent transaction starts its commit phase during ValidateCompareSet, the
compare-set has to be re-validated. This is important because the return value of one cmp

operation may be affected by this new commit, and thus ValidateCompareSet procedure
may return an incorrect result. Lines 85-90 depict how we achieve that (the order of lines
is important here): the global timestamp is snapshotted, ValidateCompareSet is called,
and then the global timestamp is incremented using CAS instead of AtomicFetchAndAdd. If
the CAS fails, validation is retried. It is worth to note that this mechanism is not needed
for ValidateReadSet because it conservatively aborts the transaction if any orec in the
read-set has changed.

S-TL2 requires adding a compare-set as well as a flag in the write-set in addition to the
orignal metadata of TL2. An additional source of overhead is that cmp operations may
involve calling validateCompareSet, whose execution time is linear with respect the size of
the compare-set itself. However, as we show in the evaluation, those overheads are mostly
dominated by the performance gain due to avoiding unnecessary aborts.

8.4 Correctness

The correctness of a TM algorithm is usually inferred by proving that all histories it generates
are opaque [76]. We infer the correctness of S-NOrec and S-TL2 in the same way.

We start by roughly recalling some definitions related to opacity, borrowed from [76], to

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 139

make the presented intuitions self-contained. A history H is a sequence of operations issued
by transactions on a set of shared objects. Intuitively, we say that a history H is sequential
if no two transactions are concurrent. A sequential specification of a shared object ob,
called Seq(ob), is the set of all sequences of operations on ob that are considered correct
when executed sequentially. A sequential history is legal if, for every shared object ob, the
subsequence of operations on ob in H is in Seq(ob). Two histories are equivalent if they
contain the same transactions with the same operations and the same return values. Given
a history H, Complete(H) indicates the set of histories obtained by committing or aborting
every commit-pending transaction in H, and aborting every other live transaction in H. A
history H is opaque if any history in Complete(H) is equivalent to a legal sequential history
S that preserves the real-time order of H.

The definition of opacity is general enough to be applied on shared objects with generic
APIs, as long as every shared object has a well-defined sequential specification based on
those APIs. However, as we mentioned before, most TMs consider the read-write register
abstraction with two APIs: a read operation, which takes no argument and returns the
current state of the register, and a write operation, which takes a value v as argument and
returns always ok. This simple scheme implies a trivial sequential specification for each
register x, as defined in [76]: the set of all sequences of read and write operations on x, such
that every read operation returns the value given as an argument to the latest preceding write
operation (the initial value is the default).

Although this simple scheme best fits shared memory models, it does not match the APIs of
our semantic-based TM because it does not distinguish between reads/writes that are made
within a comparison/increment expression and all other reads/writes. That is why the first
step towards proving the correctness of our algorithms is to define the new abstraction for
our TM. Our TM algorithms (S-Norec and S-TL2) implement a TM whose shared register
export four operations: read, which takes no argument and returns the current state of the
register; write, which takes a value v as an argument and returns always ok; inc, which
takes a value d as an argument and returns always ok; and cmp, which takes a value v cmp
and an operator type Op whose value is given from the enum {==, !=, ¿, ¿=, ¡, ¡=} as
arguments and returns true or false.

The sequential specification of a register x in our TM, Seq(x), is defined as follows: the set
of all sequences of read, write, cmp, and inc operations on x, such that in each them:

• every read operation returns v +
∑
d, where v is the value given as an argument to

the latest preceding write operation, w, and
∑
d is the sum of the values given as

arguments to every inc between the read operation and w;

• every cmp operation returns the boolean value of the expression (v Op v cmp), where
v is the return value of the corresponding read operation.

Algorithm 17 gives an example that clarifies the importance of defining a new abstraction

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 140

Algorithm 17 A history that is opaque with our APIs.
Initial values are 0

TM BEGIN(T1)
if x >= 0 then

z = y;
end if
TM END

TM BEGIN(T2)
x = 1
y = 1
TM END

for our TM. Using the original read-write register abstraction, the corresponding history has
two possible equivalent sequential histories (T1 → T2 and T2 → T1), and both of them are not
legal because T1 returns an illegal value for y in the former and an illegal value for x in the
latter. However, using our (correct) abstraction, T2 → T1 is an equivalent legal sequential
history because x is read using cmp and the return value of this cmp is legal, which means
that the history is opaque.

Another interesting example to assess the correctness of S-NOrec and S-TL2 is shown in
Algorithm 18. The history of this example is not opaque even with the new APIs because
the value of x at the moment of executing the cmp operation was different from its value
when the transaction read y.

Algorithm 18 A history that is not opaque with our APIs.
Initial values are 0

TM BEGIN(T1)
z = y

if x >= 1 then
z = 1

end if
TM END

TM BEGIN(T2)
x = 1
y = 1
TM END

Based on the two cases in Algorithms 17 and 18, it is easy to understand the idea behind
proving opacity of histories containing cmp operations, which is proving that: i) the address
read inside each cmp is consistent with all the previous reads at the moment of computing
the return value of the conditional expression, and ii) this return value does not change until
the transaction commits (even if the value of the address becomes inconsistent).

Proving that a history containing inc operations is opaque is easier to infer. This is because
the read part of inc can be deferred to the commit phase where the address is locked, and
thus the whole inc operation is considered as a write operation during the transaction
execution. The only exception for that is when the address accessed by an inc operation is
also accessed by another operation in the same transaction. In the following two sections,
we show how those cases are covered by S-NOrec and S-TL2.

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 141

8.4.1 Correctness of S-NOrec

Based on the opacity definition, the correctness of S-NOrec can be inferred if we identify
the legal sequential history S that is equivalent to a generic history H generated at any
point of its execution (after completing H). Roughly, H may contain committed transac-
tions (either read-only or writing) and live transactions (considering aborted transaction as
live right before they trigger the abort call). S is identified, similar to NOrec, as follows:
committed writing transactions are serialized when they CAS the global timestamp at com-
mit; and both read-only and live transactions are serialized when the validation of their last
finished read/cmp succeeds (i.e., after the committed writing transaction that sets the global
timestamp with the value returned at line 10).

The history S remains legal with the existence of cmp operations because of the following
reasons: i) every address is initially read consistently using readValid procedure in all read,
cmp, and RAW calls; and ii) the semantic validation made after each read and during commit
guarantees that the return values of each cmp remain the same.

The existence of inc operations also does not affect the legality of S because: i) at commit
time, inc is handled exactly like write, which is safe because the transaction has an exclusive
access to the address (in fact commit phases in NOrec are executed serially); and ii) live
transactions that execute inc along with other operations on the same address are always
consistent because the read operations (read and cmp) check the write-set first and promote
the inc operation if needed, and the write operations (write and inc) properly override the
write-set entry.

8.4.2 Correctness of S-TL2

The legal equivalent serialization of a history generated by S-TL2 is slightly different from
TL2. In fact handling inc operations does not affect the serialization because of the same
reasons mentioned for S-NOrec. However, we identify two differences that arise due to cmp

operation.

First, committed writing transactions are serialized in TL2 when they atomically increment
the timestamp. In S-TL2, this atomic increment is replaced with a CAS operation which
forms the new serialization point (line 89). Using CAS instead of AtomicFetchAndAdd is
needed because it is not legal for a transaction to observe the writes of any transaction that
increments the global timestamp after it. Note that it is guaranteed that the transaction
observes the writes of all transactions that increment the timestamp before it, because the
orecs of the write-set entries are locked before incrementing the timestamp (line 84), and
the transaction wait until those orecs are unlocked.

Second, the serialization of read-only and live transactions depends on the phase they are
executing. If the transaction is in the first phase, before any read operation, the serialization

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 142

ITM S2Rtype address-address semantic read operation
ITM S1Rtype address-value semantic read operation
ITM SWtype semantic write operation

Table 8.2: Extended GCC ABI.

point is similar to S-NOrec, when the validation during the last cmp operation succeeds (more
specifically, when start version is advanced at line 28). That is because all the committed
writing transactions so far did not change the return value of all cmp operations. On the other
hand, if the transaction is in the second phase, after the first read operation, it is serialized
similar to TL2, namely before all writing transactions that commit with a timestamp greater
than its start version. That is legal because: i) all cmp operations in the first phase are
consistent up to the current value of start version; and ii) all read and cmp operations in
the second phase use this start version in validation.

8.5 Integration with GCC

GNU Compiler Collection (GCC) supports STM since version 4.7 and HTM since ver-
sion 4.9. The integration resulted in adding transaction atomic to the constructs of
C/C++ [7, 112]. GCC translates statements within a transaction atomic block to the
appropriate TM calls that follow an Application Binary Interface (ABI) similar to the TM
ABI proposed by Intel [5]. Those calls are handled according to the TM algorithm chosen by
the programmer. The implementation of those TM algorithms is encapsulated in the libitm
library1.

The first, straightforward, step we made towards embedding our semantic interfaces is adding
three semantic operations to libitm’s ABI (see Table 8.2). The first two operations, ITM S2R

and ITM S1R, handle cmp operation with address-address and address-value modes, while
ITM SW handles inc operation. Then, we deployed our S-NOrec algorithm as an additional

TM algorithm in the libitm library, and implemented the new ABI operations as described
in Section 8.3.1. Due to lack of a TL2 implementation that matches the baseline we used
to construct our S-TL2, we plan the integration of S-TL2 as a future work. Besides, in the
TM algorithms currently existing in libitm library, those new operations are implemented
by delegating their execution to the classical read and write handlers.

The next, more complicated, step is to detect the code patterns of our semantic operations
(cmp and inc) during compilation. We did that after GCC generates the GIMPLE [122] rep-
resentation of the program. GIMPLE is a language independent, tree-based representation
that uses 3-operands expressions (except for function calls) in the Static Single Assignment

1We use GCC 5.3 and libitm libraries from https://github.com/mfs409/transmem, which include
NOrec.

https://github.com/mfs409/transmem

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 143

(SSA) [50] form. We chose GIMPLE representation to deploy our optimization passes for
two reasons. First, GIMPLE is both architecture and language independent, thus optimizing
it is considered a transparent middle-end optimization. Second, GIMPLE uses temporary
variables to put its expressions in a 3-operands form, where every variable is assigned only
once. This form simplifies the dependency analysis.

The tm mark pass is one of the optimization passes on the GIMPLE representation where
statements that perform transactional memory operations are replaced with the appropriate
TM built-ins. We extended this pass to detect the code patterns of cmp and inc operations
as follows.

• cmp: For any conditional expression we track the origins of its two operands along the
GIMPLE tree. If one origin refers to a direct transactional memory access and the
other refers to either a literal value or a local variable, then we replace the condition
with a call to the ITM S1R built-in. If the two origins refer to direct transactional
memory accesses, we use ITM S2R.

• inc: For any transactional write, we track the origin of its right hand side, and if it
is calculated using a mathematical “+” or “-” equation, we track both its operands.
If the origin of one of them is a transactional read to the same written address, and
the origin of the second operand is either a literal value or a local variable, we call
the ITM SW built-in instead of generating the transactional write. At this stage, the
original transactional read of the inc still exists and has to be removed. We did so
by developing another optimization pass, named tm optimize, that removes TM read
calls for never-live variables, since the read part of every inc becomes one of those
never-live variables reads after replacing the write part with our call. This pass is
made in a conservative way; it does not remove a read if there is no guarantee that it
is never-live.

A side optimization that our tm optimize pass performs is removing any TM read that
is part of a never-live assignment, even if it is not originally part of an inc operation.
The current GCC version does not perform any liveness optimization or dead assignment
identification on the transactional code, therefore it does not remove such reads.

Another important note is that, the case when a shared variable is involved in both semantic
(i.e., cmp and inc) and non-semantic (i.e., read and write) operations of the same trans-
action are handled by the TM algorithm as mentioned in Section 8.3 (see lines 35 & 52 of
Algorithm 14, and line 7 of Algorithm 15), therefore it is not needed to detect those cases
in the compiler passes.

One of the advantages of our optimizations is that they reduce the number of TM calls
of both ITM S2R and ITM SW from two to one. Such reduction has a visible impact on
application performance; in fact, TM calls are costly because GCC performs three indirect
calls per TM call. Also, our pass does not require a complex alias analysis for tracking the

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 144

Hashtable Bank LRU

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

Read 3440 0 22.5 0.05 173 12
Write 6.2 6.2 12.7 0 19.7 19.7
Compare - 3440 - 10 - 161
Increment - 0 - 12.7 - 0.03
Promote - 0 - 0.05 - 0.01

Vacation Kmeans Labyrinth Yada SSCA2 Genome Intruder

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

ba
se

se
m

a
n

ti
c

Read 14704 13714 25 0 176 4 142 135 2 1 84 84 28.5 28.5
Write 28.5 12 25 0 173 173 21.4 21.4 2 1 3 3 2.6 2.6
Compare - 989.5 - 0 - 172 - 7 - 0 - 0.06 - 0
Increment - 16.7 - 25 - 0 - 0 - 1 - 0.01 - 0
Promote - 15.7 - 0 - 0 - 0 - 0 - 0 - 0

Table 8.3: Average Number of Operations per Transaction.

operands origin, because we look for simple expression patterns that are usually reside in
the same basic block.

8.6 Evaluation

We tested our extended semantic-based TM on a set of micro-benchmarks, as well as ap-
plications of the STAMP suite [124]. We conducted our experiments on an AMD machine
equipped with 2 Opteron 6168 CPUs, each with 12-core running at 1.9 GHz. The total
memory available is 12 GB. We reported the throughput for the micro-benchmarks, and
the application execution time for STAMP, by varying the number of threads executing
concurrently. We reported the results for both RSTM and GCC implementations.

Table 8.3 shows the average number of invocations per operation type in the used bench-
marks. They are measured at runtime using RSTM because it provides more flexibility to
extract statistics than GCC. In this table, semantic and non-semantic algorithms are con-
trasted to give an intuition about the number of read and write operations saved by applying
our semantic constructs. Reduction is substantial, which enables performance improvement
as showed later.

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 145

8.6.1 RSTM-based implementations

In the following experiments, throughput and abort rate were computed for NOrec and TL2
in both their semantic and original (i.e., non-semantic) versions.

Micro Benchmarks

In our first set of experiments we considered three micro benchmarks: Hashtable with Open
Addressing, Bank, and Least Recently Used (LRU) Cache.

Hashtable with Open Addressing. The workload in this experiment was a collection of set
and get operations, where each transaction performed 10 set/get operations. Both S-NOrec
and S-TL2 exploited our semantic extensions in the probing procedure, as depicted in Al-
gorithm 10. As a result, and as shown in Table 8.3, all read operations were transformed
into semantic cmp operations. This reduced the number of aborts by one order of magni-
tude (Figure 8.2b), which directly raised the throughput (3.5× speedup) in both algorithms
(Figure 8.2a).

Bank. Each transaction performs multiple transfers (at most 10) between accounts with an
overdraft check (i.e., skip the transfer if account balance is insufficient). In the semantic
version of the benchmark, the reads/writes were transformed into cmp and inc operations.
As shown in Figure 8.2c, exploiting semantics helps S-NOrec to outperform NOrec at low-
contention (1-8 threads). However, when contention increases, both NOrec and S-NOrec
degrade and perform similarly. This is mainly because the probability of having true conflicts
increases, and transactions start to abort even if they are semantically validated. In TL2,
concurrent commits are allowed, thus it scales better than NOrec. Similarly, S-TL2 benefits
from the underlying semantics and performs 20% better than TL2, and incurs 2.5× fewer
aborts.

LRU Cache. This benchmark simulates an m× n cache with least-frequently-used replace-
ment policy. The cache uses m cache lines, and each line contains n buckets. Each bucket
stores both the data and the hit frequency. Each transaction either sets or looks up multiple
entries in the cache. Table 8.3 shows that 93% of the read operations were transformed into
cmp operations. Accordingly, as shown in Figures 8.2e and 8.2f, S-NOrec reduced the aborts
by two order of magnitude and achieved up to 2× speedup. S-TL2 was not improved much
(only 25% speedup). The reason is that the non-transformed reads in S-TL2 prevented it
from advancing its snapshot (i.e., it makes the first phase described in Section 8.3.2 shorter);
thus, any compare operations had to preserve the snapshot identified by the start version
and the overall behavior becomes similar to TL2.

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 146

TL2 S-TL2 NOrec S-NOrec

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) Hashtable-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(b) Hashtable-Aborts

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

1 2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) Bank-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

(d) Bank-Aborts

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(e) LRU Cache-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 0.1

 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(f) LRU Cache-Aborts

Figure 8.2: Micro Benchmarks using RSTM.

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 147

STAMP

STAMP is a suite of applications designed for evaluating in-memory concurrency controls,
for more details see Section 5.9.2. Figure 5.19 shows both execution time and abort rate
in some of the STAMP benchmarks. We did not show the results of three applications
(Genome, Intruder, and SSCA2) because we found that the semantic operations per transac-
tion were very limited (see Table 8.3) and hence there was no difference in either abort rate
or throughput. We also excluded Bayes because of its nondeterministic behavior. Since the
performance saturated at a high number of threads in all tested applications, we show the
results only up to 12 threads.

Kmeans. As illustrated in Algorithm 13, updating the centroid is changed by transforming
all writes into increments. S-NOrec and S-TL2 achieve 25%-40% speedup (Figure 8.3a).
However, at a high number of threads both NOrec and S-NOrec saturate and start to degrade
in performance, which indicates a high contention workload due to the coarse-grained locking.
Consequently, starting from 8 threads, S-NOrec slightly performs worse than NOrec (see
Figure 8.3a), because it adds an overhead that is not exploited to reduce the abort rate (see
Figure 8.3b).

Vacation. The reservation procedure was optimized as in Algorithm 12; however, only 7%
of the reads were transformed into compares. This is because most of the read operations
are part of the internal red-black tree operations. Additionally, almost all the inc operations
were promoted to read and write operations because of an additional sanity check performed
by the transaction. Although these two factors limited the gain of using the benchmark
semantics, both S-NOrec and S-TL2 consistently outperformed the original algorithms.

Labyrinth. Different checks along the routing path (e.g., isEmpty, isGarbage) were trans-
formed into semantic cmp operations, which allowed S-TL2 to outperform TL2 by 20%-50%
speedup, and to reduce the aborts by 2× (see Figures 8.3e & 8.3f). Both S-NOrect and NOrec
perform similarly, which indicates that transactions that fail in NORec’s value-based valida-
tion also fail in S-NOrec’s semantic validation. In [155], an optimized version of Labyrinth
was proposed, where some non-transactional operations (memory copy) are moved outside
the transaction, which in effect reduces the transaction size. Figures 8.4a & 8.4b show the
performance in this new version. Although S-TL2 still has lower abort rate, the returned gain
in performance became insignificant because most of the work became outside transactions.

Yada is a mesh triangulation benchmark implementing Ruppert’s algorithm. Threads iterate
over the mesh and try to produce a smoother one by identifying triangles whose minimum
angle is below some threshold. NOrec’s behavior is similar to Labyrinth. Interestingly,
although S-TL2 reduced the number of aborts by 3×, throughput was not affected (Fig-
ures 8.4c & 8.4d). Our measurements revealed that the reason for this behavior is in the
aborted transactions. Although resolving the semantic conflicts of transactions in S-TL2
allowed them to proceed with execution, true conflicts caused most of them to abort later.
Therefore, the length of the aborted transactions in S-TL2 became longer than TL2 without

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 148

TL2 S-TL2 NOrec S-NOrec

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(a) Kmeans-Execution Time

2 4 6 8 10 12
 0.1

 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

(b) Kmeans-Aborts

 10

 15

 20

 25

 30

 35

 40

1 2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(c) Vacation-Execution Time

2 4 6 8 10 12
 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(d) Vacation-Aborts

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(e) Labyrinth v1-Execution Time

2 4 6 8 10 12
 1

 10

 100

A
b
o
rt

s
 %

Threads

(f) Labyrinth v1-Aborts

Figure 8.3: STAMP Applications using RSTM.

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 149

TL2 S-TL2 NOrec S-NOrec

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(a) Labyrinth v2-Execution Time

2 4 6 8 10 12
 1

 10

 100

A
b
o
rt

s
 %

Threads

(b) Labyrinth v2-Aborts

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(c) Yada-Execution Time

2 4 6 8 10 12
 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

(d) Yada-Aborts

Figure 8.4: STAMP Applications using RSTM.

real benefit (since transactions eventually aborted). This is similar to what happened in
Bank.

8.6.2 GCC-based implementations

Now we discuss the results of the above experiments using our modified GCC instead of
RSTM. As mentioned in Section 8.5, in these experiments we focus on NOrec and S-NOrec.
We also added one more version of NOrec that uses our modified GCC APIs but does not
handle them semantically. The only difference between this version and NOrec is that, in
the former, the applications calls our semantic APIs and internally delegates them to the
normal reads/writes of NOrec, while the latter calls NOrec’s APIs directly.

The results (Figures 8.5 and 8.6) follow the same trends described above with RSTM (we
excluded Labyrinth and Yada from the GCC figures because NOrec and S-NOrec behave
similarly in both of them, as shown in Figures 8.3 and 8.4). As before, our semantic ex-
tensions help improving performance in all benchmarks. Compared to RSTM, the actual
throughput values decreased. This is mainly because GCC speculates every read and write

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 150

within the transaction atomic blocks, while RSTM speculates only addresses accessed
using its transactional TM READ and TM WRITE APIs. However, GCC algorithms scale bet-
ter than RSTM algorithms, mainly because of the internal optimizations in GCC, such as
using more efficient structures to store and handle metadata. Interestingly, using our mod-
ified GCC, even without exploiting semantics (“NOrec Modified-GCC”), we observe some
performance improvement due to decreasing the overall number of TM calls.

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 151

NOrec Modi ed-GCC NOrec S-NOrec

 6

 8

 10

 12

 14

 16

 18

2 4 6 8 10 12 14 16 18 20 22

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) Hashtable-Throughput

2 4 6 8 10 12 14 16 18 20 22
 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(b) Hashtable-Aborts

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

2 4 6 8 10 12 14 16 18 20 22

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) Bank-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

(d) Bank-Aborts

 40

 50

 60

 70

 80

 90

 100

 110

 120

2 4 6 8 10 12 14 16 18 20 22

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(e) LRU Cache-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 0.1

 1

 10

 100

 1000

 10000

A
b
o
rt

s
 %

Threads

(f) LRU Cache-Aborts

Figure 8.5: Micro Benchmarks using GCC.

Mohamed M. Saad Chapter 8. Extending TM Primitives using Low Level Semantics 152

NOrec Modi ed-GCC NOrec S-NOrec

 12

 14

 16

 18

 20

 22

 24

2 4 6 8 10 12 14 16 18 20 22

T
im

e
 (

S
e
c
)

Threads

(a) Kmeans-Execution Time

2 4 6 8 10 12 14 16 18 20 22
 0.1

 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

(b) Kmeans-Aborts

 0

 20

 40

 60

 80

 100

 120

 140

2 4 6 8 10 12 14 16 18 20 22

T
im

e
 (

S
e
c
)

Threads

(c) Vacation-Execution Time

2 4 6 8 10 12 14 16 18 20 22
 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

(d) Vacation-Aborts

Figure 8.6: Some STAMP Applications using GCC.

Chapter 9

Exploiting Hardware Transactional
Memory

Intel has recently introduced Haswell [149] as the first mainstream CPU with transactional
memory support. Haswell supports best-effort hardware transactional memory (HTM) us-
ing Restricted Transactional Memory (RTM) [97]. RTM eliminates the transactional loads
and stores overhead, but it introduces hardware restrictions on the transaction size and the
overall progressiveness. In this chapter, we propose novel techniques for executing trans-
actions according to a predefined commitment order using Intel’s RTM. First, we present
two hardware algorithms: Burning Tickets and Timeline Flags. Next. we propose a hybrid
hardware extension for our OWB algorithm (See Chapter 6), named OWB-RH. .

9.1 Haswell’s RTM

Haswell introduces TM interface with three new instructions: XBEGIN, XEND, and XABORT.
XBEGIN and XEND define the transaction start and end, while XABORT enables the trans-
action to abort itself. Transaction changes are stored in the processor cache, and at the
commit time the cache is flushed to the main memory which provides the illusion of atom-
icity. Consequently, 1) any cache request (read or write) from another processor aborts the
current transaction, 2) conflicts granularity is per cache-line, and 3) transaction is limited
to the cache size and it can abort due to the capacity constraint. The conflict resolution
policy implemented in Haswell is requestor wins, which means that there is no guarantee
for forward progress. A transaction is aborted when its underlying processor receives either
a coherence message (read or write) for a cache line in its write-set, or a coherence write
message for one of its cache lines of the read-set. To overcome the absence of progress, a
fallback software path is used after the transaction is repeatedly aborted. However, with
the chance of having a transaction running in the fallback software path, it is required to

153

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 154

also coordinate the conflicts between transaction executing in the software path and in the
hardware path [52, 36, 119].

9.1.1 The Challenges of ACO Support

Ordering transactions is challenging using RTX, because it imposes information transfer
between transactions for organizing the commitment order. Under RTX, any information
transfer between transactions within their context implies aborting one of them. To illustrate
this, let us assume there is a shared variable that stores the next-to-commit transaction’s
age. This variable will be checked when a transaction attempts to commit, and updated if
the ACO matches its commit order. Let Ti be a transaction that is about to commit. If i =
next-to-commit then it will commit successfully. However, when i 6= next-to-commit then
the address of the next-to-commit shared variable is now loaded in the processor cache,
hence, it becomes a part of the transaction read-set. Eventually, the system will update the
next-to-commit, whenever the transaction with an age equals to next-to-commit commits.
According to the requestor wins policy, transaction Ti (and any transaction that has read
next-to-commit) has to be aborted. Thus, an algorithm that uses a shared variable such as
the next-to-commit to identify the commitment order must abort (and retry) the transac-
tion immediately when its age is not equal to next-to-commit. Aborting a transaction may
severely degrade the performance because after multiple aborts, the transaction may switch
to the slow fallback software path; meanwhile, with some implementations (e.g., SGL [189])
that could stop executing all hardware transactions. Unfortunately, RTM does not support
escape actions (i.e., executing non-transactional access within the transaction), and will not
support that in the near future. Using the escape action, transactions would be able to
organize the commitment without aborting each other.

Figure 9.1 illustrates the worst and the best case scenarios for a next-to-commit based
hardware algorithm. Recall that reading the next-to-commit occurs only at the end of the
transaction.

9.2 The Burning Tickets Hardware Algorithm (BTH)

We propose a new technique, burned tickets, that reduces the number of aborts due to the
ACO. The Burning Tickets algorithm (BTH) uses pure hardware transactional memory, and
uses the time as a dimension for transferring the ordering information. In our technique,
each transaction is associated with a list of tickets. A ticket holds a bi-value: true or false,
and it the tickets are distributed over different cache lines. When the transaction completes
its execution, it iterates over (burning) its ticket in order with a predefined delay between
the accesses, and it checks if one of them has a true value. Upon finding a ticket with a true
value, the transaction stops iterating and commits. If all the tickets were inspected and none

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 155

Processors

1234567

T
im
e

(a) Worst Case Scenario

1234567

T
im
e

Processors

(b) Best Case Scenario

Figure 9.1: Executions of Next-to-Commit Hardware Algorithm

of them was true, the transaction aborts and restarts (using the same allocated tickets).

The transaction with the absolute minimum age does not have tickets (or have tickets that are
all set), so it commits as soon as it finishes the execution. After its commit, the transaction
iterates in a reverse order over the tickets, with the same delay, of its immediate successor
transaction (i.e., with an age that is one higher than the current one). This strategy is
twofold. First, it allows a committed transaction to notify its successor to commit its values
without aborting it (as long as this happen before it consumes all tickets). Tickets that were
set by the committed transaction do not affect the active transaction because they are not
added yet to its read set. On the other hand, the committed transaction will not be affected
by the coherence read message because setting the ticket is done out of the transaction.
Second, if a higher age transaction conflicts with a lower age transaction, then it will enter
the ticket burning phase, which will delay it from restart and aborting it again.

9.2.1 Configuring Tickets Burning

In this section we analyze the proposed procedure to determine the best configuration (e.g.,
number of tickets, the checking delay) that reduces the aborts probability, and the commit-
ting delay. Assuming the number of tickets per transaction is N ; the delay between tickets

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 156

(a)

1

1

1

Burn 1

Burn 2

Set 9

Burn 3

Set 8

Burn 4

Set 7

Burn 5

Set 6
Commit

1

Ti-1Ti
Time

S
e
tt

in
g

B
u
rn

in
g

Di

(b)

Figure 9.2: Tickets Burning with number of tickets (N)=9, and delay (D)=3

accesses (burning or setting) is d; the absolute clock time of committing the transaction with
age i is ti; the delay introduced by the algorithm to guarantee the in order commitment is
Di. Figure 9.2 illustrates an execution with four transactions (T1-T4).

The delay introduced for a transaction after it finishes the execution is the sum of: 1) the
waiting time until its correct commit time, and 2) the time required for the transaction
to be notified from its predecessor, which we denotes as D. In case Ti finishes before its
predecessor Ti−1 (see Figure 9.2a), it will burn d(ti−1 − ti)/de tickets before Ti starts its
notification phase. The notification requires reaching a mid-way ticket between the two
transactions (Ti and Ti − 1), as they are moving in reversed directions. Therefore, we can
represent Di using the following relation.

Di = (N − d(ti−1 − ti)/de)/2

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 157

Now, let us assume Ti finished after Ti−1 (see Figure 9.2b). In this case, Ti−1 will set the
values of (ti − ti−1)/d before Ti starts burning the tickets. Similarly, we can calculate the
mid-way ticket using the same way.

However, the transaction commit time of the predecessor needs to consider also the delay
introduced by the the predecessor of the predecessor, which was waiting to commit. Therefore
we need to substitute the value of ti−1 with ti−1+Di−1. So we can rewrite the general relation
between the delay and the number of tickets using the following formula.

Di = (N − d|ti−1 +Di−1 − ti|/de)/2, where i > 1, and D1 = 0

Note that, a negative delays indicates that either the transaction runs out of tickets and
will be aborted (when ti−1 > ti), or the predecessor transaction set all tickets and the next
transaction will commit as soon as it finishes (ti−1 < ti).

That way a transaction can estimate the number of tickets based on the earlier times and
delays, hence we can develop an adaptive model in which transactions controls the afore-
mentioned parameters to reduce aborts.

Finally, a possible optimization is that the transactions can maintain a next-to-commit

variable out of the transaction boundaries. A transaction updates it after it commits and
does a check on its value before it starts. If the transaction age matches the next-to-commit,
then it can skip the tickets checking and commits directly.

9.2.2 Conflict Resolution

As mentioned earlier, the default conflict resolution in Haswell’s RTM is the requestor wins
policy. In effect, this does not preserve the age-based priority imposed by our model. Recall
that transactions cannot share online information while they are executing. In order to
resolve this situation, we assume that a transaction can define the set of written addresses
before execution. Thereby, the transaction constructs a signature [25] of its modifications
ahead of the execution. Within execution and before any access (read or write), a transaction
must inspect the signatures of all higher priority transactions (i.e., with lower age than the
current) that are actively running, and it aborts itself (using XABORT) if a match found.

To reduce the signature bits that are set, we can construct in terms of the cache lines instead
the addresses. Two addresses that are mapped to the same cache line could be considered
as a single element, because they have the same cache invalidation effect. This optimization
can easily be implemented in the signature hash function itself.

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 158

T6

T5

T7

R(5) R(5) R(5) R(6) W(7) W(7) W(7)

R(5) W(6) W(6) W(6)

R(7) W(8) W(8) W(8)

Time

5 5

wait waitwait commit

commit

commit

Θ

τ

Figure 9.3: Timeline Flags with N=19, and M=3

9.3 The Timeline Flags Hardware Algorithm (TFH)

A drawback of the BTH algorithm is the usage of a per-thread meta-data (i.e., tickets). This
limits the scalability of the algorithm, with larger meta-data the abort probability due to
cache capacity increases. In this section, we propose a new algorithm, Timeline Flags, that
uses a constant size of meta-data, that is independent of the number of active transactions
(i.e., processor cores). Similar to BTH algorithm, we exploit the time as a dimension for
exchanging the required ordering information.

Assume Θ is the length of the context switch time. Hardware transactions cannot span over
the processor context switches, hence, the transaction can only commit at any point of time
within Θ. In TFH, we subdivide Θ into n sub intervals of length τ (i.e., τ1, τ2, . . . , τn), and
represent that as a circular buffer B of size n. Any point of the absolute clock time (e.g.,
ct) can be mapped to an element of B (e.g., B[b(ct%Θ)/nc]). The elements of B, namely
timeline flags, are set initially to 0, where 0 is the smallest transaction age in our system.

Let the transaction Ti (with age=i) be about to commit, and it needs to preserve ACO. In
order to do that, Ti checks the current clock time (ct)1, and it maps ct to a timeline flag of
B (i.e., B[b(ct%Θ)/nc]). If the value of timeline flag equals to i, the transaction commits;
then it sets the value of the next M flags after b(ct%Θ)/nc to i+1; recall that B is a circular
buffer. Alternatively, if the transaction finds that the value of the timeline flag 6= i, then
the transaction waits for τ time and perform the check again. However, as the clock time
changes, in the next time, it will inspect the next timeline flag.

1The rdtsc and rdtscp instructions load the current value of the processor’s timestamp counter, and are
safe to be called within hardware transactions.

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 159

Interestingly, at any point of time, only one transaction writes to a timeline flag that has
been never read by any transaction. The reason is that the transaction updates the next M
flags, which are corresponding to clock times in the future.

Figure 9.3 illustrates an example of TFH execution with 19 timeline flags. A transaction
with successful commit needs to set the next 3 flags (M).

9.3.1 Configuring Timeline Flags

M (window size) represents the number of flags set by the transaction after it commits.
The transaction must set enough flags for transferring the ordering information to the next
transaction. This means that if the next transaction execution takes more than M × τ after
the commit of its predecessor transaction, then the ordering information will not be found
until the next context switch (e.g., if M=2 in Figure 9.3). Another important configuration
is the length of τ , as it represents an upper bound on the commit frequency. A large value
of τ will add undesired delays; while small τ values will increase the number of timeline flags
(meta-data), consequently, the probability of cache capacity aborts increases.

9.3.2 Evaluation

In this section, we compare our two algorithms: BTH and TFH. Both algorithms try to use
the fast-path using HTM for 5 times, then fallback to the slow-path using the Single Global
Lock (SGL) [189] technique. In BTH, each thread uses 9 tickets distributed over different
cache lines. The TFH algorithm uses a circular buffer of 32 flags with a window size (i.e.,
M) of 10 flags. Each flag covers a clock time period of 256 cycles. The rdtscp instruction
was used to determine the elapsed time.

To conduct our evaluation, we used two well-known benchmarks: Bank, a micro-benchmark
that simulates monetary operations on a set of accounts (see Section 8.6.1), and Transaction
Processing Performance Council (TPC-C) [48], an On-Line Transaction Processing (OLTP)
benchmark, which simulates an ordering system on different warehouses. Experiments were
conducted on a machine equipped with Intel Haswell Core i7-4770 processor with 4 cores,
hyper-threading enabled, and the L1 cache size is 8 MB. Results are the average of five runs.

Bank. Figure 9.4a shows the performance of the two algorithms with increasing the number
of threads. TFH outperforms BTH with a 1.5× peak performance at 4 threads. Figure 9.4b
shows that TFH incurs less aborts than BTH at low number of threads (i.e., 1-4 threads).
After 4 threads, the hyber-threading disallow HTM to perform more gain. As a result, the
performance of both algorithms degrades due to the aborts and falling back to the slow-path.

TPC-C is an on-line transaction processing (OLTP) benchmark. TPC-C transactions are
more complex (i.e., more computation and memory accesses) and longer than the Bank

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 160

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t

(M
 T

x
/S

e
c
)

Threads

TFH
BTH

(a) Bank

1 2 3 4 5 6 7 8
 0.01

 0.1

 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

TFH
BTH

(b) Bank Aborts

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t

(M
 T

x
/S

e
c
)

Threads

TFH
BTH

(c) TPC-C

1 2 3 4 5 6 7 8
 0.1

 1

 10

 100

 1000

A
b
o
rt

s
 %

Threads

TFH
BTH

(d) TPC-C Aborts

Figure 9.4: BTH vs. TFH using Bank and TPC-C Benchmakrs.

micro-benchmark. TPC-C simulates a set of users executes transactions (entering and de-
livering orders) against a set of warehouses. Each warehouse (20 warehouses in our configu-
rations) represents a supplier for a set of sales districts (50 districts in our configurations),
and each district serves multiple and concurrent customers’ requests. Figures 9.4c and 9.4d
report the performance and the aborts using TFH and BTH algorithms. TFH outperforms
BTH at low number of threads, however, TFH is highly affected by contention at higher
number of threads.

Figure 9.5 illustrates the abort reasons breakdown for each of the benchmarks/algorithms.
From the figure we notice that the primary reason for aborts at a low number of threads is
the ordering, while at higher threads, the conflict aborts dominate. TFH incurs less capacity
aborts than BTH algorithm, thanks to the reduction in the meta-data size; single shared
timeline instead of the per-thread tickets. Interestingly, TFH algorithm has a low number
of aborts at two threads because the two threads alternate their transaction executions and
transfer the ordering information across the timeline flags. This is not the case for the BTH
algorithm because the tickets burning technique depends on the transaction length, hence,
it is subject to data conflict even with the case of two threads.

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 161

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8

H
T
M

 %

Threads

(a) BTH, Bank fast-path to slow-path Ratio

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

1 2 3 4 5 6 7 8

#
 A

b
o
rt

s

Threads

Ordering
Capacity

Con ict
Others

Global Lock

(b) BTH, Bank Aborts Breakdown

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8

H
T
M

 %

Threads

(c) BTH, TPC-C fast-path to slow-path Ratio

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

1 2 3 4 5 6 7 8

#
 A

b
o
rt

s

Threads

Ordering
Capacity

Con ict
Others

Global Lock

(d) BTH, TPC-C Aborts Breakdown

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8

H
T
M

 %

Threads

(e) TFH, Bank fast-path to slow-path Ratio

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

1 2 3 4 5 6 7 8

#
 A

b
o
rt

s

Threads

Ordering
Capacity

Con ict
Others

Global Lock

(f) TFH, Bank Aborts Breakdown

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8

H
T
M

 %

Threads

(g) TFH, TPC-C fast-path to slow-path Ratio

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

1 2 3 4 5 6 7 8

#
 A

b
o
rt

s

Threads

Ordering
Capacity

Con ict
Others

Global Lock

(h) TFH, TPC-C Aborts Breakdown

Figure 9.5: BTH and TFH fast-path execution

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 162

t r a n s a c t i o n {
x = 1 ;
y = 1 ;

}

t r a n s a c t i o n {
r1 = x ;
r2 = y ;
i f (r1 = r2)

STATEMENT
}

Figure 9.6: Execution of two transactions using HyTM

9.4 The Ordered Write Back - Reduced Hardware Al-

gorithm (OWB-RH)

As we discussed in Section 9.1.1, supporting ACO using HTM is challenging and inherently
imposes restrictions on the executed code (e.g., capacity and transaction length constraints).
In BTH and TFH algorithms we exploit the time to exchange the ordering information
between transactions, however, this approach is application and workload dependent and
requires fine tuning for the algorithm configurations. In this section, we propose a hybrid
TM algorithm; namely OWB-RH. The algorithm extends the OWB algorithm (see Section 6).

9.4.1 Hybrid TM Design Choices

Existing hybrid TM proposals exploits HTM in two ways. The first is by executing the
transaction in hardware and falling back to software (slow-path) [36, 52] under certain con-
ditions such as capacity constraints or reaching the threshold of the number of retries. The
second usage is by employing the HTM as a tool to enhance the software path. In the later
approach, called reduced hardware (RH) [119], the slow-path uses a smaller hardware trans-
action to complete its action. This in effect reduces the hardware fast-path instrumentation
and speeds up the slow-path execution.

In the execution shown at Figure 9.6 [52], two concurrent transactions T1 and T2 run in hybrid
TM system. Algorithms 19 and 20 show inconsistent histories results from the coexistence
of two different transactions types (one in software and the other in hardware) running
concurrently. In Algorithm 19, the software transaction T1 writes back its write-set to the
memory. Meanwhile, the transaction T2 (which runs as hardware transaction) observes a
partial commit of T1 (i.e., the value of x) and will execute an invalid code. In Algorithm 20,
during the execution of T2 (which runs as a software transaction) T1 completes as a pure
hardware transaction. As a result, T2 observes an inconsistent state. Transactions with an
inconsistent state may: i) perform actions that are out of control of the TM framework (e.g.,
invalid memory accesses), ii) execute unexpected control flow such as infinite loops, or iii)
do some irrevocable or visible operation. Most hybrid TM proposals take into account such
interaction between software and hardware transactions.

From a system perspective, hybrid TM approaches [152, 157] are classified into three cate-

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 163

Algorithm 19 A history with inconsistent HTM state.
Initial values are 0

STM WRITEBACK(T1)
x = 1

y = 1

HTM BEGIN(T2)
r1 = x
r2 = y
if(r1 = r2) . HTM Inconsistent State

Algorithm 20 A history with inconsistent STM state.
Initial values are 0

HTM BEGIN(T1)
x = 1
y = 1
HTM END(T1)

STM BEGIN(T2)
r1 = x

r2 = y
if(r1 = r2) . STM Inconsistent State

gories. The first approach restricts only a single type of transactions to exists at a time (i.e.,
all software or all hardware) [109]. The drawback of this approach is that once one transac-
tion needs to execute in software, it forces all the system to run in the software slow-path
only. The second approach is to permit software and hardware transactions to coexist [52],
and preserve correctness and atomicity through a shared metadata. The last approach [157]
combines the previous two and allows multiple types of transactions (e.g., pure software,
pure hardware, and reduced hardware) to coexist with a phasing option, hence, it is possible
to restrict the execution of a certain type of transactions only according to the workload.

9.4.2 Algorithm Description

As a first step in this direction, we propose a hybrid algorithm that exploits HTM to enhance
the performance of our OWB algorithm (see Section 6) using the reduced hardware approach.
OWB-RH algorithm differs from OWB in the following points:

• The TryCommit procedure (see Algorithm 22) uses an inner hardware transaction to
write back the changes and acquire the locks atomically. Instead of the use of compare-
and-swap operation (line 89 in Algorithm 3), HTM guarantees the required atomic-
ity. However, to reduce the transaction length the write-write conflict (including any
cascaded abort) resolution is handled outside the hardware transaction (lines 71-84,
Algorithm 22).

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 164

• As the write back is done atomically in HTM, there is no need to re-validate the
read-set using Validate Locked Reads.

• The versioned lock was simplified to store the age of the last writer instead of a mono-
tonically increasing counter. This is mainly proposed to reduce the write-set of the
hardware transaction, hence reducing the aborts due to the cache capacity. However,
as a side effect, it permits reader transactions to stay valid if concurrently a writer
transaction modified an address that got aborted afterwards (in OWB this causes a
version increment). Furthermore, one of the lock bits (LOCK FLAG) is reserved for
indicating whether it is locked or unlocked. That way, it is possible to access the cur-
rent (or the last) writer for any address by masking the lock bit. For that reason, the
system stores a reference to the last MAX ACTIVE transactions in a bounded circular
array (line 2, Algorithm 21).

The Read, Write, Validate Reads and Commit procedures are similar to the ones in OWB,
with the exception of using the age instead the version inside the lock. In TryCommit, we
need to backup the last writer version before overwriting it, and it is used during the Abort.

Finally, The TryCommit falls back to the original OWB’s TryCommit procedure (line 91,
Algorithm 22) when a retries threshold is reached, or the transaction is aborted due to cache
capacity.

9.4.3 Evaluation

To illustrate the gain of the proposed OWB-RH algorithm, we consider the RSTM micro-
benchmarks [2] to evaluate the effect of changing the read-set/write-set sizes on the per-
formance (see Section 5.9.1 for the complete description of the tested applications). As a
baseline, we compare against the original OWB algorithm (see Chapter 6).

Experiments were conducted on a machine equipped with Intel Haswell Core i7-4770 proces-
sor with hyper-threading enabled (i.e., 4 cores, 8 threads), and the L1 cache size is 8 MB.
Results are the average of five runs.

As a general comment on the results, OWB-RH consistently outperforms (or performs the
same as) OWB. In RNW1 (see Figures 9.9a and 9.9b), as the write-set is very small (only
single address), there is no difference between the two algorithms. However, in RWN and
MCAS (see Figures 9.9c-9.9f), OWB-RH benefits from the fast write back using HTM.

It worth noting that the percentage of aborts reported in Figures 9.9b, 9.9d and 9.9f are
the software aborts incurred by OWB-RH. OWB-RH tries to write back its write-set using
the HTM (fast-path), and on consecutive aborts, it falls back to the original OWB write
back (slow-path). In our OWB-RH implementation, we set the maximum number of fast-
path retries to five (see line 70, Algorithm 22). Figure 9.8 shows the details of slow-path
execution; to the left (Figure 9.8a) the ratio between transactions that managed to complete

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 165

Algorithm 21 OWB-RH - pseudo code
1: procedure Begin(Transaction tx)
2: activeWriters[tx.age % MAX ACTIVE] = tx . Keep a reference for last active transactions
3: tx.lastObserved = lastCommitted . observe the last committed transaction
4: end procedure

5: procedure Read(SharedObject so, Transaction tx)
6: readVersion = so.version
7: if tx.writeSet.contains(so) then
8: tx.readSet.add(so, readVersion)
9: return tx.writeSet.get(so).value . Read written value
10: else if readVersion & LOCK FLAG then . Check speculative write
11: currentWriter = activeWriters[readVersion & LOCK MASK % MAX ACTIVE]
12: if currentWriter.age > tx.age then
13: ABORT(currentWriter) . W2 → R1; Read after Speculative Write
14: go to 6
15: else . W1 → R2; Add Tx to its dependencies
16: currentWriter.dependencies.add(tx)
17: if currentWriter.status 6= ACTIVE then . Double check writer
18: ABORT(tx) . Writer got aborted while registeration
19: end if
20: end if
21: end if
22: if readVersion 6= so.version then
23: go to 6
24: end if
25: Validate Reads(tx)
26: tx.readSet.add(so, readVersion)
27: return so.value
28: end procedure

29: procedure Write(SharedObject so, Object value, Transaction tx)
30: tx.writeSet.add(so, newValue) . Save new value
31: end procedure

32: procedure Validate Reads(Transaction tx)
33: if tx.lastObserved 6= lastCommitted then
34: tx.lastObserved = lastCommitted
35: for each Entry entry in tx.readSet do . Validate Read Set
36: SharedObject so = entry.so
37: if so.version 6= entry.readVersion then
38: return ABORT(tx) . Read a wrong version
39: end if
40: end for
41: end if
42: return VALID
43: end procedure

44: procedure Abort(Transaction tx)
45: if tx.status = ABORTED then return false; end if . Already got aborted
46: if tx.status = INACTIVE then return false; end if . Already compeleted
47: while ! CAS(tx.status, ACTIVE, TRANSIENT) do . Try Abort
48: repeat until tx.status 6= TRANSIENT . Spin Wait
49: go to 45
50: end while
51: for each Transaction dependency in tx.dependencies do
52: ABORT(dependency) . Abort dependent transactions
53: end for
54: for each Entry entry in tx.writeSet do
55: SharedObject so = entry.so
56: if so.version = (tx.age | LOCK FLAG) then . Aquired lock
57: so.value = entry.newValue . Revert value
58: so.version = entry.version . Revert version
59: end if
60: end for
61: tx.status = ABORTED
62: return true
63: end procedure

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 166

Algorithm 22 OWB-RH - Commit.
63: procedure TryCommit(Transaction tx)
64: if tx.status = ABORTED then return false; end if . Already got aborted
65: while ! CAS(tx.status, ACTIVE, TRANSIENT) do . Try Commit
66: repeat until tx.status 6= TRANSIENT . Spin Wait
67: return false
68: end while
69: if VALIDATE READS(tx) 6= VALID then return false; end if
70: retries = MAX RETRIES
71: for each Entry entry in tx.writeSet do . Lock Write Set
72: SharedObject so = entry.so
73: currentVersion = so.version;
74: if currentVersion & LOCK FLAG then
75: writerAge = currentVersion & LOCK MASK
76: if tx.age < writerAge then
77: currentWriter = activeWriters[writerAge % MAX ACTIVE]
78: ABORT(currentWriter) . W2 →W1; Write after Specu. Write
79: else
80: ABORT(tx) . W1 →W2; Write after Write
81: return false
82: end if
83: end if
84: end for
85: status = XBEGIN . —————————————————————————– HTM Start
86: if status = XABORT EXPLICIT then
87: go to 71 . Resolve Write-Write conflict
88: else if status 6= XBEGIN STARTED then
89: retries - - . Count HTM fail
90: if retries = 0 ∨ status = XABORT CAPACITY then
91: return owb::TryCommit(Tx) . Fallback to software slow-path
92: end if
93: go to 85 . Retry
94: end if
95: myLock = tx.age | LOCK FLAG
96: for each Entry entry in tx.writeSet do
97: SharedObject so = entry.so
98: if so.version & LOCKED FLAG ∧ so.version 6= myLock then . Check Write-Write Conflict
99: XABORT . Abort to Resolve Write-Write Conflict
100: end if
101: entry.version = so.version . Save old version
102: so.version = myLock . Lock the address
103: temp = so.value . Save old value
104: so.value = entry.newValue . Expose written value
105: entry.newValue = temp
106: end for
107: XEND . ————————————————————————– HTM Commit
108: tx.status = ACTIVE . Transaction Exposed
109: return true
110: end procedure

111: procedure Commit(Transaction tx)
112: if tx.status = ABORTED then return false; end if . Already got aborted
113: while ! CAS(tx.status, ACTIVE, TRANSIENT) do . Try Complete
114: repeat until tx.status 6= TRANSIENT . Spin Wait
115: return false
116: end while
117: if VALIDATE READS(tx) 6= VALID then return false; end if
118: for each Entry entry in tx.writeSet do
119: SharedObject so = entry.so
120: so.version = tx.age . Unlock
121: end for
122: tx.status = INACTIVE . Transaction Committed
123: return true
124: end procedure

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 167

Read After Write
Write After Write

Cascade
Locked Write

Validation Fails

 0

 0.2

 0.4

 0.6

 0.8

 1

RNW1 RWN MCAS

(a) OWB Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

RNW1 RWN MCAS

(b) OWB-RH Algorithm

Figure 9.7: Aborts Breakdown

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5 6 7 8

H
T
M

 %

Threads

RNW1 RWN MCAS

(a) Fast-path to slow-path Ratio

1 2 3 4 5 6 7 8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

R
e
tr

ie
s

Threads

RNW1 RWN MCAS

(b) Average number of fast-path retries per
transaction

Figure 9.8: OWB-RH fast-path execution

its execution using only the fast-path and the transactions that fall back to the slow-path,
while Figure 9.8b depicts the average number of slow-path retries per transaction. In RNW1
benchmark, with rare conflicts, the transaction always succeed to use the fast-path. However,
in RWN and MCAS, transactions incurs repeated conflicts and fall back to the slow-path.
Interestingly, after 4 threads, the percentage of transactions that fails to complete using
slow-path increases notably, this is due to the hyper-threading effect. Figures 9.9b, 9.9d and
9.9f shows a reduction of the number of aborts in OWB-RH, however, such reduction is due
to reducing the validation and locked write aborts (see Figure 9.7); both of these aborts types
incurred mostly during the commit. For the locked write aborts, as the fast-path transaction
retries multiple times, some of these aborts are resolved. In other words, the slow-path
retries have a useful back-off effect on the commit execution. On the other hand, the slight
reduction of the validation aborts is due to the use of age instead the monotone counter.

Mohamed M. Saad Chapter 9. Exploiting Hardware Transactional Memory 168

 150

 200

 250

 300

 350

 400

 450

 500

1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

OWB
OWB-RH

(a) RNW1

1 2 3 4 5 6 7 8
 0.1

 1

 10

 100

A
b
o
rt

s
 %

Threads

OWB
OWB-RH

(b) RNW1 Aborts

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

OWB
OWB-RH

(c) RWN

2 3 4 5 6 7 8
 1

 10

 100

A
b
o
rt

s
 %

Threads

OWB
OWB-RH

(d) RWN Aborts

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

OWB
OWB-RH

(e) MCAS

2 3 4 5 6 7 8
 1

 10

 100

A
b
o
rt

s
 %

Threads

OWB
OWB-RH

(f) MCAS Aborts

Figure 9.9: OWB vs. OWB-RH using RSTM Micro-benchmark.

Chapter 10

Conclusions and Future Work

The vast majority of applications and algorithms are not designed to exploit properly the new
trend of multi-processor chips design, which creates a gap between the available commodity
hardware and the running software. This gap is expected to continue for years with the
burdens of developing and maintaining parallel programs. In this dissertation, we aim at
extracting coarse-grained parallelization from sequential code. We exploited transactional
memory (TM) as an optimistic concurrency technique for supporting safe memory access
and introduced algorithmic modifications for preserving program chronological order. TM
is known with its execution overhead, which could be comparable to locking overhead, but
in comparison to sequential code it could outweigh any performance gain. In this thesis
we tackled this issue in several ways such as: employing static analysis, fast-path sequential
execution, transactional pooling, transactional increments, prioritize transactions, exploiting
low-level semantics, and getting use of HTM support.

Summarizing, in this thesis we present the following solutions.

We presented HydraVM, a JVM that automatically refactors concurrency in Java programs
at the bytecode level. Our basic idea is to reconstruct the code in a way that exhibits data-
level and execution-flow parallelism. STM was exploited as memory guards that preserve
consistency and program order. Our experiments show that HydraVM achieves speedup
between 2×-5× on a set of benchmark applications.

We presented Lerna, a completely automated system that combines a software tool and a
runtime library to extract parallelism from sequential applications without any programmer
intervention. Lerna leverages software transactions to solve conflicts due to data sharing of
the produced parallel code, thus preserving the original application semantics. Using Lerna is
finally possible ignoring the application logic and exploiting the cheap hardware parallelism
using a blind parallelization. Lerna showed great results with multiple benchmarks with
average 2.7× speedup over the original code.

Both frameworks propose novel techniques over past STM-based parallelization works in that

169

Mohamed M. Saad Chapter 10. Conclusions and Future Work 170

they benefit from static analysis for reducing transactional overheads, permit accessing some
reducible variables allocated on the stack (not just global variables as [120]), target arbitrary
programs (not just recursive ones as [32] does), is entirely software-based (unlike [32, 66, 56,
182]), do not require program source code.

With OWB, OWB-RH, OUL, and OUL-steal algorithms we effectively address the problem
of committing transactions with an order defined prior to execution. We show that even if a
system requires a specific commit order, it is possible to achieve high performance exploiting
parallelism with data conflicts. Results show important trends: our OUL outperforms other
ordered competitors consistently. In particular, the maximum speedup achieved is 4× over
Ordered TL2, 4.3× over Ordered NORec, 8× over Ordered UndoLog visible, 10× over Or-
dered UndoLog invisible, and 5.7× over STMLite [120]. Interestingly, the peak gain over the
sequential non-instrumented execution in micro benchmarks is 10× and 16.5× in STAMP.

With the proposed new TM extensions, we show that it is possible exploiting application
semantics in a transparent manner, without involving the programmer. We did so by identi-
fying TM-friendly semantics and proposing an approach to inject them into the current TM
algorithms and frameworks. We also integrated our work in GCC and provide a full compiler
support for them. Our experimental results depicted a promising improvement over the base
algorithms. A possible extension of this line of research is investigating more on including
HTM algorithms and supporting more complex semantic patterns.

10.1 Discussion & Limitations of Parallelization using

TM

TM provides mechanisms to handle data dependencies at run-time, but comes with an
overhead when TM is used in parallelization of sequential code. The primary factors of
overhead are: synchronizing shared accesses, preserving chronological order at commit, read-
set validation, and aborting transactions because of actual data dependencies, control flow
dependencies, or false conflicts. Some code patterns are TM-parallelization friendly such as:
code with local computations and few shared accesses; long iteration with shared accesses
at its end; workload with balanced computation access iterations; and code patterns that
accesses flat data structures (i.e., those with no single point of contention).

On the other hand, the performance of the TM parallel code is highly dependent on the
ability to exclude addresses, which are not needed to be accessed (e.g., read-only addresses).
This could be done using an alias analysis or by a high-level user intervention. Parallelization
using TM becomes less effective when:

• there are loops with few iterations because the actual application parallelization degree
is limited;

Mohamed M. Saad Chapter 10. Conclusions and Future Work 171

• there is an irreducible global access at the beginning of each loop iteration, thus in-
creasing the chance of invalidating most transactions from the very beginning;

• workload is heavily unbalanced across iterations and with frequent control-flow changes;

• extensive usage of multiple levels of pointers, which hinders the use of alias analysis
and force using transactional access even for addresses calculations; and

• when the size of the shared read accesses increases significantly, consequently, the
validation overhead increases.

Due to the above limitations, one of the main factors that affect the efficiency of paralleliza-
tion using TM is the ability to move the patterns that are not suited to be parallelized using
TM outside the parallel TM blocks. We did that by exploiting static analysis techniques.
However, static analysis may not be sufficient to detect complex patterns. In Section 10.1.1,
we show some of the recommended programming practices to limit or avoid these complex
(irreducible) patterns.

Finally, two features distinguish TM over other parallelization techniques: its ability to get
use of the application (workload) semantics to increase the concurrency, even with the exis-
tence of true conflicts; and the hardware support of the mainstream commodity processors,
such as Intel’s Haswell.

10.1.1 Recommended Programming Patterns

In our work, we assume that there is no user intervention. However, we identify here some
programming patterns that would help our work to perform better. The key points in these
guidelines are: 1) helping the alias analysis to detect some relations between the accessed
locations, which helps in reducing the number of the transactional accesses and exploiting
our semantic APIs; and 2) enhancing the transactional execution by minimizing the cost of
retries or reducing the transaction length.

Avoid Unneeded Global Variables

The excessive use of global variables are generally undesirable because it leads the program
to have: an unpredictable global state of , poor testability, and less code comprehension.
In the context of parallelization, in order to guarantee memory consistency each access to a
global variable needs to be monitored. This enforces the alias analysis technique to do more
work for checking this access, and it may end with the may-alias conclusion, which enforces
using transactional access. Recall that the transactional access is costly as it enlarges the
transaction metadata and slows down the validation process.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 172

Use Simple Loops

Foreach style of loops is commonly used instead of the standard loops (e.g., for with counter,
or the conditional while). Foreach simplifies the programming by declaring some logic to
be applied on each element in a collection instead of doing this logic n times. However, in
our work the Foreach loops are highly undesirable because it maintains an internal state
(e.g., iterator) which builds an interdependency between the iterations. This internal state
cannot be analyzed or reduced simply, thereby the loop may not be parallelized.

Relocate Local Processing

As TM employs the “rollback-and-retry” mechanism for the aborted transactions, each time
a transaction is aborted it will need to re-execute all the computation within the transaction
boundaries. These computations may be on local or shared variables. If the computations
are local, then we highly recommend that they are moved before the first shared access.
That way we can push the transaction start till after these computation, and hence we can
reduce the transaction length and the retry cost. If this is not possible, then it would be
beneficial to move the computations to the end of the transaction after accessing all global
reads. Thus, if the transaction conflicts with another one, it will detect that at earlier stage
of its life, so the retry will be less costly.

Avoid Pointer Arithmetic

Performing pointer arithmetic is usually unsafe because it may lead to invalid accesses to
memory. Additionally, with arithmetic pointer operations the automatic parallelization has
nothing to do except accessing it transactionally. This conservative action may lead to a
considerable runtime overhead. We encourage substituting the pointer arithmetic, if possible,
with simple base/offset accesses.

Use Pure Functions

The “pure” functions are the ones whose result depend only on the input parameters and
have no side effects (i.e., affect the global program state). Organising the code to exploit
pure functions, whenever possible, allows us to reason about the semantics of these pure
functions. In most cases, pure functions can be identified as “safe” functions, so we will not
need to include them into the transactional access or the alias analysis. This has a good
impact on reducing both the compilation time and the runtime overhead.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 173

No Functions Pointer, Use Templates!

Pointer to functions are used to generalize access to program logic or to provide a callback
function. We identified a wide usage of pointer to function in STAMP [37] and PARSEC [133]
(e.g., comparator functions). However, in many cases this generality is not essential. For
example, a program that uses Kmeans algorithm with data points stored as floats will not
decide dynamically at runtime to use Kmeans with integer data points. If Kmeans code
extracts the data points compare logic as a pointer to function to provide generality, then it
will add a big limitation on the parallelization. Even with TM, it is not possible to handle
a code with a pointer to function, because such code may be irrevocable. An alternative
approach is the use of code templates. Code templates (or generics in Java) permit the
programmer to write a generic code that is interpreted at compile time. That way, the code
will not lose its abstraction and generality and the parallelization framework will be able to
optimize it.

Data Structures Accesses

PARSEC [133] is an example of a benchmark that uses data structures extensively. As
we cannot inline each call to the data structure operations (e.g., add, remove or contains),
these operations are instrumented and executed transactionally. As data structure operations
are called frequently, we faced a considerable overhead with these applications. Thus, our
recommendation is to decouple the parallelization of the application from its underlying data
structure, and to replace these data structures with concurrent thread-safe versions. That
way, data structure operations will be marked as safe calls, and the parallelization effort will
focus on the application logic.

Immutable Objects

Objects with immutable state (e.g., immutable singleton) are thread safe because they do not
permit changes to their state. Refactoring the code to use immutable objects and identifying
these objects will help the parallelization framework significantly. Examples of immutable
objects are: string utility, services registry, or mathematics engine.

Irrevocable Operations Handling

One of the TM limitations is the inability to handle irrevocable operations (e.g., I/O). A
loop with many computations and a single irrevocable operation (e.g., read input from file,
or print to screen) is not a candidate for parallelization using TM. One possible solution is
to split the loop into two parts, and buffer the irrevocable action (e.g., store the read value

Mohamed M. Saad Chapter 10. Conclusions and Future Work 174

or the value to print) in memory. In this case, one of the loops will be irrevocable (i.e., the
one that buffer the I/O), while the other loop with the computations will be parallelizable.

10.2 Future Work

10.2.1 Transaction Checkpointing

Aborting a transaction is a costly operation, not only because the rollback cost, but retrying
the code execution doubles the cost and wastes precious processing cycles. Additionally,
transactions may do a lot of local processing work that does not use any protected shared
variables. A possible technique is transaction checkpointing, which creates multiple check-
points at some execution points. Using checkpoints, a transaction saves the state of the work
done at certain times after doing a considerable amount of work. Later, if the transaction
experienced a conflict due to an inconsistent read or because writing a value that should be
read by another transaction executing an earlier chronological order code, then it can re-
turn to the last state wherein the execution was valid (i.e., before doing the invalid memory
operation). Checkpointing introduces an overhead for creating the checkpoints (e.g., saving
the current state), and for restoring the state (upon abort). Unless the work done by the
transaction is large enough to outweigh this overhead, this technique is not recommended.
Also, checkpointing should be employed when the abort rate exceeds a predefined thresh-
old. A good example that would get use of this technique is when a transaction finishes its
processing by updating a shared data structure with a single point of insertion (e.g., linked
list, queue, stack); Two concurrent transactions will conflict when trying to use this shared
data structure. With checkpointing, the aborted transaction can jump back till before the
last valid step and retry the shared access step.

Transactions are defined as a unit of work; all or none. This assumption mandates executing
the whole transaction body upon conflicts, even if the transaction has executed correctly for
a subset of its lifetime. In the context of parallelization, restarting transactions could prevent
any possible speedup; especially with preserving order and executing balanced transactions
with equal processing time (e.g., similar loop iterations).

With transaction checkpointing, a conflicting transaction can select which is the best check-
point wherein the execution was valid and retry execution from it. Inserting checkpoints can
be done using different techniques:

• Static Checkpointing. Insert new checkpoint at equal portions of the transaction. This
is done statically at the code.

• Dependency Checkpointing. Alias analysis and memory dependency analysis provides
a best-effort guess for memory addresses aliasing. A common situation is the may
alias result, which indicates a possible conflict. Placing a checkpoint before may alias

Mohamed M. Saad Chapter 10. Conclusions and Future Work 175

Default Checkpoint

(Transaction Start)

Checkpoint 1

Checkpoint 2

Read Set #0Write Buff #0

Read Set #1Write Buff #1

Read Set #2Write Buff #2

Transaction

(a) Write-buffer

Default Checkpoint

(Transaction Start)

Checkpoint 1

Checkpoint 2

Undo Log

Transaction

(b) Undo Log

Figure 10.1: Checkpointing implementation with write-buffer and undo-logs

accesses could improve the performance; a transaction will continue execution if no
alias, and will retry execution right before the invalid access at exact alias situations.

• Periodic Checkpointing. During runtime, we checkpoint the work done at certain times
(e.g., after doing a considerable amount of work).

• Last Conflicting Address. In our model, transactions executing symmetric code (i.e.,
iteration). Conflicting transactions usually continue conflicting at successive retrials.
A conflicting address represents a guess for possible transactions collisions, and could
be used as a hint for placing a checkpoint (i.e., before accessing this address).

The performance gain from using any of these proposed techniques is application and work-
load dependent. Additionally, checkpointing introduces an overhead for handling the check-
points; unless the work done by the transaction is large enough to outweigh this overhead,
it is not recommended. Checkpointing is useful when a transaction finishes its processing by
updating a shared data structure (e.g., Fluidanimate see Section 5.9.3); with checkpointing,
the aborted transaction can jump back till the checkpoint before the shared access and retry
execution.

In order to support checkpointing a transaction must be partially aborted. As mentioned
before, TM algorithms use either eager or lazy versioning through the usage of a write-buffer
or an undo log. For eager TM, the undo log need to store a meta-data about the checkpoint
(i.e., when it occurs). Whenever transaction wants to partially rollback, the undo-log is
used to undo changes until the last recorded checkpoint in the log (See Figure 10.1b). With

Mohamed M. Saad Chapter 10. Conclusions and Future Work 176

lazy TM implementations, the write-buffer must be split according to the checkpoints. Each
checkpoint is associated with a separate write-buffer stores its changes (See Figure 10.1a).
Upon conflict, transaction discard write-buffers for checkpoints exist after the conflicting
location. Drawbacks of this approach are: read operations needs to check multiple write-
sets, and write-buffers should not be overlapped. Another alternative approach is to consider
check checkpoint as a nested transaction, and employs closed-nesting techniques for handling
partial rollback. However, supporting closed-nesting introduces a considerable overhead to
the TM performance and complicates the system design.

10.2.2 Complex Semantic Expressions

An interesting feature of the semantic operations listed in Table 8.1 is that they can com-
pose by having more than one operator and/or more than one variable in the conditional
expression. For example, the scenario shown in Algorithm 9 can be further enhanced if
we consider the whole conditional expression (i.e., TM READ(x) > 0 || TM READ(y) > 0) as
one semantic read operation. In this example, if the condition was initially true and then a
concurrent transaction modifies only one variable, either x or y, to be negative, considering
the clause as a whole avoids aborting T1 given the OR operator. A similar enhancement
consists of allowing complex expressions in conditional statements (e.g., x + y > 0), where
modifications on multiple variables may compensate each other so that the return value of
the overall expression remains unchanged.

Compositional and complex expressions can be generalized, in the same way as presented in
Section 8.2, as an abstract method cmp(address1, address2, ..., val1, val2, ...),
where the number of arguments depends on the expression. This way, S-NOrec and S-TL2
can handle them similar to any other cmp operation, as long as they guarantee that all the
included variables inside an expression are read consistently.

On the other hand, integrating such semantics in the compiler passes is more complicated
because it requires to first identify the code pattern that matches the conditional expression.
Unfortunately, unlike the “trivial” expressions mentioned in Table 8.1, those complex ex-
pressions are transformed by the compiler into different basic blocks. Thus, handling those
conditions as a single semantic read operation during the compilation process requires an
inter-block analysis. From a compiler design perspective, this optimization will add a non-
negligible overhead to the compilation process. This difficulty raises a compromise on the
practicality of supporting them at the compiler level, especially if the trivial expressions
already cover the common use cases at the application level. At the current stage, we handle
compound conditions as multiple semantic reads. A deeper investigation on those expres-
sions is needed in order to know the best way to solve the tradeoff between saving additional
aborts and complicating the compiler passes.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 177

10.2.3 Semantic-Based HTM

The challenges of injecting semantics into STM algorithms and HTM algorithms are very
different. Concurrency controls in STM are entirely performed and integrated into software
frameworks. That allows any sort of modification to the transaction execution, includ-
ing embedding our extension of defining new semantic constructs and calling them instead
of the classical ones (i.e., TM READ and TM WRITE). On the other hand, the current
HTM release [149, 35] leverages hardware for detecting conflicting executions and gives very
limited chances for optimization to the TM framework. For instance, it leaves no con-
trol on modifying the granularity of the speculation in HTM transaction; in other words,
every memory access within the boundaries of an HTM transaction is monitored by the
hardware itself (exploiting an enhanced cache coherency protocol). As a result, executing
HTM transactions means preventing any straightforward solution for replacing the basic
TM READ/TM WRITE constructs with semantic calls (as it can be done for STM).

Although injecting semantics in HTM algorithms is harder than STM, we believe that there
is still room for that. For example, the following two approaches can be adopted separately:

• Injecting semantics in the software fallback path of the HTM transaction, similar to
how we injected them in pure STM algorithms. For example, RH-NOrec [119] is
an HTM algorithm whose software fallback paths are similar to NOrec and can be
enhanced similar to S-NOrec.

• Exploiting our compilation passes to make further enhancements. For example, if the
conflicting reads/writes are shifted by the compiler to the end of the transaction, the
probability of raising a conflict at runtime decreases. Compilation-time solutions do
not require modifying the execution pattern of HTM transactions at runtime (which
is impossible in current HTM models), providing a good direction to overcome the
limited flexibility of HTM APIs.

Regarding the first approach, we investigated the possible alternatives for the software fall-
back path published in literature so far. Interestingly, we found that most of them are
compliant with our former proposals on STM. For example, NOrec has been considered in
literature [52, 152, 119] as one of the best STM candidates to integrate with HTM transac-
tions because it has only one global lock as shared metadata, which minimizes the overhead of
monitoring the metadata inside HTM transactions (recall any speculation on the meta-data
affects the number of cache lines occupied and may generate false conflicts). Among those
proposals, RH-NOrec [119] is known to be one of the best-performing HTM algorithms. The
main idea of RH-NOrec is to execute transactions in one of three modes: fast-path, in which
a transaction is entirely executed in HTM; slow-path, in which the body of a transaction
is executed in software similar to NOrec and the commit phase is executed using a small
HTM transaction; and slow-slow-path, which is NOrec itself. These three modes are made
consistent by speculating the global lock in the HTM transactions. The semantics support

Mohamed M. Saad Chapter 10. Conclusions and Future Work 178

can be injected in the slow-path and the slow-slow-path of RH-NOrec in a similar way to
what we did for NOrec.

The second approach for injecting semantics into HTM algorithms is to involve the compiler.
Compilation-time solutions do not require modifying the execution pattern of HTM trans-
actions at runtime (which is impossible in current HTM models), providing a good way of
overcoming the limitations of HTM APIs.

The order of executing reads/writes inside transactions is one of the main reasons for rais-
ing/avoiding conflicts at runtime. For example, if the conflicting reads/writes are shifted by
the compiler to the end of the transaction, the probability of raising a conflict at runtime is
minimized. A further optimization on the compilation-level semantic operations defined in
Table 8.1 is by reordering them at compilation time (if possible). As a preliminary exam-
ple, the increment/decrement operations can be delayed to the end of the transaction if the
incremented/decremented variables are not read later in the transaction. Also, conditional
branches can be “optimistically” calculated before a transaction starts, resulting in a deter-
ministic branch selection inside that transaction, and then the optimistic branch selection
can be revalidated at the end of the transaction, to preserve serializability [20]. The proposed
compilation-time optimizations are valid for both STM and HTM, although HTM benefits
more from that because of its limited APIs.

An appealing research direction is to investigate the different correctness guarantees that
can be provided by altering operations at compilation time, such as opacity [76], serializ-
ability [20], and publication/privatization safety [121, 117]. Regarding the former examples,
optimistic brach selection clearly breaks opacity, similar to the lazy subscription issue dis-
cussed in [57]. Also, shifting increments/decrements may break publication-safety in some
cases, as discussed in [156]. Making an investigation on the theoretical and practical possi-
bilities/impossibilities in that direction is one of the objectives of our future work.

10.2.4 Studying the Impact of Data Access Patterns

Transactional Memory does not impose assumptions on the data access patterns as it toler-
ates data conflicts. In our work, we tried to infer the data access patterns from the conflict
rates and adapted the execution according to that (Lerna’s adaptive runtime and HydraVM’s
adaptive online architecture). For example, in matrix multiplication if the calculations of
each element are assigned to a separate transaction executing in different threads, then each
consecutive N (e.g., two) transactions will conflict on updating the adjacent memory loca-
tions. The same behavior appears in the membership of Kmeans data points calculated by
concurrent transactions.

In some situations, it is possible for the user to provide hints about the data access pattern
of the applications. In this case, the parallelization framework will not need to “learn” from
the execution (e.g., profiling or adaptive execution), and instead will exploit these hints for

Mohamed M. Saad Chapter 10. Conclusions and Future Work 179

better assignments of data to transactions (threads). Furthermore, knowing the nature (e.g.,
size, time or reference locality) of the processed data in advance allows the parallelization
framework to select the best configurations for the underlying architecture (e.g., cache lines,
thread stack size).

Bibliography

[1] Intel Parallel Studio. https://software.intel.com/en-us/

intel-parallel-studio-xe.

[2] RSTM: The University of Rochester STM. http://www.cs.rochester.edu/

research/synchronization/rstm/.

[3] The LLVM Compiler Infrastructure. http://llvm.org.

[4] TinySTM: A time-based STM. http://tinystm.org/tinystm.

[5] Intel transactional memory compiler and runtime application binary interface.
https://software.intel.com/sites/default/files/m/5/a/2/a/f/8097-Intel_

TM_ABI_1_0_1.pdf, 2008.

[6] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeis-
man. Compiler and runtime support for efficient software transactional memory. In
Proceedings of the 2006 Conference on Programming language design and implemen-
tation, pages 26–37, Jun 2006.

[7] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich. Draft specification of trans-
actional language constructs for c++, 2009.

[8] Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious programming. In
OPODIS, pages 65–79, 2011.

[9] M. Agarwal, K. Malik, K. M. Woley, S. S. Stone, and M. I. Frank. Exploiting postdom-
inance for speculative parallelization. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on, pages 295–305. IEEE,
2007.

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded
transactional memory. In HPCA ’05: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, pages 316–327, Washington, DC, USA,
2005. IEEE Computer Society.

180

https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-parallel-studio-xe
http://www.cs.rochester.edu/research/synchronization/rstm/
http://www.cs.rochester.edu/research/synchronization/rstm/
http://llvm.org
http://tinystm.org/tinystm
https://software.intel.com/sites/default/files/m/5/a/2/a/f/8097-Intel_TM_ABI_1_0_1.pdf
https://software.intel.com/sites/default/files/m/5/a/2/a/f/8097-Intel_TM_ABI_1_0_1.pdf

Mohamed M. Saad Chapter 10. Conclusions and Future Work 181

[11] T. Anderson. The performance of spin lock alternatives for shared-money multipro-
cessors. Parallel and Distributed Systems, IEEE Transactions on, 1(1):6 –16, Jan.
1990.

[12] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive optimization in
the jalapeno jvm. In Proceedings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA ’00, pages 47–
65, New York, NY, USA, 2000. ACM.

[13] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. Safety of live Transactions in
Transactional Memory: TMS is necessary and sufficient. In DISC, pages 376–390,
2014.

[14] H. Avni and B. C. Kuszmaul. Improving HTM scaling with consistency-oblivious
programming. In 9th Workshop on Transactional Computing, TRANSACT ’14, 2014.
Available: http://transact2014.cse.lehigh.edu/.

[15] D. A. Bader and K. Madduri. Design and implementation of the hpcs graph analysis
benchmark on symmetric multiprocessors. In High Performance Computing–HiPC
2005, pages 465–476. Springer, 2005.

[16] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimiza-
tion system. In ACM SIGPLAN Notices, volume 35, pages 1–12. ACM, 2000.

[17] U. Banerjee. Dependence analysis, volume 3. Springer Science & Business Media, 1997.

[18] J. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui. Unifying thread-
level speculation and transactional memory. In Proceedings of the 13th International
Middleware Conference, pages 187–207. Springer-Verlag New York, Inc., 2012.

[19] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory protection to build
a high-performance, strongly atomic hybrid transactional memory. In In Proceedings
of the 35th 8 International Symposium on Computer Architecture, 2008.

[20] P. A. Bernstein and N. Goodman. Serializability theory for replicated databases. J.
Comput. Syst. Sci., 31(3):355–374, 1985.

[21] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Addison-Wesley, 1987.

[22] A. Bhowmik and M. Franklin. A general compiler framework for speculative mul-
tithreading. In Proceedings of the fourteenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’02, pages 99–108, New York, NY, USA, 2002.
ACM.

http://transact2014.cse.lehigh.edu/

Mohamed M. Saad Chapter 10. Conclusions and Future Work 182

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Char-
acterization and architectural implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages
72–81, New York, NY, USA, 2008. ACM.

[24] G. Bilardi and K. Pingali. Algorithms for computing the static single assignment form.
J. ACM, 50(3):375–425, 2003.

[25] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, July 1970.

[26] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, and T. Lawrence. Parallel
programming with polaris. Computer, 29(12):78–82, 1996.

[27] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. Journal of parallel and
distributed computing, 37(1):55–69, 1996.

[28] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making the fast case com-
mon and the uncommon case simple in unbounded transactional memory. SIGARCH
Comput. Archit. News, 35(2):24–34, 2007.

[29] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-
matic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’08, pages 101–113, New York, NY, USA, 2008. ACM.

[30] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop parallelization algorithms: from
parallelism extraction to code generation. Parallel Comput., 24:421–444, May 1998.

[31] B. Bradel and T. Abdelrahman. Automatic trace-based parallelization of java pro-
grams. In Parallel Processing, 2007. ICPP 2007. International Conference on, page 26,
sept. 2007.

[32] B. J. Bradel and T. S. Abdelrahman. The use of hardware transactional memory for
the trace-based parallelization of recursive java programs. In Proceedings of the 7th
International Conference on Principles and Practice of Programming in Java, PPPJ
’09, pages 101–110, New York, NY, USA, 2009. ACM.

[33] R. L. H. C. C. M. Bratin Saha, Ali-Reza Adl-Tabatabai and B. Hertzberg. McRT-STM:
a high performance software transactional memorysystem for a multi-core runtime. In
PPOPP, pages 187–197, 2006.

[34] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data
structures in Java. In Proceedings of the 2001 International Conference on Parallel
Architectures and Compilation Techniques, PACT ’01, pages 280–291, Washington,
DC, USA, 2001. IEEE Computer Society.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 183

[35] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le. Robust archi-
tectural support for transactional memory in the power architecture. In Proceedings of
the 40th Annual International Symposium on Computer Architecture, ISCA ’13, pages
225–236, New York, NY, USA, 2013. ACM.

[36] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved single global lock fall-
back for best-effort hardware transactional memory. In 9th Workshop on Transactional
Computing, TRANSACT ’14, 2014. Available: http://transact2014.cse.lehigh.

edu/.

[37] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford trans-
actional applications for multi-processing. In IISWC ’08: Proceedings of The IEEE
International Symposium on Workload Characterization, September 2008.

[38] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. Casper,
C. Kozyrakis, and K. Olukotun. An effective hybrid transactional memory system
with strong isolation guarantees. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, Jun 2007.

[39] B. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. Minh, L. Hammond, C. Kozyrakis,
and K. Olukotun. Executing Java programs with transactional memory. Science of
Computer Programming, 63(2):111–129, 2006.

[40] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and
K. Olukotun. The atomos transactional programming language. ACM SIGPLAN
Notices, 41(6):1–13, 2006.

[41] B. Chan. The umt benchmark code. Lawrence Livermore National Laboratory, Liver-
more, CA, 2002.

[42] B. Chan and T. Abdelrahman. Run-time support for the automatic parallelization of
Java programs. The Journal of Supercomputing, 28(1):91–117, 2004.

[43] M. Chen and K. Olukotun. Test: a tracer for extracting speculative threads. In Code
Generation and Optimization, 2003. CGO 2003. International Symposium on, pages
301–312. IEEE, 2003.

[44] M. K. Chen and K. Olukotun. The jrpm system for dynamically parallelizing java
programs. In Computer Architecture, 2003. Proceedings. 30th Annual International
Symposium on, pages 434–445. IEEE, 2003.

[45] P. Chen, M. Hung, Y. Hwang, R. Ju, and J. Lee. Compiler support for speculative
multithreading architecture with probabilistic points-to analysis. In ACM SIGPLAN
Notices, volume 38, pages 25–36. ACM, 2003.

http://transact2014.cse.lehigh.edu/
http://transact2014.cse.lehigh.edu/

Mohamed M. Saad Chapter 10. Conclusions and Future Work 184

[46] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for Java.
ACM SIGPLAN Notices, 34(10):1–19, 1999.

[47] R. A. Chowdhury, P. Djeu, B. Cahoon, J. H. Burrill, and K. S. McKinley. The limits
of alias analysis for scalar optimizations. In Compiler Construction, pages 24–38.
Springer, 2004.

[48] T. Council. tpc-c benchmark, revision 5.11, 2010.

[49] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Proc. of 1986 Int’l
Conf. on Parallel Processing, 1986.

[50] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 25–35.
ACM, 1989.

[51] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[52] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F. Spear.
Hybrid NOrec: A case study in the effectiveness of best effort hardware transactional
memory. In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XVI, pages 39–
52, New York, NY, USA, 2011. ACM.

[53] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: streamlining stm by abolishing
ownership records. In ACM Sigplan Notices, volume 45, pages 67–78. ACM, 2010.

[54] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid
transactional memory. In ASPLOS-XII: Proceedings of the 12th international confer-
ence on Architectural support for programming languages and operating systems, pages
336–346, New York, NY, USA, 2006. ACM.

[55] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In
ACM SIGPLAN Notices, volume 29, pages 230–241. ACM, 1994.

[56] M. DeVuyst, D. M. Tullsen, and S. W. Kim. Runtime parallelization of legacy code on
a transactional memory system. In Proceedings of the 6th International Conference on
High Performance and Embedded Architectures and Compilers, pages 127–136. ACM,
2011.

[57] D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir. Pitfalls of lazy subscription.
In WTTM, 2014.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 185

[58] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard, M. Moir, K. Moore,
and D. Nussbaum. Applications of the adaptive transactional memory test platform.
In Transact 2008 workshop, 2008.

[59] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proceedings of the 20th
International Conference on Distributed Computing, DISC’06, pages 194–208, Berlin,
Heidelberg, 2006. Springer-Verlag.

[60] Dice, D. and Shavit, N. What Really Makes Transactions Faster? In Proc. of the 1st
TRANSACT 2006 workshop, 2006.

[61] N. Diegues and P. Romano. Self-tuning Intel transactional synchronization extensions.
In 11th International Conference on Autonomic Computing, ICAC ’14. USENIX As-
sociation, 2014.

[62] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and
verifying Transactional Memory. Formal Aspects of Computing, 25(5):769–799, 2013.

[63] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional memory. In
ACM Sigplan Notices, volume 44, pages 155–165. ACM, 2009.

[64] A. Dragojevic and T. Harris. STM in the small: trading generality for performance
in software transactional memory. In European Conference on Computer Systems,
Proceedings of the Seventh EuroSys Conference 2012, EuroSys ’12, Bern, Switzerland,
April 10-13, 2012, pages 1–14, 2012.

[65] Z. Du, C. Lim, X. Li, C. Yang, Q. Zhao, and T. Ngai. A cost-driven compilation
framework for speculative parallelization of sequential programs. ACM SIGPLAN
Notices, 39(6):71–81, 2004.

[66] T. J. Edler von Koch and B. Franke. Limits of region-based dynamic binary paral-
lelization. In ACM SIGPLAN Notices, volume 48, pages 13–22. ACM, 2013.

[67] R. Ennals. Software transactional memory should not be obstruction-free. Technical
Report IRC-TR-06-052, Intel Research Cambridge Tech Report, Jan 2006.

[68] K. A. Faigin, S. A. Weatherford, J. P. Hoeflinger, D. A. Padua, and P. M. Petersen.
The polaris internal representation. International Journal of Parallel Programming,
22(5):553–586, 1994.

[69] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based soft-
ware transactional memory. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, PPoPP ’08, pages 237–246, New
York, NY, USA, 2008. ACM.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 186

[70] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In Distributed Comput-
ing, 23rd International Symposium, DISC 2009, Elche, Spain, September 23-25, 2009.
Proceedings, pages 93–107, 2009.

[71] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin: rethinking and rebooting
gprof for the multicore age. In ACM SIGPLAN Notices, volume 46, pages 458–469.
ACM, 2011.

[72] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Automatic scalable atom-
icity via semantic locking. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco, CA,
USA, February 7-11, 2015, pages 31–41, 2015.

[73] M. Gonzalez-Mesa, E. Gutierrez, E. L. Zapata, and O. Plata. Effective transactional
memory execution management for improved concurrency. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 11(3):24, 2014.

[74] T. Grosser, A. Groesslinger, and C. Lengauer. Polly: performing polyhedral op-
timizations on a low-level intermediate representation. Parallel Processing Letters,
22(04):1250010, 2012.

[75] R. Guerraoui and M. Kapalka. Opacity: A Correctness Condition for Transactional
Memory. Technical report, EPFL, 2007.

[76] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’08, pages 175–184, New York, NY, USA, 2008. ACM.

[77] R. Guerraoui and M. Kapalka. Principles of Transactional Memory. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool, 2011.

[78] M. Gupta, S. Mukhopadhyay, and N. Sinha. Automatic parallelization of recursive
procedures. International Journal of Parallel Programming, 28(6):537–562, 2000.

[79] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, and E. Bu. Maximizing
multiprocessor performance with the suif compiler. Computer, 29(12):84–89, 1996.

[80] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip mul-
tiprocessor, volume 32. ACM, 1998.

[81] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coherence
and consistency. In in Proc. of ISCA, page 102, 2004.

[82] T. Harris and K. Fraser. Language support for lightweight transactions. ACM SIG-
PLAN Notices, (38), 2003.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 187

[83] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd edition. Synthesis
Lectures on Computer Architecture, 5(1):1–263, 2010.

[84] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transac-
tions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 48–60, New York, NY, USA, 2005.
ACM.

[85] A. Hassan, R. Palmieri, and B. Ravindran. Optimistic transactional boosting. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’14, Orlando, FL, USA, February 15-19, 2014, pages 387–388, 2014.

[86] D. Heath, R. Jarrow, and A. Morton. Bond pricing and the term structure of interest
rates: A new methodology for contingent claims valuation. Econometrica: Journal of
the Econometric Society, pages 77–105, 1992.

[87] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In SPAA, pages 355–364, 2010.

[88] J. L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[89] M. Herlihy. The art of multiprocessor programming. In PODC ’06: Proceedings of
the twenty-fifth annual ACM symposium on Principles of distributed computing, pages
1–2, New York, NY, USA, 2006. ACM.

[90] M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly-
concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’08, pages 207–216,
New York, NY, USA, 2008. ACM.

[91] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing soft-
ware transactional memory. volume 41, pages 253–262, New York, NY, USA, October
2006. ACM.

[92] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software transactional
memory for dynamic-sized data structures. In Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages 92–101. ACM, 2003.

[93] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-
free data structures. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[94] S. S. Huang, A. Hormati, D. F. Bacon, and R. M. Rabbah. Liquid metal: Object-
oriented programming across the hardware/software boundary. In J. Vitek, editor,
ECOOP 2008 - Object-Oriented Programming, 22nd European Conference, Paphos,

Mohamed M. Saad Chapter 10. Conclusions and Future Work 188

Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes in Computer Sci-
ence, pages 76–103. Springer, 2008.

[95] G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott. An efficient algorithm
for concurrent priority queue heaps. Inf. Process. Lett., 60:151–157, November 1996.

[96] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery. The superblock: An effective technique for vliw and superscalar compilation.
The Journal of Supercomputing, 7:229–248, 1993. 10.1007/BF01205185.

[97] R. Intel. Architecture instruction set extensions programming reference. Intel Corpo-
ration, Feb, 2012.

[98] T. Johnson. Characterizing the performance of algorithms for lock-free objects. Com-
puters, IEEE Transactions on, 44(10):1194 –1207, Oct. 1995.

[99] D. Kanter. Analysis of haswells transactional memory. Real World Technologies
(Febuary 15, 2012), 2012.

[100] N. Karjanto, B. Yermukanova, and L. Zhexembay. Black-scholes equation. arXiv
preprint arXiv:1504.03074, 2015.

[101] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with Java STM.
In Third Workshop on Programmability Issues for Multi-Core Computers (MULTI-
PROG), 2010.

[102] V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with speculative
multithreading. Computers, IEEE Transactions on, 48(9):866–880, 1999.

[103] V. P. Krothapalli and P. Sadayappan. An approach to synchronization for parallel
computing. In Proceedings of the 2nd international conference on Supercomputing,
pages 573–581. ACM, 1988.

[104] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional
memory. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’06, pages 209–220, New York, NY, USA,
2006. ACM.

[105] M. Lam and M. Rinard. Coarse-grain parallel programming in jade. In ACM SIGPLAN
Notices, volume 26, pages 94–105. ACM, 1991.

[106] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
1998.

[107] J. R. Larus and R. Rajwar. Transactional Memory. Morgan and Claypool, 2006.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 189

[108] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In Code Generation and Optimization, 2004. CGO 2004. Interna-
tional Symposium on, pages 75–86. IEEE, 2004.

[109] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased transactional memory. In TRANS-
ACT, 2007.

[110] Z. Li, A. Jannesari, and F. Wolf. Discovery of potential parallelism in sequential
programs. In Parallel Processing (ICPP), 2013 42nd International Conference on,
pages 1004–1013. IEEE, 2013.

[111] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas. Posh:
a tls compiler that exploits program structure. In Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages 158–
167. ACM, 2006.

[112] V. Luchangco, M. Wong, H. Boehm, J. Gottschlich, J. Maurer, P. McKenney,
M. Michael, M. Moir, T. Riegel, M. Scott, et al. Transactional memory support for
c+. 2014.

[113] M. G. Main. Detecting leftmost maximal periodicities. Discrete Appl. Math., 25:145–
153, September 1989.

[114] J. Mankin, D. Kaeli, and J. Ardini. Software transactional memory for multicore
embedded systems. SIGPLAN Not., 44(7):90–98, 2009.

[115] P. J. Marandi, M. Primi, and F. Pedone. High performance state-machine replication.
In DSN, pages 454–465, 2011.

[116] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. Scherer III, and
M. Scott. Lowering the overhead of nonblocking software transactional memory. In
Workshop on Languages, Compilers, and Hardware Support for Transactional Com-
puting (TRANSACT), 2006.

[117] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable techniques for transparent
privatization in software transactional memory. In 2008 International Conference on
Parallel Processing, ICPP 2008, September 8-12, 2008, Portland, Oregon, USA, pages
67–74, 2008.

[118] B. L. Massingill, T. G. Mattson, and B. A. Sanders. Reengineering for parallelism: An
entry point into plpp (pattern language for parallel programming) for legacy applica-
tions. In Proceedings of the Twelfth Pattern Languages of Programs Workshop (PLoP
2005), 2005.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 190

[119] A. Matveev and N. Shavit. Reduced hardware norec: A safe and scalable hybrid
transactional memory. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 59–
71. ACM, 2015.

[120] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In Proceed-
ings of the 2009 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’09, pages 166–176, New York, NY, USA, 2009. ACM.

[121] V. Menon, S. Balensiefer, T. Shpeisman, A. Adl-Tabatabai, R. L. Hudson, B. Saha, and
A. Welc. Practical weak-atomicity semantics for java stm. In SPAA 2008: Proceedings
of the 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures,
Munich, Germany, June 14-16, 2008, pages 314–325, 2008.

[122] J. Merrill. Generic and gimple: A new tree representation for entire functions. In
Proceedings of the 2003 GCC Developers Summit, pages 171–179, 2003.

[123] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceedings of the fifteenth annual ACM symposium
on Principles of distributed computing, PODC ’96, pages 267–275, New York, NY,
USA, 1996. ACM.

[124] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional
applications for multi-processing. In IEEE International Symposium on Workload
Characterization, IISWC., pages 35–46, 2008.

[125] M. Mohamedin, B. Ravindran, and R. Palmieri. Bytestm: Virtual machine-level java
software transactional memory. In Coordination Models and Languages, pages 166–180.
Springer, 2013.

[126] M. A. M. Mohamedin. On optimizing transactional memory: Transaction splitting,
scheduling, fine-grained fallback, and numa optimization. 2015.

[127] M. Moir. Practical implementations of non-blocking synchronization primitives. In In
Proc. of 16th PODC, pages 219–228, 1997.

[128] K. E. Moore. Thread-level transactional memory. In Wisconsin Industrial Affiliates
Meeting. Oct 2004. Wisconsin Industrial Affiliates Meeting.

[129] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: Log-
based transactional memory. In In Proc. 12th Annual International Symposium on
High Performance Computer Architecture, 2006.

[130] J. E. B. Moss. Open nested transactions: Semantics and support. In In Workshop on
Memory Performance Issues,, 2005.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 191

[131] J. E. B. Moss, N. D. Griffeth, and M. H. Graham. Abstraction in recovery management.
In ACM SIGMOD Record, volume 15, pages 72–83. ACM, 1986.

[132] J. E. B. Moss and A. L. Hosking. Nested transactional memory: model and architecture
sketches. Sci. Comput. Program., 63:186–201, December 2006.

[133] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation for interactive
applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA ’03, pages 154–159, Aire-la-Ville, Switzerland, Switzer-
land, 2003. Eurographics Association.

[134] S. C. Müller, G. Alonso, A. Amara, and A. Csillaghy. Pydron: Semi-automatic par-
allelization for multi-core and the cloud. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 645–659, Broomfield, CO, Oct.
2014. USENIX Association.

[135] A. MySQL. MySQL: the world’s most popular open source database. MySQL AB,
1995.

[136] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss,
B. Saha, and T. Shpeisman. Open nesting in software transactional memory. In
Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2007, San Jose, California, USA, March 14-17, 2007,
pages 68–78, 2007.

[137] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu,
and E. Deprettere. Daedalus: toward composable multimedia mp-soc design. In Pro-
ceedings of the 45th annual Design Automation Conference, pages 574–579. ACM,
2008.

[138] C. Nvidia. Compute unified device architecture programming guide. 2007.

[139] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26:631–653, October 1979.

[140] C. D. Polychronopoulos. Compiler optimizations for enhancing parallelism and their
impact on architecture design. Computers, IEEE Transactions on, 37(8):991–1004,
1988.

[141] M. K. Prabhu and K. Olukotun. Using thread-level speculation to simplify manual
parallelization. In Proceedings of the ninth ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’03, pages 1–12, New York, NY, USA,
2003. ACM.

[142] C. Quiñones, C. Madriles, J. Sánchez, P. Marcuello, A. González, and D. Tullsen.
Mitosis compiler: an infrastructure for speculative threading based on pre-computation
slices. In ACM Sigplan Notices, volume 40, pages 269–279. ACM, 2005.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 192

[143] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel. Committing conflicting transac-
tions in an stm. In ACM Sigplan Notices, volume 44, pages 163–172. ACM, 2009.

[144] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Speculative par-
allelization using software multi-threaded transactions. In Proceedings of the fifteenth
edition of ASPLOS on Architectural support for programming languages and operating
systems, ASPLOS ’10, pages 65–76, New York, NY, USA, 2010. ACM.

[145] R. Ramaseshan and F. Mueller. Toward thread-level speculation for coarse-grained
parallelism of regular access patterns. In Workshop on Programmability Issues for
Multi-Core Computers, page 12, 2008.

[146] L. Rauchwerger and D. Padua. The lrpd test: speculative run-time parallelization of
loops with privatization and reduction parallelization. SIGPLAN Not., 30:218–232,
June 1995.

[147] K. Ravichandran, A. Gavrilovska, and S. Pande. Destm: Harnessing determinism in
stms for application development. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, PACT ’14, pages 213–224, 2014.

[148] Y. Raz. The principle of commitment ordering, or guaranteeing serializability in a
heterogeneous environment of multiple autonomous resource managers using atomic
commitment. In VLDB, volume 92, pages 292–312, 1992.

[149] J. Reinders. Transactional synchronization in Haswell. http://software.intel.com/
en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/, 2013.

[150] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager validation.
In S. Dolev, editor, Distributed Computing, Lecture Notes in Computer Science, pages
284–298. Springer Berlin / Heidelberg, 2006.

[151] T. Riegel, C. Fetzer, H. Sturzrehm, and P. Felber. From causal to z-linearizable trans-
actional memory. In Proceedings of the twenty-sixth annual ACM symposium on Prin-
ciples of distributed computing, PODC ’07, pages 340–341, New York, NY, USA, 2007.
ACM.

[152] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing hybrid trans-
actional memory: The importance of nonspeculative operations. In Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’11, pages 53–64, New York, NY, USA, 2011. ACM.

[153] C. J. Rossbach, Y. Yu, J. Currey, J. Martin, and D. Fetterly. Dandelion: a compiler
and runtime for heterogeneous systems. In M. Kaminsky and M. Dahlin, editors, ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013, pages 49–68. ACM, 2013.

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

Mohamed M. Saad Chapter 10. Conclusions and Future Work 193

[154] E. Rotenberg and J. Smith. Control independence in trace processors. In Proceedings
of the 32nd annual ACM/IEEE international symposium on Microarchitecture, pages
4–15. IEEE Computer Society, 1999.

[155] W. Ruan, Y. Liu, and M. Spear. Stamp need not be considered harmful. In Ninth
ACM SIGPLAN Workshop on Transactional Computing, 2014.

[156] W. Ruan, Y. Liu, and M. F. Spear. Transactional read-modify-write without aborts.
TACO, 11(4):63:1–63:24, 2014.

[157] W. Ruan and M. Spear. An opaque hybrid transactional memory. 2015.

[158] R. Rugina and M. Rinard. Automatic parallelization of divide and conquer algorithms.
In ACM SIGPLAN Notices, volume 34, pages 72–83. ACM, 1999.

[159] G. Rünger and M. Schwind. Parallelization strategies for mixed regular-irregular ap-
plications on multicore-systems. In Advanced Parallel Processing Technologies, pages
375–388. Springer, 2009.

[160] M. M. Saad, M. Mohamedin, and B. Ravindran. Hydravm: Extracting parallelism
from legacy sequential code using STM. In 4th USENIX Workshop on Hot Topics in
Parallelism, HotPar’12, Berkeley, CA, USA, June 7-8, 2012, 2012.

[161] M. M. Saad, R. Palmieri, A. Hassan, and B. Ravindran. Extending tm primitives
using low level semantics. In SPAA ’16: The 28th ACM Symposium on Parallelism in
Algorithms and Architectures, New York, NY, USA, 2016. ACM.

[162] M. M. Saad, R. Palmieri, A. Hassan, and B. Ravindran. On extending tm primitives
using low level semantics. In Proceedings of the Eleventh ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional Computing, 2016.

[163] M. M. Saad, R. Palmieri, and B. Ravindran. Lerna: Transparent and effective specu-
lative loop parallelization. In Proceedings of the Eleventh ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional Computing, 2016.

[164] M. M. Saad, R. Palmieri, and B. Ravindran. On ordering transaction commit. In
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016, pages 46:1–
46:2, 2016.

[165] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh, and B. Hertzberg. McRT-
STM: a high performance software transactional memory system for a multi-core run-
time. In PPoPP ’06, pages 187–197, Mar 2006.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 194

[166] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural support for software
transactional memory. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 185–196, Washington, DC, USA,
2006. IEEE Computer Society.

[167] J. H. Saltz, R. Mirchandaney, and K. Crowley. The preprocessed doacross loop. In
ICPP (2), pages 174–179, 1991.

[168] W. N. Scherer III and M. L. Scott. Contention management in dynamic software
transactional memory. In PODC ’04: Proceedings of Workshop on Concurrency and
Synchronization in Java Programs., NL, Canada, 2004. ACM.

[169] F. B. Schneider. Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[170] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, PODC ’95,
pages 204–213, New York, NY, USA, 1995. ACM.

[171] M. Snir. MPI–the Complete Reference: The MPI core, volume 1. MIT press, 1998.

[172] G. S. Sohi, S. E. Breach, and T. Vijaykumar. Multiscalar processors. In ACM
SIGARCH Computer Architecture News, volume 23, pages 414–425. ACM, 1995.

[173] M. Spear, K. Kelsey, T. Bai, L. Dalessandro, M. Scott, C. Ding, and P. Wu. Fastpath
speculative parallelization. Languages and Compilers for Parallel Computing, pages
338–352, 2010.

[174] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable transactions
with a single atomic instruction. In Proceedings of the ACM Annual Symposium on
Parallelism in Algorithms and Architectures, SPAA ’08, pages 275–284, New York, NY,
USA, 2008. ACM.

[175] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
32–41. ACM, 1996.

[176] J. Steffan and T. Mowry. The potential for using thread-level data speculation to
facilitate automatic parallelization. In High-Performance Computer Architecture, 1998.
Proceedings., 1998 Fourth International Symposium on, pages 2–13. IEEE, 1998.

[177] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to
thread-level speculation, volume 28. ACM, 2000.

[178] K. Streit, C. Hammacher, A. Zeller, and S. Hack. Sambamba: runtime adaptive parallel
execution. In Proceedings of the 3rd International Workshop on Adaptive Self-Tuning
Computing Systems, page 7. ACM, 2013.

Mohamed M. Saad Chapter 10. Conclusions and Future Work 195

[179] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting
coarse-grained pipeline parallelism in c programs. In Microarchitecture, 2007. MICRO
2007. 40th Annual IEEE/ACM International Symposium on, pages 356–369. IEEE,
2007.

[180] Transactional Memory Specification Drafting Group. Draft specification of transac-
tional language constructs for C++, version 1.1, February 2012. Available http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3725.pdf.

[181] J. Tsai and P. Yew. The superthreaded architecture: Thread pipelining with run-
time data dependence checking and control speculation. In Parallel Architectures and
Compilation Techniques, 1996., Proceedings of the 1996 Conference on, pages 35–46.
IEEE, 1996.

[182] N. A. Vachharajani. Intelligent speculation for pipelined multithreading. PhD thesis,
Princeton, NJ, USA, 2008. AAI3338698.

[183] H. Vandierendonck, S. Rul, and K. De Bosschere. The paralax infrastructure: auto-
matic parallelization with a helping hand. In Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, pages 389–400. ACM,
2010.

[184] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling optimistic concurrency
using quantitative dependence analysis. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pages 185–196. ACM,
2008.

[185] C. Von Praun, L. Ceze, and C. Caşcaval. Implicit parallelism with ordered transactions.
In PPoPP, pages 79–89, 2007.

[186] P. Wu, A. Kejariwal, and C. Caşcaval. Compiler-driven dependence profiling to guide
program parallelization. Languages and Compilers for Parallel Computing, pages 232–
248, 2008.

[187] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

[188] L. Xiang and M. L. Scott. Software partitioning of hardware transactions. In Proceed-
ings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015, pages
76–86, 2015.

[189] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of intel R©
transactional synchronization extensions for high-performance computing. In High
Performance Computing, Networking, Storage and Analysis (SC), 2013 International
Conference for, pages 1–11. IEEE, 2013.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3725.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3725.pdf

Mohamed M. Saad Chapter 10. Conclusions and Future Work 196

[190] L. Zhang, V. K. Grover, M. M. Magruder, D. Detlefs, J. J. Duffy, and G. Graefe.
Software transaction commit order and conflict management, May 4 2010. US Patent
7,711,678.

[191] C. Zilles and G. Sohi. Master/slave speculative parallelization. In Proceedings of the
35th annual ACM/IEEE international symposium on Microarchitecture, MICRO 35,
pages 85–96, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[192] H. P. Zima, H.-J. Bast, and M. Gerndt. Superb: A tool for semi-automatic mimd/simd
parallelization. Parallel computing, 6(1):1–18, 1988.

	Introduction
	Motivation
	Manual Parallelization
	Automatic Parallelization

	Contributions
	HydraVM
	Lerna
	Commitment Order Algorithms
	TM-Friendly Semantics

	Thesis Organization

	Background
	Manual Parallelization
	Automatic Parallelization
	Thread Level Speculation
	Transactional Memory
	NOrec
	TinySTM

	Parallelism Limits and Costs

	Past & Related Work
	Transactional Memory
	Parallelization
	Optimistic Concurrency
	Thread-Level Speculation
	Parallelization using Transactional Memory

	Comparison with existing work

	HydraVM
	Program Reconstruction
	Transactional Execution
	Jikes RVM
	System Architecture
	Bytecode Profiling
	Trace detection
	Parallel Traces
	Reconstruction Tuning
	Misprofiling

	Implementation
	Detecting Real Memory Dependencies
	Handing Irrevocable Code
	Method Inlining
	ByteSTM
	Parallelizing Nested Loops

	Experimental Evaluation
	Discussion

	Lerna
	Challenges
	Low-Level Virtual Machine
	General Architecture and Workflow
	Code Profiling
	Program Reconstruction
	Dictionary Pass
	Builder Pass
	Transactifier Pass

	Transactional Execution
	High-priority Transactions
	Transactional Increment

	Algorithms
	Ordered NOrec
	Ordered TinySTM
	Other Algorithms

	Adaptive Runtime
	Batch Size
	Jobs Tiling and Partitioning
	Workers Selection
	Manual Tuning

	Evaluation
	Micro-benchmarks
	The STAMP Benchmark
	The PARSEC Benchmark
	The Effect of Changing TM Algorithm

	Discussion

	Ordered Write Back Algorithm
	Commit Order
	Execution and Memory Model
	ACO

	Analyzing the Ordering Overhead
	Blocking/Stall Approach
	Freeze/Hold Approach

	General Design
	Cooperative Ordered Transactional Execution

	The Ordered Write Back (OWB)
	Implementation
	Lock Structure
	Thread Execution

	Correctness
	Evaluation

	Ordered Undolog Algorithm
	Ordered Undolog Algorithm (OUL)
	The OUL-Steal Algorithm

	Implementation
	Lock Structure
	Thread Execution

	Correctness
	Evaluation
	Micro Benchmark
	STAMP Benchmark

	Discussion

	Extending TM Primitives using Low Level Semantics
	The Evolution of Semantic TM
	TM-Friendly API
	TM-friendly semantics in action

	Semantic-Based TM Algorithms
	S-NOrec
	S-TL2

	Correctness
	Correctness of S-NOrec
	Correctness of S-TL2

	Integration with GCC
	Evaluation
	RSTM-based implementations
	GCC-based implementations

	Exploiting Hardware Transactional Memory
	Haswell's RTM
	The Challenges of ACO Support

	The Burning Tickets Hardware Algorithm (BTH)
	Configuring Tickets Burning
	Conflict Resolution

	The Timeline Flags Hardware Algorithm (TFH)
	Configuring Timeline Flags
	Evaluation

	The Ordered Write Back - Reduced Hardware Algorithm (OWB-RH)
	Hybrid TM Design Choices
	Algorithm Description
	Evaluation

	Conclusions and Future Work
	Discussion & Limitations of Parallelization using TM
	Recommended Programming Patterns

	Future Work
	Transaction Checkpointing
	Complex Semantic Expressions
	Semantic-Based HTM
	Studying the Impact of Data Access Patterns

	Bibliography

