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(ABSTRACT)



The industrial shift from single core processors to multi-core ones introduced many chal-
lenges. Among them, a program cannot get a free performance boost by just upgrading
to a new hardware because new chips include more processing units but at the same (or
comparable) clock speed as the previous generation. In order to effectively exploit the new
available hardware and thus gain performance, a program should maximize parallelism. Un-
fortunately, parallel programming poses several challenges, especially when synchronization
is involved because parallel threads need to access the same shared data. Locks are the
standard synchronization mechanism but gaining performance using locks is difficult for a
non-expert programmers and without deeply knowing the application logic. A new, easier,
synchronization abstraction is therefore required and Transactional Memory (TM) is the
concrete candidate.

TM is a new programming paradigm that simplifies the implementation of synchronization.
The programmer just defines atomic parts of the code and the underlying TM system han-
dles the required synchronization, optimistically. In the past decade, TM researchers worked
extensively to improve TM-based systems. Most of the work has been dedicated to Soft-
ware TM (or STM) as it does not requires special transactional hardware supports. Very
recently (in the past two years), those hardware supports have become commercially avail-
able as commodity processors, thus a large number of customers can finally take advantage
of them. Hardware TM (or HTM) provides the potential to obtain the best performance of
any TM-based systems, but current HTM systems are best-effort, thus transactions are not
guaranteed to commit in any case. In fact, HTM transactions are limited in size and time
as well as prone to livelock at high contention levels.

Another challenge posed by the current multi-core hardware platforms is their internal archi-
tecture used for interfacing with the main memory. Specifically, when the common computer
deployment changed from having a single processor to having multiple multi-core processors,
the architects redesigned also the hardware subsystem that manages the memory access from
the one providing a Uniform Memory Access (UMA), where the latency needed to fetch a
memory location is the same independently from the specific core where the thread executes
on, to the current one with a Non-Uniform Memory Access (NUMA), where such a latency
differs according to the core used and the memory socket accessed. This switch in technol-
ogy has an implication on the performance of concurrent applications. In fact, the building
blocks commonly used for designing concurrent algorithms under the assumptions of UMA
(e.g., relying on centralized meta-data) may not provide the same high performance and
scalability when deployed on NUMA-based architectures.

In this dissertation, we tackle the performance and scalability challenges of multi-core archi-
tectures by providing three solutions for increasing performance using HTM (i.e., Part-htm,
Octonauts, and Precise-tm), and one solution for solving the scalability issues provided
by NUMA-architectures (i.e., Nemo).

• Part-htm is the first hybrid transactional memory protocol that solves the problem of
transactions aborted due to the resource limitations (space/time) of current best-effort

iii



HTM. The basic idea of Part-htm is to partition those transactions into multiple
sub-transactions, which can likely be committed in hardware. Due to the eager nature
of HTM, we designed a low-overhead software framework to preserve transaction’s
correctness (with and without opacity) and isolation. Part-htm is efficient: our
evaluation study confirms that its performance is the best in all tested cases, except
for those where HTM cannot be outperformed. However, in such a workload, Part-
htm still performs better than all other software and hybrid competitors.

• Octonauts tackles the live-lock problem of HTM at high contention level. HTM
lacks of advanced contention management (CM) policies. Octonauts is an HTM-
aware scheduler that orchestrates conflicting transactions. It uses a priori knowledge
of transactions’ working-set to prevent the activation of conflicting transactions, si-
multaneously. Octonauts also accommodates both HTM and STM with minimal
overhead by exploiting adaptivity. Based on the transaction’s size, time, and irrevoca-
ble calls (e.g., system call) Octonauts selects the best path among HTM, STM, or
global locking. Results show a performance improvement up to 60% when Octonauts
is deployed in comparison with pure HTM with falling back to global locking.

• Precise-tm is a unique approach to solve the granularity of the software fallback
path of besf-efforts HTM. It provide an efficient and precise technique for HTM-STM
communication such that HTM is not interfered by concurrent STM transactions. In
addition, the added overhead is marginal in terms of space or execution time. Precise-
tm uses address-embedded locks (pointers bit-stealing) for a precise communication
between STM and HTM. Results show that our precise fine-grained locking pays off as
it allows more concurrency between hardware and software transactions. Specifically,
it gains up to 5× over the default HTM implementation with a single global lock as
fallback path.

• Nemo is a new STM algorithm that ensures high and scalable performance when an
application workload with a data locality property is deployed. Existing STM algo-
rithms rely on centralized shared meta-data (e.g., a global timestamp) to synchronize
concurrent accesses, but in such a workload, this scheme may hamper the achievement
of scalable performance given the high latency introduced by NUMA architectures for
updating those centralized meta-data. Nemo overcomes these limitations by allowing
only those transactions that actually conflict with each other to perform inter-socket
communication. As a result, if two transactions are non-conflicting, they cannot in-
teract with each other through any meta-data. Such a policy does not apply for
application threads running in the same socket. In fact, they are allowed to share
any meta-data even if they execute non-conflicting operations because, supported by
our evaluation study, we found that the local processing happening inside one socket
does not interfere with the work done by parallel threads executing on other sockets.
Nemo’s evaluation study shows improvement over state-of-the-art TM algorithms by
as much as 65%.
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Chapter 1

Introduction

Multi-core architectures are the current trend. They are everywhere from super computers
to mobile devices. The future trend is to increase the number of cores in each CPU and
enhance the communication speed between cores as well as the number of CPU sockets.
Without exploiting parallelism, a program cannot gain higher performance when deployed
on an upgraded hardware with more cores and same clock speed as before. Unfortunately,
multi-core programming is an advanced topic, often suited for expert programmers only.
Therefore, in order to gain more performance from current and emerging multi-core systems,
we need an easy, transparent and efficient mechanism for programming them: a mechanism
that allows vast majority of programmers to do concurrent programming, efficiently and
correctly.

An effective abstraction is Transactional Memory (TM) [51, 48, 89, 58, 30]. TM programming
model is as easy as coarse-grained locking, such that the entire critical section is marked as
a transaction instead of guarding it with a single lock. Coarse-grained locking serializes all
threads accessing the same critical section and it does not allow concurrent access. On the
contrary, TM allows more concurrency. As long as transactions are not conflicting, they are
allowed to run and commit concurrently. Two transactions conflict only when they access
the same object and one of the operation is a write operation. TM also guarantees atomicity,
consistency, and isolation. Thus, a transaction is executed all or nothing, always observing
a consistent state, and works in isolation from other transactions.

In terms of performance, TM is likely to have comparable performance to fine-grained locking,
which in principle uses the minimal number of locks needed for preserving the correctness
of the program. Unfortunately, fine-grained locking cannot be composable, e.g., two atomic
blocks implemented using fine-grained locking cannot be naively put together in a single
transaction because the resulting transaction is likely not atomic and isolated from other
concurrent accesses. The TM’s abstraction solves this problem, thus providing composability.

TMs are classified as software (STM) [35, 29], which can be executed without any trans-
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actional hardware support; hardware (HTM) [51, 48, 24], which exploits specific hardware
facilities; and hybrid (HyTM) [58, 30], which mixes both HTM and STM.

TM has been studied extensively for the past decade [51, 48, 89, 52, 92, 79, 57, 49, 16, 90,
35, 29]. Most of the research efforts were directed towards STM. STM systems run on any
hardware and do not requires any transactional hardware support. On the contrary, com-
mercial Hardware TM support was lately introduced in the past two years. Before that, all
HTM research was done on simulators or very specialized hardware. On the other hand,
STM research continued to cover more scenarios (e.g., performance tuning, contention man-
agement, scheduling, nesting, semantic aware STM). STM gained industry traction starting
by Intel C++ STM compiler [54], followed by inclusion of TM constructs in C++11/C1X
new standards that were finally adopted by the famous GCC compiler starting from version
4.7.

Hardware TM is available commercially now in commodity CPUs (i.e., Intel Haswell) and
HPC (i.e., IBM Blue Gene/Q and IBM Power 8 [17]). Both Intel’s and IBM’s HTMs are best-
effort HTM: a transaction is not guaranteed to commit, even if it runs alone. A fallback path
must be provided by the programmer for transactions that fail in HTM. The default fallback
path is to acquire a global lock. But, more advanced techniques have been recently introduced
to improve HTM performance and overcome HTM limitations [19, 2, 20, 69, 68, 37, 1].
Unfortunately, the well studies STM techniques cannot be ported directly to HTM or Hybrid
TM. With many high performance STM algorithms (e.g., TL2 [35]), the performance is
highly degraded compared to both plain HTM and plain STM [81, 69]. Thus, Hybrid TM
algorithms requires careful design to balance the added overhead on both HTM and STM
components.

Besides the great programmability, TM algorithms should provide their best performance
when deployed on multicore architectures. Those architectures are mostly multi-sockets,
which means that more than one multicore chip is deployed on the same hardware platform,
and they coordinate with each other in order to handle application requests. The de-facto
standard for the memory management of such a multicore architecture involves non-uniform
communication latencies between the chip where the thread is executing and the physical
socket where the memory location is stored, also called as Non-Uniform Memory Access (or
NUMA) [65, 8, 96, 25].

Even though it has been proved to be an effective solution to handle memory accesses of
such a high number of parallel threads [65], it imposes new challenges in designing TM
algorithms. In particular, when the concurrent application generates a workload with par-
titioned accesses, where a tight locality relation between data and executing threads can be
established, we found that most of the approaches in literature fail in ensuring high perfor-
mance given the constraints of the underlying hardware. As an example of that, they rely on
shared meta-data, updated anytime a writing transaction is committed, even if no conflict
happened during its execution. In this case, the hardware itself introduces a cost (hidden
to the programmer) in updating a meta-data that is possibly located in a memory socket
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different from the one mostly used by the executing thread. This cost can (and should) be
avoided when the committing transaction does not observe any conflict during its execution.
Most existing and well-known TM protocols suffer from this weakness, thus exposing serious
scalability bottlenecks.

Motivated by these observations, this dissertation focuses on two aspects of concurrent com-
putation: improving multi-core performance by exploiting best-efforts HTM while overcom-
ing its limitations; providing a scalable solution for maximizing the effectiveness of locality-
aware applications by exploiting the NUMA organization.

1.1 Summary of Dissertation Contributions

1.1.1 Improving Multi-core Performance Exploiting HTM

Gaining more performance from multi-core architectures requires exploiting concurrency
and parallelism. However, having multiple threads that act simultaneously usually means
synchronizing their accesses once they want to operate on the same data, otherwise the
program’s correctness is broken. Coarse-grained locking is easy to program but serialize
access to shared data. Hence, it reduces concurrency which affects performance and cannot
scale. Fine-grained locking is used to allow more concurrency by fine tuned locking. It uses
multiple locks and splits large critical section into smaller fine tuned ones. Fine-grained
locking is algorithm based and cannot be generalized. In addition, fine-grained locking
requires much higher level of expertise to avoid the problems of deadlocks, livelocks, lock-
convoying, and/or priority inversion. Perhaps, the most significant limitation of lock-based
synchronization is that it is not composable. For example, we have a concurrent lock-based
hash table. It has two atomic operations (put and remove). Now, if we have two such hash
tables and we want to atomically remove an entry from one table and add it to the other,
the individual add and remove operations cannot guarantee the atomicity of composition.
Lock-free synchronization is based on atomic instruction (e.g., compare-and-swap (CAS))
but, as the fine-grained locking technique, it is algorithm specific and hard to generalize.

Transactional Memory (TM) brings down the parallel programming interface to the level
of coarse-grained locking while still achieving fine-grained locking performance. With the
introduction of commercial HTM support, TM performance can finally exceed fine-grained
locking performance, thus making TM programming model more appealing. The problem
with current HTM support by Intel and IBM is it being best-effort HTM. An HTM trans-
action is not guaranteed to commit even if it runs alone with no contention, since it has
resource limitations (e.g., hardware buffer size, hardware interrupts) which forces the trans-
action to abort. Thus, an HTM transaction is limited in size and time. The space limitation
is due to limited hardware transactional buffer size, while time limitation is due to the clock
tick hardware interrupt that is used by the operating system’s scheduler. Due to these lim-
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itations, a fallback path is required by best-effort HTM to guarantee progress. The default
fallback path is to use a global lock (GL-software path). GL-software path limits concur-
rency and does not scale for transactions that do not fit in HTM due to resource limitation
as it is simply serializing them. Another problem facing current HTM is livelocks under
medium/high contention levels. When the contention level increases, transactions can abort
each other repeatedly. In addition, providing a fine-grained HTM fallback path is a challenge
that can alleviate the GL-software path bottleneck.

Part-HTM

To tackle best-efforts HTM resource limitations, we propose Part-htm, an innovative trans-
action processing scheme, which prevents those transactions that cannot be executed as HTM
due to space and/or time limitations to fall back to the GL-software path, and commit them
still exploiting the advantages of HTM. As a result, Part-htm limits the number of trans-
actions executed as GL-software path to those that retry indefinitely in hardware (e.g., due
to extreme conflicting workloads), or that require the execution of irrevocable operations
(e.g., like system calls), which are not supported in HTM.

Part-htm’s core idea is to first run each transaction as HTM and if the transaction aborts
due to resource limitations, a partitioning scheme is adopted to divide the original transac-
tion into multiple, thus smaller, HTM transactions (called sub-HTM), which can be easily
committed. However, when a sub-HTM transaction commits, its objects are immediately
made visible to others and this inevitably jeopardizes the isolation guarantees of the original
transaction. We solve this problem by means of a software framework that prevents other
transactions from accessing objects committed to the shared memory by sub-HTM trans-
actions. This framework is designed to have minimal overhead: a heavy instrumentation
would annul the advantages of HTM, falling back into the drawbacks of adopting a pure
STM implementation. Part-htm uses locks, to isolate new objects written by sub-HTM
transactions from others, and a slight instrumentation of read/write operations using cache-
aligned signature-based structures, to keep track of accessed objects. In addition, a software
validation is performed to serialize all sub-HTM transactions at a single point in time.

With this limited overhead, Part-htm gives performance close to pure HTM transactions, in
scenarios where HTM transactions are likely to commit without falling back to the software
path, and better than pure STM transactions, where HTM transactions repeatedly fail.
This latter goal is reached through the exploitation of sub-HTM transactions, which are
indeed faster than any instrumented software transactions. In other words, Part-htm’s
performance gains from HTM’s advantages even for those transactions that are not originally
suited for HTM resource failures. Given that, Part-htm does not aim at either improving
performance of those transactions that are systematically committed as HTM, or facing
the challenge of minimizing conflicts of running transactions. Part-htm has a twofold
purpose: it commits transactions that are hard to commit as HTM due to resource failures
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without falling back to the GL-software path but still exploiting the effectiveness of HTM
(leveraging sub-HTM transactions); and it represents the best trade-off between STM and
HTM transactions.

Opacity [45] is the reference correctness criterion for TM implementations because it avoids
any inconsistency during the execution, independently from the final transaction outcome
(either commit or abort). However, ensuring opacity in Part-htm is challenging because
its overhead could nullify Part-htm’s benefits. While acknowledging the importance of an
opaque hybrid-TM protocol, in this dissertation we present two versions of Part-htm. One
aims at obtaining the best performance by relaxing opacity in favor of serializability [13],
the well-known consistency criterion for online transaction processing, and by relying on
the HTM protection mechanism (i.e., sandboxing), which protects from faulty computations
(e.g., division by zero). In the second version, we enriched Part-htm for ensuring opacity
but, at the same time, we present a set of innovations (e.g., address-embedded write locks)
for reducing the transaction’s memory footprint so that the overhead is kept limited (less
than the achievable gain).

We evaluated Part-htm on a wide range of benchmarks including a micro-benchmark,
a data structure, the STAMP suite [70], and EigenBench [53]. As competitors, we se-
lected a pure HTM with GL-software path as a fallback, two state-of-the-art STM protocols
(RingSTM [90], NOrec [29]) and a recent HybridTM (RH-NOrec [69]). Results show that
Part-htm is the best in almost all the tested cases, except those where HTM outperforms all
(and therefore no competitor can perform better than that). In these workloads, Part-htm
still represents the best among other STM and HybridTM alternatives. The combination
of these two cases gives Part-htm the unique characteristic of being an effective trade-off,
independently from the application workload.

Octonauts

Part-htm tackled the problem of HTM resource limitations, but another problem afflicts
TM in general i.e., efficiently handling conflicts. At high contention levels, transactions keep
aborting each other and can lead to a livelock situation. In STM systems, this problem is
solved by using a contention manager or a scheduler. A contention manager is consulted
whenever two transactions are conflicting. And based on the contention manager rules, the
conflict is resolved. For example, a conflict resolution rule can be ”older transaction wins”.
In that case, old transactions are prioritized over newer ones. Thus, old transactions will not
starve. A scheduler on the other hand uses information about each transaction and schedule
transactions such that conflicting transactions are not scheduled concurrently.

Current Intel HTM implementation has a simple conflict resolution rule where the thread that
detect the conflict aborts. This rule does not prevent starvation. In addition, there is no way
for the programmer to define conflict resolution rules. Simply, in high contention scenarios,
an HTM transaction will face several aborts and then fall back to global locking. Falling
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back to global locking limits the system’s concurrency level and serializes non conflicting
transactions, which results in bad performance and scalability.

In order to tackle this problem, we propose Octonauts, an HTM-aware scheduler which
aims at reducing conflicts among transactions and providing an efficient STM fallback path.
Octonauts basic idea is to use queues that guard shared objects. A transaction first
publishes its potential objects that will be accessed during the transaction (working set).
That information is either provided by the programmer or gathered by a static analysis
of the program. Before starting a transaction, the thread subscribes to each object queue
atomically. Then, when it reaches the top of all subscribed queues, it starts executing the
transaction. Finally, it is dequeued from those queues, allowing the following threads to
proceed with their own transactions. Large transactions that cannot fit in HTM are started
directly in STM with commit phase as a reduced hardware transaction (RHT) [68]. In order
to allow HTM and STM to run concurrently, HTM transactions runs in two modes. First
mode is plain HTM, where a transaction runs as a standard HTM transaction. The second
mode is initiated once an STM transaction is required to execute. In the second mode,
a lightweight instrumentation is used to let the concurrent STM transactions know about
executing HTM transactions. We focused on making this instrumentation transparent to
HTM transactions. HTM transactions are not aware of concurrent STM transactions and
use objects signature to notify STM transactions about written objects. STM uses concurrent
HTM write signatures to determine if its read-set is still consistent. This technique does not
introduce false conflicts in HTM transactions. If a transaction is irrevocable, it is started
directly using global locking.

We evaluated Octonauts using two benchmarks; Bank and TPC-C [27]. At high-contention
levels, Octonauts showed its advantages specially at higher number of threads (1× better
than HTM-GL at 8 threads). Using TPC-C, where transactions are more complex and con-
tention is high, Octonauts results are better than HTM-GL starting from 4 threads. Oc-
tonauts also managed to handle multi-programming efficiently. Instead of letting threads
fight for the limited number of available cores, Octonauts orchestrate them and prevented
most of the conflicts between the concurrently scheduled transactions.

Precise-TM

One problem that is orthogonal to Part-htm and Octonauts is how to optimize the final
global lock software path without slowing down the HTM fast-path. A global lock stops
(i.e., aborts) all HTM transactions and allows only one transaction to proceed in software
at a time. It favors the slow-path over the fast-path to guarantee the correctness of the
execution of those transactions that repeatedly fail in hardware due to resource constraints or
invocation of special instructions that cannot be performed as a part of an HTM transaction.
Fine-grained locking fallback path can solve this problem but it adds (again) complexity
on the programming model, which goes against the original purpose of TM, namely to
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simplify the implementation of concurrent applications. One solution is to use a fine-grained
TM algorithm like TL2, but the overhead of monitoring object’s meta-data in the HTM
fast-path would slow down the application performance and also consume precious HTM
resources (e.g., additional cache lines).

Precise-tm is designed to solve this problem. Its core idea is to replace the global lock,
which is acquired in the slow-path and monitored in the fast-path, with fine-grained locks
without incurring in the high overhead that characterized the previous fine-grained proposals.

To avoid such a high overhead, Precise-tm uses the following innovations: 1) locking/mon-
itoring memory references by using the concept of address-embedded-locks (i.e., bit stealing
from the memory address itself); 2) using the traditional global lock for scalar variables;
3) HTM transactions can ignore monitoring the global lock if the critical sections of the
application contain only references. Embedded locks are used to notify HTM transactions
of read and write operations performed by transactions executing in the software path.

We design two versions of Precise-tm. The first version (Precise-tm-v1) uses a global
lock in the slow-path but HTM transactions do not necessarily monitor it in the fast-path.
Rather, the monitoring of the global lock begins when the fast-path reaches a read/write
operation that cannot be monitored using the address-embedded-locks technique (e.g., on
a scalar variable). The second version (Precise-tm-v2) uses the address-embedded-locks
technique as fine-grained locks in the slow-path instead of the global lock.

Results of Precise-tm show that the precise fine-grained locking (in the slow-path) and
monitoring (in the fast-path) pays off as it allows more concurrency between transactions,
reduces the false conflicts, and minimizes the added meta-data.

1.1.2 Scalable NUMA-aware TM

Most of current TM algorithms do not scale when deployed on NUMA architectures. Such
algorithms use some centralized global meta-data that is frequently updated. This general
scheme generates a high traffic on the shared bus that connect the different memory sockets
(or NUMA-zones), with a high performance penalty resulting in slowing down the system.
From our preliminary evaluation, NUMA architectures can handle atomic operations inside
each NUMA-zone efficiently, without affecting the performance of threads operating on other
NUMA-zones. In addition to that, there are many workloads that exhibit capability to be
partitioned, namely where transactions mostly access local data (i.e., stored in the same
NUMA-zone where the thread is directly connected to) and sometimes access some “remote”
data (i.e., stored in another NUMA-zone). Existing TM algorithms fail in providing scalable
performance.
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Nemo

Nemo is a scalable NUMA-aware STM algorithm that is designed based on the following two
principles: 1) Within a single NUMA-zone, we can use the simple and efficient centralized
meta-data conflict detection; 2) The inter-NUMA-zones interactions are limited to the cases
where the application itself explicitly requests an access to that shared object. The first
principle is based on the fact that the workload is NUMA-local, and the atomic operations
within a single NUMA-zone are fast and do not affect other NUMA-zones operations. With
such a design, the common case becomes fast and efficient to handle, without unnecessary
aborts. On the other hand, the second principle guarantees correctness of inter-NUMA zones
transactions without affecting intra-NUMA (or NUMA-local) transactions operation. Thus,
the uncommon case is correct and fast enough to not affect the high performance of the
common case.

Nemo uses a single shared timestamp for synchronizing operations of threads executing
within a NUMA-zone. This timestamp is updated every time a writing transaction com-
mits, and it is also used as a means for detecting a (possibly dangerous) transactional access
to a shared object created after the transaction begins. When a transaction conflicts with
a transaction executing on another NUMA-zone, an additional synchronization is needed
to preserve the protocol’s correctness. To do that, each thread keeps a cached version of
the timestamps of other NUMA-zones. The cached copies are updated once a transaction
requests for an object located in a different NUMA-zone and it finds that the object is associ-
ated with a timestamp greater than the one of the cached copy. When such a case happens,
the transaction undergoes an additional check, which reveals whether an abort/restart is
needed or not. After that, the transaction updates its cached value of the other NUMA-
zone’s timestamp and can proceed.

In order to further reduce the overhead of unnecessary aborts due to outdated cache, we
designed a version of Nemo that makes all the cached copies of the other NUMA-zone’s
timestamps available to all threads of one NUMA-zone. That way, transactions can benefit
from accessing fresher cached timestamps, even if the thread they are running on never
accessed that NUMA-zone.

Nemo provide Serializability [13] as the correctness level. This is because, both its versions
make sure that the versions of the objects read during the transaction execution are still the
same as those currently committed, before applying the modifications to the shared memory
(i.e., committing the writes).

We evaluated Nemo using three benchmarks; Bank, Linked-list and TPC-C [27]. We config-
ured these benchmarks such that they have NUMA-locality and also a percentage of inter-
NUMA zones transactions. Bank is configured such that the contention level is low. The
results show a near perfect scalability. Only TLC [12] managed to scale similarly since its
false aborts are marginal in this benchmark configuration. Linked-list has a high contention
level which affected the performance of all other competitors. Nemo has the best scalability
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among others although the workload is not very scalable. TPC-C was configured to have
moderate contention. In this benchmark, Nemo beats all other competitors and achieves a
very good scalability.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 summarize and overview
related work. Then we give a background on relevant topics in Chapter 3. Part-htm details
are in Chapter 4 where HTM resource limitations problem is tackled. Chapter 5 describes
Octonauts, our HTM-aware scheduler. Chapter 6 shows how HTM fallback path can be
fine-grained in Precise-tm. Chapter 7 details NUMA architectures issues with TM and
how we designed a scalable STM algorithm (Nemo) for NUMA architectures. Finally, the
dissertation conclusions are listed in Chapter 8.



Chapter 2

Related Work

2.1 Performance Improvement Using HTM

Research in Hybrid TM (HyTM) [30, 58, 87] started before the recent release of commodity
processors with HTM capability.

PhTM [61] was designed for the Sun’s Rock processor, which is a research processor (never
been commercially released) that supports HTM. After that, AMD proposed Advanced Syn-
chronization Facility (ASF) [24], which attracted researchers to design the initial Hybrid
TM systems [81, 28]. They used ASF support for non-transactional load/store inside HTM
transactions to optimize their HyTM proposals. Recently, IBM and Intel released processors
with HTM support: IBM’s HTM processors are available as Blue Gene/Q and Power8 [17];
Intel’s HTM processor is released as Haswell. In the rest of this dissertation we mostly focus
on Intel Haswell because it is much cheaper that its IBM competitor and thus its diffusion
is already large.

The release of Haswell processors attracted more research on how to boost HTM capabilities
via software [19, 2, 20, 69, 68, 37, 1]. Haswell is a best-effort HTM and requires a software
fallback path. Intel suggested global locking (GL-software path) as a default fallback ap-
proach, but, having just one global lock limits parallelism and concurrency. This way, even
short transactions are forced to fall back to global locking in high conflict scenarios. This
motivated researchers to tackle this problem by proposing different approaches.

- Improving the global locking fallback path in order to increase concurrency [20, 37].
- Using STM as a fallback path in order to reduce the amount of conflicts between concurrent

HTM and STM transactions [81, 28, 19, 86, 34].
- Using reduced hardware transactions where only the STM commit procedure is executed

as HTM transaction [68, 69].

More in detail, in [20] authors propose to defer the check of the global lock at the very end

10
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of an HTM transaction, rather than at the beginning as usual (this process is also called
lazy subscription). This approach increases the concurrency but allows HTM transactions
to access inconsistent states during the execution. The latter problem is (partially [32])
solved relying on the Haswell HTM sandboxing protection mechanism. In [37], a self-tuning
mechanism is proposed to decide the best suited fallback path for an aborted transaction.

In [81, 28], a hybrid version of the NOrec [29] algorithm is proposed. NOrec is an algorithm
very suitable for being enriched with HTM supports (hybrid approach) as it uses a single
global lock to protect the commit procedure. Optimizing the meta-data shared between
HTM and STM is the key point to achieve high performance. Currently, Hybrid NOrec
is considered as a state-of-the-art hybrid transactional memory. In [19], a hybrid version
of InvalSTM [44] is proposed (Invyswell). Invyswell uses different transaction types: a
lightweight HTM, an instrumented HTM, an STM, an irrevocable STM, and a global locking
transaction. A transaction moves from one type to another based on the current composition
of concurrent transactions and taking into account the contention level.

In [86], a hybrid version of the Cohorts STM algorithm is presented (HyCo). HyCo uses
a state machine to represent the algorithm. Each state has a set of properties that allow
(disallow accordingly) some operations. For example, the serial state allows only one trans-
action to be in this state (resembling a global lock or an irrevocable transaction). The system
moves from one state to another based on a set of events such as the begin or commit of a
transaction. HyCo suffers from the problem of resource limitations as the results shows.

In [34], a new refined technique for lock elision is proposed. Lock elision is similar to HTM as
it runs the critical sections protected by locks as transactions (thus they do not acquire the
locks). In this work, more concurrency can be achieved. Instead of forcing all HTM trans-
actions to wait until the global lock is released, both the HTM fast-path and the global lock
fallback path proceed concurrently. To do that correctly, the critical section must be instru-
mented when the lock is taken. This work targets the same problem tackled by Precise-tm,
namely it tries to be more fine-grained in the fallback path. Instead of having one global
lock, they have an array of orecs (or locks). Only one software transaction is allowed at a
time, but it communicates its reads and writes with concurrent HTM transactions leveraging
the orecs instead of a single global lock. Precise-tm eliminates the need of using orecs by
exploiting the address-embedded-locks technique, thus it is more fine-grained. In addition,
Precise-tm-v2 uses the strict 2-phase locking to allow concurrency among transactions
executing in the software path. It is worth to note that the refined lock-elision gives the best
performance when the orecs table size is one, which resemble a single reader-writer lock and
thus confirms the motivations of Precise-tm.

In [68], reduced hardware transactions (RHT) are introduced. Transactions that fail in
hardware are restarted in the slow-path, which consists of an STM transaction that rely on
a RHT for accomplishing the commit procedure. If a transaction fails in the slow-path it
is finally restarted in slow-slow-path where it execute as plain STM transaction. In RH-
NOrec [69], the RHT idea is extended to NOrec.
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Part-htm takes a different direction from the above proposals. Instead of falling back
to global locking or STM, we partition transactions that fails in hardware due to resource
limitations and execute each partition as sub-HTM transaction. We fall back to global
locking only when a transaction can never succeed in HTM (e.g., due to hardware interruption
or irrevocable operations) or when the contention between transaction is very high.

Precise-tm tackles the problem of having a fine-grained fallback path for HTM transac-
tions. This has twofolds benefits: first, HTM transactions can run concurrently with the
transactions in the fallback path; second, HTM-HTM and HTM-STM transactions commu-
nicate only when they access the same objects (i.e., as in the disjoint-access parallelism prop-
erty). This property is not available in all HyTM algorithms. For example, RH-NOrec [69]
fast-path HTM transactions have to increment the timestamp at the end of each trans-
action, which introduces a contention point among all transactions (not necessarily those
non-conflicting), and unnecessary aborts.

Other HyTM approaches that uses orecs show low performance as shown in [68, 81, 69].
This is because of the added overhead of false conflicts on shared orecs, and the added
transaction’s footprint because of reading/writing orecs which causes more capacity aborts.

The problem of partitioning memory operations to fit as a single HTM transaction is de-
scribed also in [3]. In this approach authors used HTM transactions for concurrent memory
reclamation. If the reclamation operation, which involves a linked-list, does not fit in a
single HTM transaction, they split it using compiler supports to make the operation suited.
Part-htm differs with [3] because they do not provide a software framework for ensuring
consistency and isolation of sub-HTM transactions as we do.

In [2], a similar partitioning approach is used to simulate IBM Power8’s rollback-only hard-
ware transaction via Intel Haswell HTM. They solve the opacity problem between hardware
transaction and global locking fallback path. The solution is to hide writes that occur in the
GL-software path until the end of the critical section without monitoring the reads. They
also split the transaction in multiple sub-HTM transactions, and each of them keeps both
an undo-log and a redo-log. Before committing, the undo-log is used to restore memory’s
old values (i.e., hiding the transaction’s writes). At the beginning of the next HTM sub-
transaction, the redo-log is used to restore the previous sub-transaction values. Following
this approach, the undo-log and redo-log keep growing from one sub-HTM transaction to
the next, consuming an increasing amount of precious HTM resources. As a result, such an
approach is not suited for solving the problem of aborts due to resource failures. In fact, the
last sub-HTM transaction will still have a write-set that is as big as the original transaction
before the splitting process.

Authors of [60] presented SpHT, a general and effective technique for splitting best-effort
hardware transactions. This approach also cannot solve the problem of aborts due to resource
limitations because the last sub-HTM transaction will still have a write-set that is as big
as the original transaction. In details, transactional writes are deferred and buffered in the
write-set. Transactional reads are also logged in the read-set. That way, each partition can
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validate the consistency of the all reads by validating the read-set. The last partition writes
back all the write-set buffer, thus it has a write-set that is as big as the original transaction.

2.2 Transactional Memory Scheduling

Transactional memory scheduling has been studied extensively in Software Transactional
Memory systems [39, 11, 95, 64, 83, 41, 7]. However, TM scheduling for HTM-base systems
is not still well exlored.

Dragojević et. al. in [41] presented Shrink, a technique to schedule transactions dynami-
cally based on expected working-sets. It uses transactions read- and write-set of committed
transactions to predict the working-set of a new transaction from the same thread. We
used a similar idea to predict the working set of HTM transaction (of the same profile) via
a lightweight instrumentation. Recently, ProPS [82] proposed a similar idea to expect the
probability of conflict between two transaction. ProPS collects the information from aborted
transactions instead. It also focuses on long transactions. Unfortunately, we cannot extract
information from aborted transactions in current Intel’s HTM.

In [7], the Steal-On-Abort transaction scheduler is presented. Its idea is to queue aborted
transaction behind concurrent conflicting transactions. Thus, prevent them from conflicting
again. In [6], Steal-On-Abort scheduler is extended to HTM architecture. A new hardware
extensions are proposed that implements the algorithm. Changing the hardware architecture
usually takes a long time and do not solve current hardware problems.

Adaptive Transaction Scheduler (ATS) [95] monitors the contention level of the system.
When it exceeds a threshold, transactions scheduler takes control. Otherwise, transactions
proceeds normally without scheduling. In ATS, one scheduling queue is used which serialize
all conflicting transactions in the system (acts like a global lock).

CAR-STM is presented in [39]. In CAR-STM, each core has its own queue. Potentially
conflicting transactions are scheduled on the same core queue to minimize conflicts. In
addition, when a transaction is aborted, it is scheduled on the same queue behind the one
that conflicted with it. Thus, preventing them from conflicting again in the future.

Proactive Transactional Scheduler (PTS) [14] idea is to proactively schedule transactions be-
fore accessing hot spots of the programs. Instead of waiting for transactions to conflict before
scheduling them, they are proactively scheduled to reduce contention in the program’s hot
spots. PTS showed an average of 85% improvement over backoff retry policy in STAMP[21].

Some approaches targeted the operating system scheduler itself (e.g., TxLinux [83] and
SER [64]). Having a transactional aware OS scheduler has the benefit of avoiding scheduling
a transaction that is doomed to conflict and abort. Other non-OS schedulers had to yield
their time-slot after being scheduled by the OS.
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In [37], a self-tuning approach for Intel’s HTM (Tuner) is presented. The approach is
workload-oblivious and does not require any offline analysis or priori knowledge of the pro-
gram. It uses lightweight profiling techniques. Tuner controls the number of retries in HTM
before falling back to global locking. It analyzes a transaction capacity and time to decide
the best number of retrials in HTM. This decision is used the next time when the same
transaction is executed. If the previous decision does not fit the current run of the transac-
tion, the tuning parameters are evaluated again. Compared to Octonauts, Tuner does not
require priori knowledge of the transactions and it is adaptive also. It avoids unnecessary
HTM trials for transactions that does not fit in HTM based on its online profiling.

Concurrently with our work, Seer [38] has been proposed. Seer works on imprecise informa-
tion collected by observing which transactions are active when a transaction is aborted. It
probabilistically identifies transactions that most likely will conflict with each other. Then,
it applies a fine-grained dynamic locking to serialize those conflicting transactions.

Another recent work by Xiang and Scott [93] uses advisory locks to serialize only the partition
where conflicting access exists. The compiler statically analyze the code and define potential
locations to place the advisory locks (i.e., contention hot spot), then at run time, and based
on previous history, one of the advisory lock is taken. This work requires hardware extensions
and is not compatible with the current Intel HTM release.

Octonauts is an adaptive scheduler. It is only activated when the contention level is
medium to high. It uses a priori knowledge of expected working-set of each transaction
to schedule them. Our queues are one per each object. And it allows multiple read-only
transactions to proceed concurrently. Octonauts also is HTM-aware scheduler.

2.3 Solution for NUMA architectures

The release of NUMA (Non-Uniform Memory Access) architectures put a pressure on soft-
ware developers to be NUMA-aware. Hardware vendors tried to make NUMA architectures
more appealing by providing a cache coherent NUMA (ccNUMA). ccNUMA provides the
same hardware interface and can run all software designed for UMA architectures. This
gives the illusion that ccNUMA will provide the same performance for such unmodified
UMA (Uniform Memory Access) software. Researcher and software developers accepted the
challenge and started to adapt current software and algorithms to take full advantages of
NUMA architectures.

Some of the most important software to adapt include operating systems, system libraries,
middleware, and database management systems. In this section, we will focus on proposals
in the database and transactional memory fields as they share many properties and they are
most related to the topics discussed by this dissertation.
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2.3.1 Database

Current database management systems perform badly on multicore machines especially
NUMA-based machines [88, 47, 56, 76]. In Multimed [88], authors showed that treating
multicore machines as a distributed system performs much better. In their evaluation study,
deploying multiple replicated instances of the database engine on the same machine per-
forms better that deploying only a single instance that uses all available cores. [76] reached
a similar conclusion: shared-nothing deployments perform better than cooperative ones.

In [56], they showed that allocating memory based on data partitioning, and grouping worker
threads improve the performance. This new configuration exploits the locality features of
NUMA architectures.

2.3.2 Transactional Memory

There are proposals that targeted eliminating centralized timestamp bottleneck. In [80],
the timestamp is replaced by a physical (hardware) clock or a set of synchronized physical
clocks. In [85], the same idea of exploiting a hardware clock instead of a global timestamp
is explored. They proposed an algorithm that leverages the x86 cycle counter. Algorithms
based on physical clocks are not expected to scale well as the hardware itself cannot keep a
large number of physical clocks synchronized without paying a significant overhead.

In [9], they proposed Adaptive Versioning (AV) which uses a software predictor to expect
the probability of conflict among transactions. Based on that, they select between TL2-
GV4 [35], when conflict chance is high, and TLC [12], in low conflict scenarios. Although
the idea looks appealing, the performance results is limited to 16 threads and show that AV
matches the performance of TL2 at high contention levels, and TLC at low contention levels.

In SkySTM [59], authors presented a scalable STM algorithm that is privatization safe.
SkySTM is based on semi-visible reads that is implemented using Scalable NonZero Indicator
(SNZI) [42]. Semi-visible reads indicates the existence of concurrent readers without knowing
which are those readers. In addition, with visible/semi-visible reads, there is no need for
maintaining a global timestamp. SkySTM results shows a good scalability, but compared to
TL2-GV6 [35], it is slower. This is mainly due to the fact that SkySTM is privatization safe
while TL2 is not. Nemo is not privatization safe as it focuses on achieving the maximum
performance possible under scalable workloads.

In TrC-MC [23], TLC algorithm is extended. First, they proposed a NUMA-zone level
cache (zone partitioning) similar to Nemo-Vector’s vector-clocks. Second, they used the
timestamp extension mechanism which revalidates the read-set again to confirm that the
conflict is indeed a real conflict before aborting the transaction. While designing Nemo, we
tried timestamp extension mechanism and it showed a performance degradation although it
reduced the number of false aborts. As a result, it represents a technique orthogonal and
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applicable to Nemo.

In [63], a NUMA-aware TM is introduced. The basic idea is to change the conflict detector
such that it becomes latency-based. It uses an eager conflict detection policy for intra-
NUMA zone transactions, and uses a lazy policy for inter-NUMA zones ones. In addition,
they deployed a conflict prevention mechanism to reduce conflicts probability. Results show
an improved performance but limited scalability.

In [67], they targeted the same problem of Nemo focusing on locality awareness. From the
available details, they also used a timestamp per cluster.

In Lock Cohorting [36], a mechanism to convert different types of locks into NUMA-aware
locks is proposed. Results showed a significant performance improvement. We plugged this
NUMA-aware lock into NOrec [29] algorithm but results were not improved significantly
because NOrec has a commit serialization bottleneck. In [18], the lock cohorting idea is
extended to reader-writer locks.

Disjoint-Access Parallelism

An important property that can enable the achievement of scalability in Transactional Mem-
ory (TM) is Disjoint-Access Parallelism (DAP) [55]. The DAP property also works very
well given the NUMA architecture properties, which encourages to limit inter-NUMA zones
communication as much as possible in order to achieve high performance. By definition,
DAP only allows conflicting transactions to share data/meta-data. Thus, DAP-TM algo-
rithms provide a good scalability on NUMA architectures [31]. Examples include TLC [12],
DSTM [50], PermiSTM [10], and [74, 75].

TLC has the most practical implementation among them. The idea of TLC can be applied
to timestamp based STM (e.g., TL2 [35], TinySTM [43]). The idea is to remove the global
timestamp and replace it with a thread-local timestamp in each thread. In addition, each
thread keeps a thread-local cache of other threads’ timestamps. This cache is only updated
when a conflict in timestamps is detected. Each object has an associated versioned lock.
The lock’s version includes both the writing transaction’s ID and its timestamp at the time
of writing. When a thread reads an object with a timestamp larger than its local cache, it
aborts and updates the local cache. TLC suffers from a large number of false aborts due to
outdated cached copy of timestamp and can only work well under low levels of contention.
The design of Nemo shares some of the TLC principles.



Chapter 3

Background

3.1 Parallel Programming

Amdahl’s law [4] specifies the maximum possible speedup that can be obtained when a
sequential program is parallelized. Informally, the law states that, when a sequential program
is parallelized, the relationship between the speedup reduction and the sequential part (i.e.,
sequential execution time) of the parallel program is non-linear. The fundamental conclusion
of Amdahl’s law is that the sequential fraction of the (parallelized) program has a significant
impact on overall performance. Code that must be run sequentially in a parallel program
is often due to the need for coordination and synchronization (e.g., shared data structures
that must be executed mutual exclusively to avoid race conditions). Per Amdahl’s law, this
implies that synchronization abstractions have a significant effect on performance.

Lock-based synchronization is the most widely used synchronization abstraction. Coarse-
grained locking (e.g., a single lock guarding a critical section) is simple to use, but results
in significant sequential execution time: the lock simply forces parallel threads to execute
the critical section sequentially, in a one-at-a-time order. With fine-grained locking, a single
critical section now becomes multiple shorter critical sections. This reduces the probability
that all threads will need the same critical section at the same time, permitting greater con-
currency. However, this has low programmability: programmers must acquire only necessary
and sufficient locks to obtain maximum concurrency without compromising safety, and must
avoid deadlocks when acquiring multiple locks. Moreover, locks can lead to livelocks, lock-
convoying, and priority inversion. Perhaps, the most significant limitation of lock-based code
is their non-composability. For example, atomically moving an element from one hash table
to another using those tables’ (lock-based) atomic methods is not possible in a straightfor-
ward manner: if the methods internally use locks, a thread cannot simultaneously acquire
and hold the locks of the methods (of the two tables); if the methods were to export their
locks, that will compromise safety.

17
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3.2 Transactional Memory

Transactional Memory (TM) borrows the transaction idea from databases. Database trans-
actions have been successfully used for a long time and have been found to be a powerful
and robust concurrency abstraction. Multiple transactions can run concurrently as long as
there is no conflict between them. In the case of a conflict, only one transaction among
the conflicting ones will proceed and commit its changes, while the others are aborted and
retried. TM transactions only access memory, thus they are “memory transactions”.

TM can be classified into three categories: Hardware Transactional Memory (HTM), Soft-
ware Transactional Memory (STM), and Hybrid Transactional Memory (HyTM). HTM [46,
5, 91, 24, 22] uses hardware to support transactional memory operations, usually by modi-
fying cache-coherence protocols. It has the lowest overhead and the best performance. The
need for specialized hardware is a limitation. Additionally, HTM transactions are limited in
size and time. STM [89, 52, 92, 79, 57, 49, 16, 73, 90, 35] implements all TM functionality
in software, and thus can run on any existing hardware and it is more flexible and easier
to change. STM’s overhead is higher, but with optimizations, it outperforms fine-grained
locking and scales well. Moreover, there are no limitations on the transaction size and time.
HyTM [62, 60, 77, 30, 71, 94] combines HTM and STM, while avoiding their limitations, by
splitting the TM implementation between hardware and software.

3.2.1 TM Design Classification

TM designs can be classified based on four factors: concurrency control, version control,
conflict detection, and conflict resolution [48].

Concurrency Control

A TM system monitors transactions’ access to shared data to synchronize between them. A
conflict between transactions go through the following events (in that order):

1. A conflict occurs when two transactions write to the same shared data (write after
write), or one transaction writes and the other reads the same shared data (read after
write or write after read).

2. The conflict is detected by the TM system.

3. The conflict is resolved by the TM system such that each transaction makes progress.

There are two mechanisms for concurrency control: pessimistic and optimistic. In the pes-
simistic mechanism, a transaction acquires exclusive access privilege to shared data before
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accessing it. When the transaction fails to acquire this privilege, a conflict occurs, which is
detected immediately by the TM system. The conflict is resolved by delaying the transaction.
These three events occur at the same time.

The pessimistic mechanism is similar to using locks and can lead to deadlocks if it is not
implemented correctly. For example, consider a transaction T1 which has access to object
D1 and needing access to object D2, while a transaction T2 has access to object D2 and
needs access to object D1. Deadlocks such as these can be avoided by forcing a certain order
in acquiring exclusive access privileges, or by using timeouts. This mechanism is useful when
the application has frequent conflicts. For example, transactions containing I/O operations,
which cannot be rolled-back can be supported using this mechanism.

In the optimistic mechanism, conflicts are not detected when it occurs. Instead, they are
detected and resolved at any later time or at commit time, but no later than the commit
time. During validation, conflicts are detected, and they are resolved by aborting or delaying
the transaction.

The optimistic mechanism can lead to livelocks if not implemented correctly. For example,
consider a transaction T1 that reads from an object D1, and then a transaction T2 writes
to object D1, which forces T1 to abort. When T1 restarts, it may write to D1 causing T2
to abort, and this scenario may continue indefinitely. Livelocks can be solved by using a
Contention Manager, which waits or aborts a transaction, or delays a transaction’s restart.
Another solution is to limit a transaction to validate only against committed transactions
that were running concurrently with it. The mechanism allows higher concurrency in appli-
cations with low number of conflicts. Also, it has lower overhead since its implementation is
simpler.

3.2.2 Version Control

Version control is the process of managing a transaction’s writes during execution. Two types
of version control techniques have been studied: eager versioning and lazy versioning [71].
In eager versioning, a transaction writes directly to the memory (i.e., in-place update) for
each object that it modifies, while keeping the old value in an undo log. If the transaction
aborts, then the old value is restored from the undo log. Eager versioning requires eager
conflict detection. Otherwise, isolation cannot be maintained and intermediate changes will
be visible to other concurrent transactions.

In lazy versioning, a transaction’s writes are buffered in a transaction-local write buffer,
sometimes called a redo log. During a successful commit, values in the write buffer are
written back to the memory. In this approach, a transaction’s reads need to check if the
write buffer has the object before reading the object’s value from the memory. If the data
is not found in the write buffer, then the object’s value is retrieved from the memory. This
approach is also know as deferred updates.



Mohamed Mohamedin Chapter 3. Background 20

Conflict Detection

TM systems use different approaches for when and how a conflict is detected. There are
two approaches for when a conflict is detected: eager conflict detection and lazy conflict
detection [71]. In eager conflict detection, the conflict is detected at the time it happens.
At each access to the shared data (read or write), the system checks whether it causes a
conflict.

In lazy conflict detection, a conflict is detected at commit time. All read and written locations
are validated to determine if another transaction has modified them. Usually this approach
validates during transactions’ life times or at every read. Early validations are useful in
reducing the amount of wasted work and in detecting/preventing zombie transactions (i.e., a
transaction that gets into an inconsistent state because of an invalid read, which may cause
it to run forever and never commit).

3.3 Transactional Memory Algorithms

In this section, we briefly go through the details of the state-of-the-art TM algorithms that
we used as competitors in our evaluation studies or we relate most in our discussions.

3.3.1 TL2

The TL2 [35] algorithm uses lazy versioning and lazy validation. It relies on a shared global
timestamp and a global lock table (a table of versioned write-locks). The global timestamp
is used to determine the chronological relation between transactions. The lock table is used
to lock objects and to store the timestamp at the time of writing.

Each transaction has the following meta-data: read-set, write-set (buffer), and starting time.
When a transaction begins, the starting time is set to the global timestamp value. Transac-
tional writes add the written object and the new value to the local write-set. Transactional
reads check first if the object exits in the write-set, and return it if so. Otherwise, they
confirm that the read object is not locked and its associated version is less than or equal to
the transaction’s starting time. Otherwise, the transaction aborts. The last step of the read
operation is to add the object to the read-set.

At commit time, if the transaction is read-only, then the commit is done immediately. Oth-
erwise, all write-set’s objects are locked. If any lock acquisition fails, then the transaction
aborts. After that, the read-set’s objects are validated to confirm that they are not locked by
another transaction and their associated versions are still less than the transaction’s starting
time. Finally, the global timestamp is incremented. The incremented value is used to set
the new version of the locks before releasing them.
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TL2 has been subsequently enhanced by providing other versions (i.e., GV4 [35] and GV5 [35],
and GV6 [35]) to reduce the contention on the global timestamp, which is clearly a scalability
bottleneck.

• GV4 uses the pass-on-fail policy. If the atomic compare-and-swap (CAS) operation
used to increment the global timestamp fails, then it is not retried. This is because
another transaction already did the increment. In addition, that transaction must be
disjoint from the current transaction since both have all their write-set’s objects locked,
thus there cannot be any overlap.

• GV5 updates the global timestamp only when a conflict is detected. Each thread locally
increments the global timestamp in the commit operation without updating the global
timestamp. When a transaction accesses an object with a version greater than the
global timestamp, it aborts and updates the global timestamp with that version. GV5
can cause false aborts even when only a single transaction is running in the system if
that transaction accesses the same objects frequently.

• GV6 is a mix of GV4 and GV5 where GV4 is used with probability 1/32, and GV5 is
used otherwise.

3.3.2 RingSTM

The RingSTM [90] algorithm uses lazy versioning and lazy validation. Its core innovation is
in using a compact representation for the read-set and write-set. In fact, it takes advantage
of Bloom filters [15] to summarize all reads (read-signature) and all writes (write-signature).
Other meta-data includes a write-buffer and the transaction’s starting time. As a global
meta-data, there is the ring data structure (circular buffer) which includes all committed
transactions’ write-signatures, and the global timestamp which represents the last used index
in the ring.

When a transaction begins, the starting time is set to the global timestamp value. A trans-
actional write adds the object to the write-signature and its value to the write-buffer. A
transactional read checks first if the object exits in the write-set, and returns it if so. Oth-
erwise, the object is added to the read-signature. Then, the transaction confirms that the
read-signature is still valid if the global timestamp is changed since the last successful vali-
dation. If the validation succeeds, the transaction starting time is extended to the current
global timestamp; otherwise, the transaction aborts.

The read-signature validation is done by intersecting the read-signature against each new
committed transaction’s write-signature in the ring that is committed after the last successful
validation. If any intersection results in a non-zero Bloom filter, then the validation fails.

At commit time, if the transaction is read-only, then the commit can be done without per-
forming any additional task. That task is rather needed for write-transaction, and it consists
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of validating the read-signature again if the global timestamp is changed since the last vali-
dation. If it is still valid, the global timestamp is atomically incremented, and this increment
has a side effect of reserving a slot in the ring for storing the transaction’s write-signature.
Then, the write-buffer is written back to the memory and the write-signature is copied into
the ring. During the write-back and the ring-update operations, other transactions cannot
access the ring for validation, thus they wait until the access to the ring is allowed again.

Bloom filters has the advantage of having an O(1) complexity of all its operations (add, con-
tains, intersection), and constant memory space. But, it has the drawback of false positives.
False positives cause unnecessary aborts as they represent false conflicts.

3.3.3 NOrec

The NOrec [29] algorithm uses lazy versioning and lazy validation. It is characterized by
removing the need for ownership records (Orecs). Instead, it uses a single lock to serialize
the transactions’ commit phase and a value-based validation to validate the read-set. This
algorithm has a single global meta-data, which is the global timestamp that acts also as a
global lock. As a local meta-data, there is the read-set, write-set and the transaction starting
time.

When a transaction begins, the starting time is set to the global timestamp value. A trans-
actional write adds the object and its new value to the write-set. A transactional read checks
first if the object exits in the write-set, and return it if so. Otherwise, before reading the
object’s value, the transaction confirms that the global timestamp did not change since last
successful validation. If the global timestamp is changed, then the read-set is revalidated by
confirming that the objects’ values currently committed in memory still match the valued
stored in the read-set. If the read-set is still valid, then the object and its value are added
to the read-set.

At commit time, if the transaction is read-only, then the commit is done immediately because
there is no actual commit phase. Otherwise, the transaction’s read-set is revalidated if the
global timestamp is changed since last successful validation. If the validation is successful,
then the timestamp lock is acquired using a CAS operation. It CAS operation failed, then
a revalidation is needed before retrying to acquire the lock. After successfully acquiring the
lock, the write-set is written back to the memory and the lock is released by incrementing
the global timestamp.

NOrec is a very simple and efficient algorithm for a low number of threads, but it suffers
from scalability problems as the number of threads increases given the serial execution of
transactions’ commit phases.
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3.3.4 Reduced Hardware NOrec (RH-NOrec)

The RH-NOrec [69] algorithm is a hybrid TM algorithm that extends NOrec algorithm
using the reduced-hardware technique for HTM-STM communication [68]. The basic idea
of reduced-hardware technique is to execute the commit phase of an STM transaction as a
hardware transaction. In RH-NOrec, another hardware transaction is used also to execute
the read-prefix of the transaction. Using the two hardware transactions in the slow path
allows for delaying the reading of the global timestamp to the end of the read-prefix HTM.
It also allows the fast path to read the global timestamp at the very end. In addition, no
instrumentation is needed in the fast path.

In details, fast-path HTM proceeds normally without instrumentation, before it commits, it
updates the global timestamp (if it is not locked) which notifies other slow-path transactions
that a change occurred. Slow-path transactions start with a prefix-HTM transaction that
executes the maximum possible reads. Before the prefix-HTM transaction commits, it reads
the global timestamp and if it is locked, the transaction aborts. Before starting the hardware
commit phase transaction, the global timestamp lock is acquire. Then, the commit phase is
done inside the HTM. Finally the HTM commits before releasing the global timestamp.

3.3.5 TLC

The primary goal of the TLC [12] algorithm is to eliminate the need for a global timestamp
while maintaining the same correctness level. The idea of TLC can be applied to timestamp
based STM (e.g., TL2 [35], and TinySTM [43]). Roughly, they propose to remove the global
timestamp and replace it with a thread-local timestamp in each thread. In addition, each
thread keeps a thread-local cache of other threads’ timestamps. This cache is only updated
when a conflict in timestamps is detected. Each object has an associated versioned lock.
The lock’s version includes both the writing transaction’s ID and its timestamp at the time
of writing. When a thread reads an object with a timestamp larger than its local cache, it
aborts and updates the local cache.

TLC suffers from a large number of false aborts due to outdated cached copy of timestamp
and can only work well under workloads with low contention level.

3.4 Intel’s Haswell HTM processor

The current Intel’s HTM implementation of Haswell processor, also called Intel Haswell
Restricted Transactional Memory (RTM) [78], is a best-effort HTM, namely no transaction
is guaranteed to eventually commit. In particular, it enforces space and time limitations.
Haswell’s RTM uses L1 cache (32KB) as a transactional buffer for write operations and
conflict detection [72]. Accessed cache-lines are marked as “monitored” whenever accessed.
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HTM synchronization management is embedded into the cache coherence protocol. The
eviction and invalidation of cache lines defines when a transaction is aborted (it reproduces
the idea of read-set and write-set invalidation of STM). Transactional reads can go beyond
L1 cache size upto 4 MB [72] using a special hardware buffer for transactional reads. This
hardware buffer keeps track of read cache lines that are evicted from L1 cache.

This way, the cache-line size is indeed the granularity used for detecting conflicts. When two
transactions need the same cache-line and at least one wants to write it, an abort occurs.
When this happens, the application is notified and the transaction can restart as HTM or
can fall back to a software path. The transaction that detects the data conflict will abort.
The detection of a conflict is based on how the cache coherence protocol works. We cannot
know exactly which thread will detect the conflict as the details of Intel’s cache coherence
protocol are not publicly available.

In addition to those aborts due to data conflict, HTM transactions can be aborted for other
reasons. Any written cache-line eviction due to cache depletion or associativity causes the
transaction to abort, which means that hardware transactions are limited in space by the
size of the L1 cache for its write-set. For the read-set, the value of the read operation is
not required for validation as conflicts can be detected by the object’s memory address only.
Thus, a cache line eviction from the read-set does not always abort the transaction. Also, any
hardware interrupt, including the interrupt from timer, force HTM transactions to abort.

Cache associativity places another limitation on transactional size. Intel’s Haswell L1 cache
has an associativity of 8. Thus, some transactions accessing just 9 different locations that
are mapped to the same L1 cache set (due to associativity mapping rules) will be aborted.
In addition, when Hyper-Threading is enabled, L1 cache is shared between the two logical
cores on the same physical core.

Intel’s HTM programming model is based on three new instructions: xbegin; xend, and
xabort.

• xbegin is used to start a transaction. All operations following the execution of
xbegin are transactional and speculative. If a transaction is aborted due to a conflict,

transactional resource limitation, unsupported instruction (e.g., CPUID) or explicit
abort, then all updates done by the transaction are discarded and the processor re-
turns to non-transactional mode.

• xend is used to finish and commit a transaction.

• xabort is used to explicitly abort a transaction.

When a transaction is aborted (implicitly or explicitly), the program control jump to the
abort handler and the abort reason is provided in the EAX register. The abort reason let the
programmer know whether the transaction is aborted due to conflict, limited transactional
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resources, debug breakpoint, or explicit abort. In addition, an integer value can be passed
from xabort to the abort handler.

A programmer must provide a software fallback path to guarantee progress. For example, a
transaction that faces a page fault interrupt, can never commit in HTM. It will be aborted
every time when the interrupt is fired. In addition, the interrupt will not handled as the
transaction is running speculatively.

Intel HTM provides another programming interface which is Hardware Lock Elision (HLE).
HLE is an instruction-prefix-based that is added to locking instructions. Thus, it automati-
cally tries to elude the lock by optimistically executing the critical section without acquiring
the lock. When the optimistic speculative execution fails, the critical section is re-executed
after acquiring the lock. This interface is transparent to the programmer as it is the same
as locks-based programming. Thus, it is compatible with legacy code.



Chapter 4

Part-HTM

4.1 Problem Statement

Transactional Memory (TM) [48, 51] is one of the most attractive recent innovations in
the area of concurrent and transactional applications. TM is a support that programmers
can exploit while developing parallel applications so that the hard problem of synchronizing
different threads, which operate on shared objects, is solved. In addition, in the last few years
a number of TM implementations, each optimized for a particular execution environment,
have been proposed [29, 28]. The programmer can take advantage of this selection to achieve
the desired performance by simply choosing the appropriate TM system. TMs are classified
as software (STM) [29], which can be executed without any transactional hardware support,
hardware (HTM) [48, 24], which exploits specific hardware facilities, and hybrid [29], which
mixes HTM and STM.

Very recently two events confirmed TM as a practical alternative to the manual implementa-
tion of thread synchronization: first, GCC – the famous GNU compiler, embedded interfaces
for executing atomic blocks since its version 4.7; second, Intel released to the customer market
the Haswell processor equipped with Transactional Synchronization Extensions (TSX) [78],
which allow the execution of transactions directly on the hardware through an enriched
hardware cache-coherence protocol.

Hardware transactions (or HTM transactions) are much faster than their software version
because the conflict resolution is inherently provided by the hardware cache-coherence pro-
tocol; however, their downside is that they do not have commit guarantees, therefore they
may fail repeatedly, and for this reason they are categorized as best-effort 1. The eventual
commit of an HTM transaction is guaranteed through a software execution defined by the
programmer (called fallback path). The default fallback path consists of executing the trans-
action protected by a single global lock (called GL-software path). In addition, there are

1IBM also released the Power8 [17] processor with best-effort HTM support.

26
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other proposals that take the choice of falling back to a pure STM path [28], as well as to a
hybrid-HTM scheme [68, 19].

Leveraging the experience learnt from recent papers on HTM [37, 19, 28], three reasons
that force a transaction to abort have been identified: conflict, capacity, and other. Conflict
failure occurs when two transactions access the same object and at least one of them wants to
write it; a transaction is aborted for capacity if the number of cache-lines accessed is higher
than the maximum allowed; and any extra hardware intervention, including interrupts, is
also a cause of abort (see Section 4.1.1 for more details).

Many recent papers propose solutions to: i) handle aborts due to conflict efficiently, such that
transactions that run in hardware minimize their interference with concurrent transactions
running in the software fallback path [28, 19, 68]; ii) tune the number of retries a transaction
running in hardware has to accomplish before falling back to the software path [37]; and iii)
modify the underlying hardware support for allowing special instructions so that conflicts
can be solved more effectively [5, 24].

Despite this body of work, one of the main unsolved problems of best-effort HTM is that there
are transactions that, by nature and due to the characteristics of the underlying architecture,
are impossible to be committed as hardware transactions. Examples include transactions
that require non-trivial execution time even accessing few objects and thus they are aborted
due to a timer interrupt (which triggers the actions of the OS scheduler); or those transactions
accessing several objects, such that the problem of exceeding the cache size arises (capacity
failure). We group these two types of failures into one superset, where, in general, a hardware
transaction is aborted if the amount of resources, in terms of space and/or time required to
commit, are not available. We name this superset as resource failures.

None of the past works target this class of aborted transactions and we turn this observation
into our core motivation: solving the problem of resource failures in HTM. To pursue this
goal, we propose Part-htm, an innovative transaction processing scheme, which prevents
those transactions that cannot be executed as HTM due to space and/or time limitation
to fall back to the GL-software path, and commit them still exploiting the advantages of
HTM. As a result, Part-htm limits the transactions executed as GL-software path to those
that retry indefinitely in hardware (e.g., due to extreme conflicting workloads), or those that
require the execution of irrevocable operations (e.g., system calls).

Part-htm’s core idea is to first run transactions as HTM and, for those that abort due to
resource limitations, a partitioning scheme is adopted to divide the original transaction into
multiple, thus smaller, HTM transactions (called sub-HTM), which can be easily committed.
However, when a sub-HTM transaction commits, its objects are immediately made visible
to others and this inevitably jeopardizes the isolation guarantees of the original transaction.
We solve this problem by means of a software framework that prevents other transactions
from accessing (or from committing after having accessed) those committed (but still locked)
objects.
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This framework is designed to be low overhead: a heavy instrumentation would annul the
advantages of HTM, falling back into the drawbacks of adopting a pure STM implementation.
Part-htm uses locks, to isolate new objects written by sub-HTM transactions from others,
and a slight instrumentation of read/write operations using cache-aligned signature-based
structures, to keep track of accessed objects. In addition, a software validation is performed
to serialize all sub-HTM transactions at a single point in time.

With this limited overhead, Part-htm gives performance close to pure HTM transactions, in
scenarios where HTM transactions are likely to commit without falling back to the software
path, and better than pure STM transactions, where HTM transactions repeatedly fail.
This latter goal is reached through the exploitation of sub-HTM transactions, which are
indeed faster than any instrumented software transactions. In other words, Part-htm’s
performance gains from HTM’s advantages even for those transactions that are not originally
suited for HTM due to resource failures. Given that, Part-htm does not aim at either
improving performance of those transactions that are systematically committed as HTM, or
facing the challenge of minimizing the conflicts resolution of running transactions. Part-
htm has a twofold purpose: it commits transactions that are hard to commit as HTM due
to resource failures without falling back to the GL-software path and by still exploiting the
effectiveness of HTM (leveraging sub-HTM transactions); and it represents the best trade-off
between STM and HTM transactions.

Opacity [45] is the reference correctness criterion for TM implementations because it avoids
any inconsistency during the execution, independently from the final transaction outcome
(either commit or abort). However, ensuring opacity in Part-htm is challenging because
its overhead could nullify Part-htm’s benefits. While acknowledging the importance of an
opaque hybrid-TM protocol, in this dissertation we present two versions of Part-htm. One
aims at obtaining the best performance by relaxing opacity in favor of serializability [13],
the well-known consistency criterion for online transaction processing, and by relying on
the HTM protection mechanism (i.e., sandboxing), which protects from faulty computations
(e.g., division by zero). In the second version, we enriched Part-htm for ensuring opacity
but, at the same time, we present a set of innovations (e.g., address-embedded write locks)
for reducing the transaction’s memory footprint so that the overhead is kept limited (less
than the achievable gain).

We implemented Part-htm and assessed its effectiveness through an extensive evaluation
study (Section 4.6) including a micro-benchmark, a data structure, the STAMP suite [70],
and EigenBench [53]. As competitors, we selected a pure HTM with GL-software path as
a fallback, two state-of-the-art STM protocols and a recent HybridTM. Results confirmed
the effectiveness of Part-htm. It is the best in almost all the tested cases, except those
where HTM outperforms all (and therefore no competitor can perform better than that).
In these workloads, Part-htm still represents the best among other STM and HybridTM
alternatives. The combination of these two contributions gives to Part-htm the unique
characteristic of being an effective trade-off, independently from the application workload.
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Part-htm has been designed and evaluated using the current Intel Haswell processor (i7-
4770). In Section 4.4, we describe how Part-htm’s approach can take advantage of the
upcoming best-effort HTM processor (i.e., IBM Power8 [17]) with the new support for sus-
pending/resuming an HTM transaction.

4.1.1 Intel’s HTM Limitations

In this section we briefly overview the principles of Intel’s HTM transactions in order to
highlight their limitations and motivate our proposal. The current Intel HTM implemen-
tation of the Haswell processor, also called Intel Haswell Restricted Transactional Memory
(RTM) [78], is a best-effort HTM, namely no transaction is guaranteed to eventually commit.
In particular, it enforces space and time limitations. Haswell’s RTM uses L1 cache (32KB)
as a transactional buffer for read and write operations. Accessed cache-lines are marked as
“monitored” whenever accessed. This way, the cache-line size is indeed the granularity used
for detecting conflicts. When two transactions need the same cache-line and at least one
wants to write it, an abort occurs. When this happens, the application is notified and the
transaction can restart as HTM or can fall back to a software path.

In addition to those aborts due to data conflicts, HTM transactions can be aborted for
other reasons. Any cache-line eviction (e.g., due to cache-associativity) of written memory
locations causes the transaction to abort (however there is a specialized buffer for handling
the eviction of a memory location previously read, but not written). This means that write
operations of hardware transactions are limited in space by the size of the L1 cache. However,
read operations can go beyond the L1 cache capacity by exploiting the L2 cache. Also, any
hardware interrupt, including the interrupts from timers, forces HTM transactions to abort.
As stated before, we name the union of these two causes as resource limitation and in this
dissertation we propose a solution for that.

To strengthen our motivation, in Table 4.1 (in the evaluation section) we report a practical
case. The table contains statistics related to the Labyrinth application of the STAMP
benchmark. Here we can see how the sum between the percentage of HTM transactions
aborted for capacity and other forms more than 91% of all aborts, forcing HTM to often
execute its GL-software path. This is because more than 50% of Labyrinth’s transactions
exceed the size and time allowed for an HTM execution.

4.2 Algorithm Design

The basic idea of Part-htm is to partition a transaction that likely (or certainly) is aborted
in HTM (due to resource limitations) into smaller sub-transactions, which could cope better
with the amount of resources offered by HTM.
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Figure 4.1: Part-htm’s Basic Idea.

Despite the simple main idea of partitioning a transaction into smaller hardware sub-transactions,
executing them efficiently in a way such that the global transaction’s isolation and consis-
tency is preserved poses a challenging research problem. In this section we describe the
design principles that compose the base of Part-htm, as well as the high level transaction
execution flow. The next sections describe the details of the algorithm and its implemen-
tation. Hereafter, we refer to the original (single block) transaction as a global transaction
and the smaller sub-transactions as sub-HTM transactions.

A memory transaction is a sequence of read and write operations on shared data that should
appear as atomically executed at a point in time between its beginning and its completion,
and in isolation from other transactions. This also entails that changes on the shared objects
performed by a transaction should not be accessible (visible) to other transactions until that
transaction is allowed to commit. The latter point clashes with the above idea: when a
sub-HTM transaction TS1 of a global transaction T commits, its written objects are applied
directly to the shared memory, by nature. This allows other transactions to potentially
access these values, thus breaking the isolation of T . Moreover, once TS1 is committed, there
is no record of its read/written objects during the rest of T ’s execution, therefore also T ’s
correctness becomes hard to enforce.

All these problems can be trivially solved by instrumenting HTM operations for populating
the same meta-data commonly used by STM protocols for tracking accesses and handling
conflicts. However, applying existing STM solutions can easily lead to HTM losing its
effectiveness and, consequently, lead to poor performance. In the following we point out
some of these reasons:

- STM meta-data are not designed for minimizing the impact on memory capacity. Adopting
them for solving our problem would stretch both the transaction execution time and the
number of cache-lines needed, thus consuming precious HTM resources;

- the HTM already provides an efficient conflict detection mechanism, which is faster than
any software-based contention manager; and

- the HTM monitors any memory access within the transaction, including those on the
meta-data or local variables, which takes the flexibility for implementing smart contention
policies away from the programmer.
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Part-htm faces the challenge of how to exploit the efficiency of sub-HTM transactions,
which write in-place to the shared memory, by minimizing the overhead of the instrumen-
tation needed for maintaining the isolation and correctness of global transactions. Such a
system does not only overcome the limitation of aborting transactions that cannot fit in
HTM due to limited resources, but it also performs similar to HTM in HTM’s favorable
workloads, and better than STM in scenarios where HTM generally behaves badly.

Given that HTM transactions commit directly to the shared memory and Part-htm always
executes transactions using HTM (except when the GL-software path is invoked), we opt
for using an eager approach. We recall that, in the eager approach, transaction’s updates
are written directly to the shared memory and old values are kept in a private undo-log. If
the transaction commits, the state of the shared memory is already updated, and if not, the
transaction is aborted and the undo-log is used to restore the old values.

To also cope with transactions that do not fail for resource limitations, Part-htm first
executes incoming transactions as HTM with few instrumentations (called first-trial HTM
transactions). In case they experience a resource failure, then our software framework “kicks
in” by splitting them. Figure 4.1 shows the intuition behind Part-htm. Let T x be a
transaction aborted for resource limitations, and let T x

1 , T x
2 , . . . , T x

n be the sub-HTM trans-
actions obtained by partitioning T x. Let T x

y be a generic sub-HTM transaction. At the core
of Part-htm there is a software component that manages the execution of T x’s sub-HTM
transactions. Specifically, it is in charge of: 1) detecting accesses that are conflicting with
any T x

y already committed; 2) preventing any other transaction T k from reading and com-
mitting or overwriting values created by T x

y before T x is committed; and 3) executing T x in
a way the transaction observes a consistent state of the memory.

The software framework does not handle those conflicts that happen on T x
y ’s accessed objects

when T x
y is still running; the HTM solves them efficiently. This represents the main benefit

of our approach over a pure STM fallback implementation.

For the achievement of the above goals, the software framework needs a hint about ob-
jects accessed by sub-HTM transactions. In order to do that, we do not use the classi-
cal address/value-based read-set or write-set as commonly adopted by STM implementa-
tions [29]; rather we rely only on cache-aligned Bloom-filter-based meta-data (just Bloom-
filter hereafter) to keep track of read/write accesses. In our solution we refer to a Bloom-
filter [15] as an array of bits where the information (addresses in our case) is hashed to a
single entry in the array (i.e., single bit). Just before committing, a sub-HTM transaction
updates a shared Bloom-filter for notifying its written objects, so that no other transaction
can access them. We recall that HTM monitors all memory accesses, thus if two HTM trans-
actions write different parts of the Bloom-filter (thus different objects), one transaction will
be aborted anyway (false conflict).

Two Bloom-filters per global transaction are used for recording the objects read and written
by its sub-HTM transactions. In fact, these Bloom-filters are passed by the framework from
one sub-HTM transaction to another. Therefore, they are not globally visible outside the
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transaction. The purpose of these Bloom-filters is to let read/written objects survive even
after the commit of a sub-HTM transaction, allowing the framework to check the validity of
the global transaction at any time.

A value-based undo-log is kept for handling the abort of a transaction having sub-HTM
transactions already committed. Unfortunately, this meta-data cannot be optimized as the
others because it needs to store the previous value of written and committed objects. We
consider the undo-log as the biggest source of our overhead while executing HTM trans-
actions. However, even though first-trial HTM transactions need to take into account all
previous Bloom-filters, they can omit the undo-log because they are still not part of a global
transaction thus when they abort, there is no other committed sub-HTM transaction to
undo. Sparing first-trial HTM transactions from this cost enables comparable performance
between Part-htm and pure HTM execution, in scenarios where most HTM transactions
successfully commit without being split.

The design of Part-htm solves also the problem of having heavy non-transactional compu-
tation included in HTM transactions. In fact, such a non-transactional computation can be
executed as a part of the software framework, whereas only the transactional part executes
as sub-HTM transaction.

As mentioned before, in this dissertation we provide also a version of Part-htm (called
Part-htm-o) that guarantees opacity by introducing some (but limited) overheads. We
can summarize them by two additional checks that a Part-htm-o sub-HTM transaction
performs to promptly detect inconsistent executions (i.e., before performing any memory
access). Unfortunately, any validations involving read and written objects require storing
them into per-transaction meta-data, which consume the memory available for supporting
HTM transactions. Also, those meta-data will be shared among threads, thus increasing the
amount of aborts significantly.

Part-htm-o takes into account these concerns by adopting the following solution. First,
once an object is accessed by a sub-HTM transaction, the existence of a write lock is imme-
diately detected. In order to minimize the impact on the memory footprint, we introduce the
address-embedded write locks, which are locks that do not use additional memory location,
whereas they are implemented by “stealing” the last bits from the accessed address. This
prevents any false conflicts on the shared write locks set. Second, a sub-HTM transaction
is immediately aborted once a global transaction commits (which is detected leveraging the
HTM conflict management). This condition, which appears to be very conservative, allows
the execution of a software validation, which can assess if the just-committed transaction
conflicts with the on-going global transaction. If that is not the case, then the aborted
sub-HTM transaction is immediately restarted, thus saving the previous computation of the
global transaction.

Before we proceed with Part-htm’s algorithmic details in Section 4.3, a comparison between
the executions of a pure HTM, a lazy STM (e.g., [29, 90, 40, 35]), and Part-htm is reported
in Figure 4.2. In an HTM transaction, a group of reads and writes are wrapped in between a
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Plain HTM

_xbegin()

Read x
1

Write y
1

…

Read x
n

Write y
m

_xend()

Part-HTM

Begin()

In-flight-validation()

…

Commit()

Generic STM

Begin()

(Read x
1
)

Search for x
1 
in Write-Set

Or Read from Memory
+ Add to Read-Set

 + Validate Read-Set

(Write y
1
)

Buffer write in Write-Set
May acquire location's lock

...
(Commit)

Acquire the Global Lock
Or Write-Set Locks
Validate Read-Set

Write back the Write-Set
Release Lock(s)

Sub-HTM transaction
(Read x

1
)

Add to read-set-sig
(Write y

1
)

Add to write-set-sig
+ Add to undo-log

…
Write y

k 
, Read x

j

Pre-commit-validation

Sub-HTM transaction
Write y

k+1
, Read x

j+1

…

Sub-HTM transaction
…

Write y
m
, Read x

n

Meta-Data
L1 cache used as 

Read-Set & Write-Set

Meta-Data 
Read-Set, Write-Set, 
Timestamp, Global Lock, 
Orecs, and/or Write-Locks

Meta-Data 
read/write-set-sig, start-ts
undo-log, g-timestamp, 
g-ring, and write-locks-sig

Figure 4.2: Comparison between HTM, STM, and Part-htm.

transaction begin and end. HTM internally manages the transaction atomicity, consistency
and isolation by using the cache as a transactional buffer. STM needs to instrument each
transactional read and write. In this example writes are buffered in the write-set and other
meta-data, such as locks, are handled internally by the STM to maintain the transactions’
correctness. In our system, all transactional operations are executed through slightly instru-
mented sub-HTM transactions. A software “wrapper” is just used for enforcing isolation
and correctness (see next section), it never reads or writes objects into the shared memory.

4.3 Algorithm Details

In the following we refer the objects committed by a sub-HTM transaction whose global
transaction is still executing as non-visible. Lastly, when we say HTM transactions, we
imply both sub-HTM and first-trial HTM transactions. Figure 4.3 shows the pseudo-code of
Part-htm’s core operations. In the following subsections we refer to specific pseudo-code
line using the notation [Line X].

4.3.1 Protocol Meta-data

Part-htm uses meta-data; some of them are local, thus visible by only one transaction,
others are shared by all transactions. In order to reduce their size, most of them are Bloom-
filters (i.e., a compact representation). We refer to those meta-data as signature. Conflict
detection using Bloom-filters can cause false conflicts because the hash function could map
more than one address into the same entry. To reduce false conflict, in our implementation
Bloom-Filters are bit-arrays of 2048 bits (4 cache-lines) with a single hash function. If two
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htm_post_commit()*
35. agg_write_sig ∪= write_sig;
36. write_sig.clear();

tx_commit()*
37. if (is_read_only) 
38.     atomic_dec(active_tx);
39.     return;
//The following two lines are atomic
40. ts = atomic_inc(timestamp) % RING_SIZE;
41. ring[ts] = agg_write_sig;
//The following line is atomic also
42. write_locks = write_locks – agg_write_sig;
43. agg_write_sig.clear();
44. read_sig.clear();
45. atomic_dec(active_tx);

tx_abort()*
46. undo_log.undo();
47. write_locks = write_locks – agg_write_sig;
48. agg_write_sig.clear();
49. read_sig.clear();
50. atomic_dec(active_tx);
51. exp_backoff();
52. restart_tx();

Acquire GL*

53. while (!CAS(GLock, 0, 1));
54. while (active_tx);//Wait for active tx

First HTM trialFirst HTM trial

tx_begin()
1. if (GLock) _xabort();

tx_read(addr)
2. read_sig.add(addr);
3. return *addr;

tx_write(addr, val)
4. write_sig.add(addr);
5. *addr = val;

htm_pre_commit()
6. if (write_locks ∩ write_sig
     || write_locks ∩ read_sig)
7.       _xabort();
8. ts = ++timestamp % RING_SIZE;
9. ring[ts] = write_sig;
10. _xend();

htm_post_commit()*
11. write_sig.clear();
12. read_sig.clear();

Sub-HTM

tx_read(addr)
13. read_sig.add(addr);
14. return *addr;

tx_write(addr, val)
15. undo_log.add(addr, *addr);
16. write_sig.add(addr);
17. *addr = val;

htm_pre_commit()
18. others_locks = (write_locks – agg_write_sig);
19. if (others_locks ∩ write_sig
        || others_locks ∩ read_sig)
20.   _xabort();
21. write_locks ∪= write_sig;
22. _xend();

Part-HTM

tx_begin()*
23. while (Glock) PAUSE();
24. atomic_inc(active_tx);
25. if (Glock) tx_abort();
26. start_time = timestamp;

in_flight_validation()*
27. ts = timestamp;
28. if (ts != start_time)
29.   for (i=ts; i >= start_time + 1; i--)
30.      if (ring[i % RING_SIZE] ∩ read_sig)
31.         tx_abort();
32.   if (timestamp > start_time + RING_SIZE)
33.      tx_abort(); //Abort at ring rollover
34.   start_time = ts;

Figure 4.3: Part-htm’s pseudo-code. Procedures marked as * are executed in software.

transactions update different bits, they will not necessarily conflict on the same cache-line,
thus saving an abort due to a false memory conflict.

Local Meta-data. Each transaction has its own:

- read-set-signature, where the bit at position i is equal to 1 if the transaction read an object
at an address whose hash value is i ; 0 otherwise.

- write-set-signature, where the bit at position i is equal to 1 if the transaction wrote an
object at an address whose hash value is i ; 0 otherwise.

- undo-log, it contains the old values of the written objects, so that they can be restored
upon the transaction aborts.

- starting-timestamp, which is the logical timestamp (see the global-timestamp later) of the
system at the time the transaction begins.

Global Meta-data. All transactional threads share:

- write-locks-signature, a Bloom-filter that represents the write-locks array, where each bit is
a single lock. If the bit in position i is equal to 1, it means that some sub-HTM transaction
committed a new object stored at the address whose hash is i. The write-locks-signature
has the same size and hash function as other signatures.

- global-timestamp, which is a shared counter incremented whenever a write transaction
commits.

- global-ring, which is a circular buffer that stores committed transactions’ write-set-signatures,
ordered by their commit timestamp. The global-ring has a fixed size and is used to
support the validation against committed transactions, in a similar way as proposed in
RingSTM [90].
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4.3.2 Begin Operation and Partitioning

Part-htm processes transactions at the beginning as HTM transactions (first-trial). These
first-trial HTM are not pure HTM transactions, because they are slightly instrumented
according to the rules illustrated later in this section.

When the first-trial HTM transaction fails for resource limitation, then the software frame-
work splits the transaction into multiple sub-HTM transactions. The splitting process does
not constitute the main contribution of the dissertation because there are several efficient
policies that can be applied. Examples include those using compiler supports, such as [3, 2],
or techniques that estimate the expected usage of cache-lines so that they can propose an
initial partitioning.

In our prototype, we partition the application manually. Each transaction is written in
three versions: one for the first-trial HTM; one with partitions; and one uninstrumented
for the GL-software path. Partitions are static and determined based on profiler analysis.
This analysis splits transactions into multiple basic blocks, and measures the size of accessed
shared objects and the duration of each basic block. A partition will be then composed of
one or more basic blocks according to their capability of fitting HTM resource limitations.
We also excluded basic blocks that access no shared objects from being executed in sub-HTM
transactions.

When a transaction starts, it reads the global-timestamp and stores it as the starting-
timestamp [Line 26]. All local meta-data, except the starting-timestamp, are passed from the
software framework to the first sub-HTM transaction, which updates them according to the
outcome of its operations. When a sub-HTM transaction commits, the software framework
forwards the updated local meta-data to the next sub-HTM transaction and so on, until
reaching the global commit phase. A transaction that falls back to the GL-software path
acquires the global lock and waits until the completion of all active transactions [Line 53-54].

A first-trial HTM transaction checks the global lock at the beginning such that it aborts if it
is, or will be, acquired [Line 1]. A sub-HTM transaction is not allowed to start its execution
until the global lock is not taken [Line 23].

4.3.3 Transactional Read and Write Operation

Read operations are always performed by HTM transactions, thus they can happen either
during the execution of first-trial HTM transactions or sub-HTM transactions. In both
cases the behavior is identical and straightforward because, essentially, every read operation
always accesses the shared memory [Line 3 or 14]. In case a previous sub-HTM transaction,
belonging to the same global transaction, committed a new value of that object, this new
value is already stored into the shared memory since HTM uses the write in-place technique.
If the read object has been already written during the current HTM transaction, then the
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HTM implementation guarantees the access to the latest written value.

In order to detect if the accessed object is a non-visible version, the read memory location
is recorded into the read-set-signature [Line 2 or 13]. This information is fundamental for
preventing a sub-HTM transaction that accessed non-visible object from committing, thus
guaranteeing the isolation from other transactions.

Similar to read operations, writes also always execute within the context of an HTM trans-
action, thus objects are written directly into the shared memory [Line 5 or 17]. The same
considerations made for the read operations apply also for write operations. Thus any written
locations is added to the transaction’s write-set-signature [Line 4 or 16]. This information
will be used by the HTM transaction before proceeding with the commit phase.

In addition to the above steps, two other important actions (that do not apply to first-trial
HTM) must be taken into account. First, the global transaction could abort in the future,
even after committing the current sub-HTM transaction. If this happens, the previous values
of written objects should be replaced into the shared memory. For this reason, before to
finalize the write operation, the old value of the object is logged into the transaction’s undo-
log [Line 15]. Second, the new value of the object should be protected against accesses from
other transactions, and this is done by updating the global write-locks-signature [Line 21]. It
is worth to note that, every update to a shared meta-data, such as the write-locks-signature,
causes the abort of all HTM transactions that read the specific cache-line where the meta-
data is located, even if they updated or tested different bits (false conflict). For this reason,
we delay the update of the write-locks-signature at the end of the sub-HTM transaction so
that false conflicts are minimized.

In practice, the task of notifying that a new object has been just committed, but is non-
visible, is very efficient and uses the technique showed in Figure 4.4(a): the write-locks-
signature is updated to the result of the bitwise OR between transaction’s write-set-signature
and the write-locks-signature itself.

Semantically, the write-locks-signature contains the information regarding locked objects
already stored into the shared memory. Besides the terminology, Part-htm does not use
any explicit lock for protecting memory locations. As an example, no Compare-And-Swap
operation is required for acquiring the locks on written objects. Updating the write-locks-
signature (i.e., the lock acquisition) is delegated to the sub-HTM transaction itself.

4.3.4 Validation, Commit and Abort

Part-htm requires two types of validation. One executed by HTM transactions before
commit (called HTM-pre-commit-validation), and one executed by the software framework
after the commit of a sub-HTM transaction (called in-flight-validation).

HTM-pre-commit-validation. This validation is performed at the end of each HTM
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Figure 4.4: Acquiring write-locks (a). Detecting intermediate reads or potential overwrites
(b). Releasing write-locks (c).

transaction (sub-HTM and first-trial HTM transactions) and it has a twofold purpose.

First, HTM transactions should not overwrite any non-visible memory location (i.e., locked),
because, in this case, the sub-HTM transaction that committed that object has its global
transaction not yet committed. Overwriting that object means breaking the isolation of the
global transaction. To prevent this, any HTM transaction compares its write-set-signature
with the global write-locks-signature through a bitwise AND (i.e., the intersection between
the two Bloom-filters [Line 6 or 19]) as shown in Figure 4.4(b). If the result is a non-zero
Bloom-filter, it means that the HTM transaction wrote some object that was locked, thus it
should abort [Line 7 or 20].

Due to the nature of the Bloom-filters, a lock is just a bit and has no ownership information.
Thus, a transaction is not able to distinguish between its own locks, which are acquired by
previous sub-HTM transactions, and others’ locks. We solve this issue by separating the
current sub-HTM transaction’s write-set-signature from the aggregated write-set-signature
of the global transaction. This way, each sub-HTM transaction knows whether the locked
location is owned by its global transaction or not [Line 18]. The aggregated write-set-
signature is updated in software after each sub-HTM transaction [Line 35].

Second, HTM transactions should not read the value of locked (i.e., non-visible) objects,
in order to prevent the exposition of uncommitted (partial) state of an executing transac-
tion. To enforce this rule, during the HTM-pre-commit-validation the transaction’s read-set-
signature is intersected with the write-locks-signature [Line 6 or 19] (as in Figure 4.4(b)). A
resulting non-zero bloom-filter suggests to abort the current HTM transaction for avoiding
the corruption of the isolation of other executions.

The HTM-pre-commit-validation is mandatory for the correctness of Part-htm, thus it
cannot be skipped. However, there are rare cases (described in [32]) that could allow an
HTM transaction to commit without performing the HTM-pre-commit-validation. These
cases are related to possible invalid objects read inside the HTM by doomed transactions,
which could generate unexpected behaviors. To address this problem the Haswell’s RTM
provides a sandboxing mechanism so that a transaction is eventually aborted if its execution
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hangs or loops indefinitely. However, the sandboxing has some limitation [32], for example,
when a corrupted value is used as a destination address of an indirect jump instruction. If, by
chance, the target address of this incorrect jump is the xend instruction (i.e., the instruction
used for demarcating the bound of an HTM transaction), then the commit is called without
executing the HTM-pre-commit-validation. Part-htm-o (Section 4.3.5) solves such an issue
by guaranteeing opacity [45].

In-flight-validation. This validation is performed by the software framework after the
commit of every sub-HTM transaction in case some global transaction (including first-trial
HTM) committed in the meanwhile, whereas first-trial HTM transactions do not need to
call it. The in-flight-validation is needed for ensuring that the memory snapshot observed
by the global transaction is still consistent after the commit of a sub-HTM transaction.

Assuming the scenario with two global transactions T x and T y, both having two sub-HTM
transactions each. Let us assume that T x

1 reads the value of object o and commits. Let us also
assume that o is not locked at this time. After that, T y

2 is scheduled. It overwrites and locks
o, invalidating T x. T x is able to detect this conflict through the HTM-pre-commit-validation
invoked before the T x

2 ’s commit, but let us assume that the commit of T y is scheduled before
T x

2 ’s commit (in fact, T y
2 is the last sub-HTM transaction of T y). As we will show later

in the commit procedure, all transaction’s locks are cleared from the write-locks-signature
when the global transaction commits. This means that, the intersection between T x

2 ’s read-
set-signature and the write-locks-signature does not report any conflict on o, therefore T x

2

can commit even if T x’s execution is not consistent anymore.

The in-flight-validation solves this problem by comparing the transaction’s read-set-signature
against the write-set-signature of all concurrent and committed transactions [Line 27-34].
Retrieving committed transactions, as we will show later, is easy because they have an entry
in the global-ring, associated with their commit timestamp. The selection of those that are
concurrent is straightforward because they have a commit timestamp that in higher than
the starting-timestamp of the transaction that is running the in-flight-validation [Line 29].
After a successful in-flight-validation, the transaction’s starting-timestamp is advanced to
the current global-timestamp [Line 34]. This way, subsequent in-flight-validations do not
pay again the cost of validating the global transaction against the same, already committed,
transactions.

It is worth to notice that the in-flight-validation is done after each sub-HTM transaction
mainly for performance reason (excect for Part-htm-o where it is mandatory). In fact,
in order to ensure serializable executions, the in-flight-validation could be done just one
time after the commit of the last sub-HTM transaction and before commit. We decided to
perform it after each sub-HTM transaction because detecting invalidated objects early in the
execution avoids unnecessary computation, saves HTM resources, and makes the software
framework’s execution always consistent.

Commit. The commit of a transaction is straightforward. First-trial HTM transactions
are committed in HTM, and added to the global-ring if not read-only [Line 8-10]. If the
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tx_read(addr)
17. if ((addr & 1) && not_self_lock(addr)) 
18.    _xabort(CONFLICT); //Locked by others
19. read_sig.add(addr);
//Remove lock bit before dereferencing
20. return *(addr & ~1);

tx_write(addr, val)
21. if (addr & 1) //Locked by others or self?
22.   if(not_self_lock(addr)) _xabort(CONFLICT);
23.    else goto 27
24. undo_log.add(addr, *addr);
25. write_sig.add(addr);
26. addr = addr | 1; //Acquire lock
27. *(addr & ~1) = val;

Part-HTM

tx_begin()*
28. while (Glock) PAUSE();
29. atomic_inc(active_tx);
30. if (Glock) tx_abort();
31. start_time = timestamp;

in_flight_validation()*
32. ts = timestamp;
33. if (ts != start_time)
34.   for (i=ts; i >= start_time + 1; i--)
35.      if (ring[i % RING_SIZE] ∩ read_sig)
36.         tx_abort();
37.   if (timestamp > start_time + RING_SIZE)
38.      tx_abort(); //Abort at ring rollover
39.   start_time = ts;

First HTM trialFirst HTM trial

tx_begin()
1. if (GLock) _xabort();

tx_read(addr)
2. if (addr & 1) //Locked
    _xabort();
3. return *addr;

tx_write(addr, val)
4. if (addr & 1) //Locked
    _xabort();
5. write_sig.add(addr);
6. *addr = val;

htm_pre_commit()
7. ts = ++timestamp % RING_SIZE;
8. ring[ts] = write_sig;
9. _xend();

htm_post_commit()*
10. write_sig.clear();

Sub-HTM

tx_sub_begin()
11. if (start_time != timestamp)
12.   _xabort(TS_CHANGED);

not_self_lock(addr)
13. foreach (entry in undo_log) 
14.    if (entry.addr == addr)
15.    return false;
16. return true;

tx_commit()*
40. if (is_read_only) 
41.     atomic_dec(active_tx);
42.     return;
//The following two lines are atomic
43. ts = atomic_inc(timestamp) % RING_SIZE;
44. ring[ts] = write_sig;
45. foreach (entry in undo_log) //Unlock all
46.    entry.addr = entry.addr & ~1;
47. write_sig.clear();
48. read_sig.clear();
49. atomic_dec(active_tx);

tx_abort()*
50. undo_log.undo();
51. foreach (entry in undo_log) //Unlock all
52.    entry.addr = entry.addr & ~1;
53. write_sig.clear();
54. read_sig.clear();
55. atomic_dec(active_tx);
56. exp_backoff();
57. restart_tx();

Acquire GL*

58. while (!CAS(GLock, 0, 1));
59. while (active_tx);//Wait for active tx

Sub-HTM Abort Handler*

60. if (abort_code == TS_CHANGED)
61.    in_flight_validation(); //Valid? Abort?
62.    restart_sub_HTM(); //Still valid
63. else tx_abort();

Figure 4.5: Part-htm-o’s pseudo-code. Procedures marked as * are executed in software.

transaction is read-only (i.e., no writes occurred during the execution), it has been already
validated before entering the commit phase, thus it can just commit [Line 37].

Even the case where the transaction performed at least a write operation is simple be-
cause it has been already validated by both the HTM-pre-commit-validation, invoked before
committing the last sub-HTM transaction, and the in-flight-validation, called after the last
sub-HTM transaction. In addition, its written objects are already applied to the shared
memory and protected by locks. The only remaining tasks are related to the update of the
global meta-data. The transaction adds its write-set-signature to the global-ring [Line 41]
and increments the global-timestamp [Line 40], atomically. Finally, all transaction’s write
locks should be released [Line 42]. This operation is done by executing an atomic bitwise
XOR between the transaction’s write-set-signature and the global write-locks-signature, as
shown in Figure 4.4(c).

Abort. The abort of first-trial HTM transactions is handled by the HTM implementation
itself. Sub-HTM transactions that fail the HTM-pre-commit-validation are explicitly aborted
and retried for a limited number of times (5 in our implementation) before being handled
by the software framework.

The abort of a global transaction requires to restore the old memory values of objects written
by its committed sub-HTM transactions. This operation is done traversing the transaction’s
undo-log [Line 46]. After that, the transaction’s owned write-locks are released from the
global write-locks-signature [Line 47] and a retry is invoked after an exponential back-off
time [Line 51-52]. Before to proceed with the next rerun, if the transaction has been aborted
for a resource failure, it will be split again. After 5 aborts, the transaction finally falls back
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to the GL-software path.

4.3.5 Ensuring Opacity

Part-htm cannot guarantee opacity. This is because the consistency of the execution his-
tory is not verified encounter time but only before committing a sub-HTM transaction, as
well as during the in-flight-validation. Roughly, the former validation checks if objects ac-
cessed during the current sub-HTM transaction were non-visible; the latter verifies that the
memory snapshot observed by the global transaction is still consistent against all committed
transactions. These validations do not prevent the transaction to perform a memory read
if the object is non-visible or the global transaction’s history is not valid anymore, whereas
they “only” prevent the transaction to finally commit.

Two extensions are needed for making Part-htm opaque: 1) once a locked object is ac-
cessed, the global transaction should be immediately aborted; 2) no memory access should be
performed if the snapshot observed by the sub-HTM transaction, as well as the global trans-
action, is not valid. Figure 4.5 shows the pseudo-code of Part-htm-o’s core operations. In
this sub-section, line numbers refer to Figure 4.5.

Encounter time lock detection. In principle, checking if an object is locked is straight-
forward because we could analyze the write-locks-signature just before performing the actual
read. Unfortunately, the write-locks-signature is a global meta-data, which is updated any-
time a sub-HTM transaction commits any object. As a result, reading it during an HTM
transaction means being aborted anytime another sub-HTM transaction updates it, even if
the accessed object is not the same and their entries in the write-locks-signature are different.
Another solution is creating an external lock-table for storing locks. However, this solution
has the same pitfalls as the write-locks-signature because they both rely on a hash-function.

Part-htm-o solves this problem by introducing the address-embedded locks, which is a
novel technique never used in the HTM context, that embeds the information about the
lock acquisition into the memory address of the shared object itself. With it, we assign the
address of shared objects in a way such that they are always memory-aligned. If so, we set the
least significant bit (meaningless because we know the object is always memory-aligned) to
1 (locked) or 0 (unlocked). With address-embedded locks we eliminate any false conflicts due
to shared meta-data. In practice, when an object is accessed inside a sub-HTM transaction,
the least significant bit of its address is checked and if a lock is found, the transaction is
explicitly aborted [Line 2, 4, 17, 21].

The deployment of address-embedded locks requires a memory location for storing the actual
memory-aligned address that points to the shared object. Although it does not generate
any perceivable performance overhead, the implementation of this indirect addressing layer
needs a modification of the memory allocation of the application (which is a downside). As
an example, if the shared object is a primitive type (e.g., integer), we need to manage the



Mohamed Mohamedin Chapter 4. Part-htm 41

value of its pointer. This indirect addressing layer must be added.

In more details, we exploit the memory alignment of addresses, which allows the last bit to
be manipulated arbitrarily without corrupting the address itself. If the application accesses
a scalar X with address addr(X), in order to change the last bit of addr(X) we need an
indirect reference to X (wrap(X)). This way, the value of wrap(X) is addr(X) but with the
last bit ready to be used for locking. Therefore, the deployment of address-embedded-locks
requires modifying the application (although simple) to use wrap(X) rather than X. If X
is a pointer, then no wrapper is needed and the lock is embedded in X itself. For instance,
in a linked-list, nodes store pointers to other nodes (Node* next), thus we already have a
container for modifying the addresses directly to embed the lock. Modifications are rather
needed if there is a scalar (e.g., int size). If so, we wrap it with a pointer (int* sizep =

&size) so it is only accessed indirectly via the wrapper (*sizep).

Consistent reads. Opacity requires that any memory access is performed only if it does
not violate the consistency of the snapshot observed so far by the transaction. Part-htm
does no provide this because there is no way to detect if an object read in a previous sub-
HTM transaction becomes not valid while executing a subsequent sub-HTM transaction. As
a consequence, a read operation can access to an object committed by a transaction whose
history is not consistent with the global transaction. Part-htm allows this anomaly and
aborts the global transaction once the sub-HTM transaction is already committed exploit-
ing the in-flight-validation. A trivial solution for ensuring consistent reads is to validate
all objects accessed before reading a new shared object, but this solution is unfeasible be-
cause it would generate several false conflicts and require maintaining all read objects, thus
consuming resources.

Part-htm-o adopts a strategy that overcomes the above limitations. At the beginning
of each sub-HTM transaction, the global-timestamp is compared against the transaction’s
starting-timestamp [Line 11-12]. The goal is to abort the sub-HTM transaction anytime a
new global transaction commits. Once this happen, the in-flight-validation is called and, in
case it succeeds, just the sub-HTM transaction is restarted [Line 60-62], otherwise the whole
global transaction is aborted [Line 36]. Reading the global-timestamp allows the sub-HTM
transaction to avoid any validation while executing because, once a new global transaction
commits and it is added to the global-ring, the global-timestamp is changed and this forces
the sub-HTM transaction to abort due to the hardware conflict detection. The combination
of both the above extensions make the sub-HTM’s HTM-pre-commit-validation useless in
Part-htm-o because its goal is already provided earlier in the execution.

By guaranteeing opacity we prevent any step made by HTM transactions if the observed
history is not consistent anymore. This proscribes the pathologies describe in [32].
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4.4 Compatibility with other HTM processors

The IBM Power8 HTM processor supports execution of non-transactional code inside an
HTM transaction. Two new instructions tsuspend and tresume are provided such that a
transaction can be suspended and resumed, respectively. Our algorithm can take advantage
of this “non- transactional window” for executing the HTM-pre-commit- validation and for
acquiring the write-locks-signature. This way, aborts due to false conflict on those meta-data
are avoided.

We designed Part-htm to be hardware friendly, namely all the meta-data and procedures
used can be implemented directly in hardware because they are limited in space and their
size is small. Also, bloom-filter read/write signatures can be generated via hardware. As a
result, these characteristics make Part-htm a potential candidate for being implemented
directly as hardware protocol, thus significantly improving its performance.

4.5 Correctness

Part-htm ensures serializability [13] as correctness criterion and Part-htm-o ensures opac-
ity [45]. We now show the first and then we extend the discussion to opacity.

Three types of conflicts can invalidate the transaction’s execution: write-after-read, read-
after-write, write-after-write. Let T x

r and T y
w be the sub-HTM transactions reading and

writing, respectively. T x
r belongs to the global transaction T x whereas T y

w to T y.

The write-after-read conflicts happen when T x
r reads an object o that T y

w will write. If the
conflicting operations of T x

r and T y
w happen while both the transactions are running, the

HTM conflict detection will abort one of them. Otherwise, it means that the write operation
of T y

w on o is executed after the commit of T x
r . If so, T x

r will detect this invalidation through
the HTM-pre-commit-validation performed at the end of the sub-HTM transaction that
follow T x

r . If there is no sub-HTM transaction after T x
r , it means that T x commits before

T y, thus the conflict was not an actual conflict because T y will be serialized after T x. On
the other hand, if T y

w is the last sub-HTM transaction of T y, T y will be committed and its
write-set-signature attached to the global-ring. In this case, the in-fligh-validation performed
by T x after the commit of T x

r will detect the conflict and abort T x.

The read-after-write conflicts happen when T x
r reads an object o that T y

w already wrote. As
before, if the conflict is materialized while both are running, the HTM handles it. If T x

r

reads after the commit of T y
w, but T y is still executing, then T x

r will be aborted before it
could commit thanks to the HTM-pre-commit-validation, which detects a lock taken on o
by T y. If T y commits just after T y

w, this is not a problem because it means that T x
r accessed

to the last committed version of o.

The write-after-write conflicts are detected because, otherwise, a read operation on an object
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already written inside the same transaction could return a different value. Besides the
trivial case where both the writes happen during the HTM execution, before committing,
all HTM transactions perform the HTM-pre-commit-validation, which detects a taken lock
by intersecting the transaction’s write-set-signature with the global write-locks-signature.

Following the above rules, a transaction starts the commit phase by having observed a state
that is still valid. Any possible invalidation that happens after the last in-flight-validation
is ignored because the transaction is intrinsically committing by serializing itself before the
transaction that is invalidating (we recall that all objects are already into the shared memory
and protected by locks).

Considering that Part-htm reads and writes only using HTM transactions, there is the
possibility that doomed transactions (those that will be aborted eventually) could observe
inconsistent states while they are running as HTM transactions. In fact, locks are checked
only before committing the HTM transaction, thus a hardware read operation always returns
the value written in the shared memory, even if locked. The return value of those inconsistent
reads could be used by the next operations of the transaction, generating not predictable
execution (e.g., infinite loops or memory exception). This behavior does not break serializ-
ability because aborted transactions are not taken into account by the correctness criterion.
However, for in-memory processing, like TM, avoiding such scenarios is desirable, as de-
fined in [45]. As a partial fallback plan, the HTM provides a sandboxing feature, which
eventually aborts misbehaving HTM transactions that generate infinite loops or erroneous
computations. However, without guaranteeing Opacity, the protocol cannot prevent corner
case situations where a sub-HTM transaction is committed skipping the pre-HTM validation.

Part-htm-o addresses this problem by avoiding any memory operation in case A) the
snapshot observed by the transaction is not consistent anymore, and B) if the memory
access itself would break the consistency of the transaction.

(A) We ensure the point A by monitoring the global-timestamp as the first operation of a
sub-HTM transaction. This way, if the in-flight-validation performed before the activation
of a sub-HTM transaction missed some object committed just after the in-flight-validation
or if some global transaction commits while a sub-HTM transaction is executing, then the
global-timestamp is changed and any HTM transaction is aborted and forced to perform a
validation of all accessed objects.

(B) If a sub-HTM transaction accesses an object already locked (if the object becomes locked
after the access, then the HTM will detect the conflict), then before to finalized the access
the HTM transaction is explicitly aborted by leveraging the address-embedded write locks.
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4.6 Evaluation

Part-htm has been implemented in C++. To conduct a comprehensive evaluation, we used
four benchmarks: N-reads M-write, a configurable application provided by RSTM [66]; the
linked-list data structure; STAMP [70] (v0.9.10), the popular suite of applications used for
evaluating STM- and HTM-related concurrency controls; and EigenBench [53], a customiz-
able TM benchmark. Very recently, a new version of STAMP [84] has been made available.
It is implemented using the new C++ transactional constructs so that any transactional
instrumentation is handled by the compiler itself. Part-htm requires at least one addi-
tional construct exposed by the compiler to define the boundaries of a sub-HTM transaction
and its context. Extending Part-htm to comply with that is not the focus of the disserta-
tion. However, to address this issue we re-implemented Labyrinth (the one changed most)
according to the new specification as in [84] and the results are reported in Figure 4.9.

As competitors, we included two state-of-the-art STM protocols, RingSTM [90] and NOrec [29];
one Hybrid TM, Reduced Hardware NOrec (NOrecRH) [68]; and one HTM with the GL-
software path as fallback (HTM-GL). Also, the ring used by RingSTM and Part-htm have
the same size and signature. NOrecRH and HTM-GL retry a transaction 5 times as HTM
before falling back to the software path. All are implemented such that they do not suffer
from the lemming effect [33]. As suggested in [33], a transaction does not retry until the
global lock is not acquired. In this evaluation study we used the Intel Haswell Core i7-4770
processor and GCC 4.8.2. All data points are the average of 5 repeated execution. To show
the viability of using the address-embedded write locks, we also included the performance of
Part-htm-o in most of the used applications.

As a general comment of our evaluation, Part-htm represents the best solution in almost
all the tested workloads, except for those where pure HTM transactions always commit. In
these cases, outperforming HTM is impossible without additional hardware support, but our
approach, thanks to the first-trial HTM transactions, does not pay a significant performance
penalty.

N-Reads M-Writes. In this benchmark each transaction reads N elements from one array
and writes M to another. The benchmark can also be configured to access disjoint elements
(i.e., no contention). We take advantage of this latter feature so that we can evaluate our
approach in scenarios where the aborts due to non-false conflicts of HTM transactions are
minimized.

Figure 4.6(a) shows the results of reading and writing 10 disjoint elements. In this exper-
iment, few transactions are aborted for resource failure, thus almost all commit as HTM.
As expected, HTM-GL has the best throughput, followed by Part-htm. This scenario is
not the best case for Part-htm but still, thanks to the lightweight instrumentation of first-
trial HTM transactions, it shows a slow-down limited to 45% over HTM-GL, whereas the
best competitor (NOrecRH) is 91% slower than Part-htm. Interestingly, Part-htm-o is
slightly slower than its non-opaque version due to the need of aborting a sub-HTM transac-
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Figure 4.6: Throughput using N-Reads M-Writes benchmark.
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Figure 4.7: Throughput using Linked-List.

tion once a global transaction commits. However this overhead is limited because, in case of
no real conflict (as in this experiment), only the aborted sub-HTM transaction is restarted.
On the other hand, the address-embedded write locks eliminate any false conflict due to the
compact representation of the write locks set, thus regaining performance.

Figure 4.6(b) shows an experiment where 100k elements are read and 100 elements are
written to a large array. This scenario reproduces large transactions in a read-dominated
workload. Here, HTM-GL still performs good because the Haswell HTM implementation
can go beyond the L1 cache capacity just for read operations [26], however most of HTM
transactions fall back to the GL-software path. For this reason, the benefit of partitioning
and committing through sub-HTM transactions, which are much faster than falling back to
the GL-software path, is evident. Part-htm gains up to 50% over HTM-GL. STM protocols
and NOrecRH suffer from excessive instrumentation cost due to the several operations per
transaction. Part-htm gains around 20% over Part-htm-o.

In Figure 4.6(c), transactions perform one read on an object and then it does some floating
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point operations before writing its new value back to the destination array. This sequence
is repeated 100 times on different objects. This way we emulate transactions that could be
committed as HTM in terms of size but, for time limitation, are likely aborted (e.g., by a
timer interrupt). In this scenario, Part-htm shows a significant speed-up compared to other
competitors. HTM-GL executes all transactions using global locking. NOrecRH and NOrec
perform similar but NOrecRH is slightly worst as it executes the transaction in hardware
first. Part-htm-o follows the same trend line as Part-htm but with a small performance
gap as showed before.

Linked-List. In this benchmark, we do operations on a linked list. We change its size, and
the percentage of write operations (insert and remove) against read operations (contains).
Linked list transactions traverse the list from the beginning until the requested element.
This increases the contention between transactions. Write operations are balanced so that
the size of the list is stable.

Figure 4.7(a) shows the results of a 1K elements linked list using 50% of write operations.
Linked list operations do several memory reads to traverse the data structure, and some
writes. Thus, almost all transactions commit in hardware and HTM-GL has the best
throughput. However, following the same trend as Figure 4.6(a), Part-htm places its
performance closer to HTM-GL.

Figure 4.7(b) shows a larger linked list with 10K elements. Here, most of the transactions fail
in hardware for resource failures. As for the case in Figure 4.6(c), Part-htm’s throughput
is the best as sub-HTM transactions pay a limited instrumentation cost and fast execution
in hardware. Part-htm gains up to 74% over HTM-GL.

STAMP. Figure 4.8 shows the results of STAMP applications. STAMP applications’ trans-
actions likely do not fail in HTM except for Labyrinth and Yada. However, most of the effort
in the design of Part-htm is focused on reducing overheads. In fact, STAMP applications’s
performance confirms the effectiveness of Part-htm’s design because it is the best in almost
all cases, and the closest to the best competitors when HTM is the best. All data points
report the achieved speed-up with respect to the sequential execution of the application.

Kmeans (Figure 4.8(b) and 4.8(a)), Vacation low-contention (Figure 4.8(f)), SCAA2 (Fig-
ure 4.8(c)), Intruder (Figure 4.8(e)), and Genome (Figure 4.8(i)) are application where HTM
transactions do not fail for resource limitations, but they are mostly short and conflict due
to real conflicts. In all those application, HTM-GL is the best but Part-htm is always the
closest competitor. Interestingly, SCAA2 and Kmeans show the instrumentation overhead
of Part-htm while executing with only one thread.
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Figure 4.8: Speed-up over sequential (non-transactional) execution using applications of
STAMP Benchmark.

On the other hand, applications like Labyrinth (Figure 4.8(d) and Table 4.1) and Yada
(Figure 4.8(h)) are suited more for STM protocols than HTM. That is because more than
half of the generated transactions in Labyrinth are large and long (thus HTM cannot be
efficiently exploited), but they also rarely conflict with each other. As a result, NOrecRH
and NOrec perform worse than, but closer to, Part-htm. HTM-GL is the worst. We also
observe a 10% of gap between Part-htm and Part-htm-o. This gap is basically the cost
of performing the in-flight-validation once a global transaction commits and a sub-HTM
transaction is executing. Labyrinth is not characterized by short transactions, thus updates
of the global-timestamp are not very frequent, and this helps to reduce the gap between
Part-htm-o and Part-htm.
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% of Aborts % of committed tx per type
Conflict Capacity Explicit Other GL HTM SW

(A) 10.11% 70.76% 0.04% 19.09% 49.6% 50.4% N/A
(B) 93.95% 1.09% 1.14% 3.82% 0.1% 50.3% 49.6%

Table 4.1: Statistics’ comparison between HTM-GL (A) and Part-htm (B) using Labyrinth
application and 4 threads.

In Figure 4.8(f) and 4.8(g) we observe the impact of hyper-threading (thus reduce number
of cache-lines available per executing thread). Moving from 4 to 8 threads, the performance
of HTM-GL drops due to the increased capacity aborts. Figure 4.8(h) shows the results of
Yada. This application has transactions that are long and large, generating a reasonable high
contention level. Thus it represents a favorable workload for Part-htm and the plot confirms
it. We do not report the results using the Bayes application given its non-deterministic
execution.
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Figure 4.9: Speed-up over sequential (non-transactional) execution using Labyrinth as in [84].

Figure 4.9 shows the performance using a newer version of Labyrinth as introduced in [84].
We re-implemented this version according to the new specification as in [84]. This version
of the benchmark produces transactions short in time (because the non-transactional com-
putation has been moved from the transaction body) but that access several shared objects,
thus they likely fail in HTM thus falling back to the GL-software path. However, HTM-GL
still provides the best performance, even if very close to the others, because it falls back to
the software path sooner than the original version of Labyrinth (Figure 4.8(d)). Part-htm
suffer from high percentage of false conflicts on the write-locks-signature due to the presence
of several short HTM transactions that access several (likely different) objects.

EigenBench. EigenBench is a comprehensive benchmark, which can generate transactions
with different properties. We used it to build a workload with 50% long and 50% small
transactions, thus the latter will likely fit in HTM. A small transaction does 50 read and
5 write operations to an array of 1024 words while long transactions add non-transactional
computation. Accesses are disjoint. Figure 4.10(a) plots the results. Part-htm has the
best performance as it executes the long transactions efficiently. Part-htm-o follows with
average overhead of 15%. Other competitors suffered with the long transactions.
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Figure 4.10: Speed-up over sequential (non-transactional) execution using EigenBench.

Figure 4.10(b) shows the results of EigenBench under high contention scenario. EigenBench
is configured to access the shared hot-array of size 32K. Each transaction performs 10K
reads and 100 writes with 50% repeated access Part-htm has the lowest overhead and the
best performance due to detecting conflicts earlier than other techniques and encounter-time
write locks. In addition, partitioning allows the execution of transaction in hardware, thus
maximizing the exploitation of HTM.



Chapter 5

Octonauts

5.1 Problem Statement

Transactional Memory (TM) achieves high concurrency when the contention level is low
(i.e., few conflicting transactions are concurrently activated). At medium and high contention
level, transactions aborts each other more frequently and a contention manager or a scheduler
is required. A contention manager (CM) is an encounter time technique: when a transaction
is conflicting with another one, the module implementing the CM is consulted, which decides
which transaction of them can proceed. As a consequence, the other transaction is aborted
or delayed. A CM collects information about each transaction (e.g., start time, number of
reads/writes, number of retries). Based on the collected information and the CM policy, CM
decides priorities among conflicting transactions. This guarantees more fairness and progress
and could prevent some potential live-lock situation. A CM can work either during the
transaction’s execution by using live (on the fly) information, or work prior the transaction’s
execution. Schedulers in the latter category use information about transaction’s potential
working-set (reads and writes) defined a priori in order to avoid the need of solving conflicts
while transactions are executing.

In this chapter, we address the problem of CM in Hardware Transactional Memory (HTM).
Current Intel’s HTM implementation is a black-box because it is entirely embedded into the
cache coherence protocol. The L1 cache of each core is used as a buffer for the transactional
write and read operations. The granularity used for tracking accesses is the cache line. The
eviction and invalidation of cache lines defines when a transaction is aborted (it reproduces
the idea of read-set and write-set invalidation of STM). Since there is no way to change Intel’s
HTM conflict resolution policy (because it is embedded into the hardware cache coherence
protocol), also the implementation of a classical CM cannot be trivially provided. Regarding
this topic, the Intel’s documentation says ”Data conflicts are detected through the cache
coherence protocol. Data conflicts cause transactional aborts. In the initial implementation,

50
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the thread that detects the data conflict will transactionally abort.”. As a result, we cannot
know which thread will detect the conflict as the details of Intel’s cache coherence protocol
are not publicly available.

From an external standpoint, when a conflict is detected between threads accessing the same
cache line, one of the transaction running on them is immediately aborted without giving
the programmer a chance to resolve the conflict in a different manner. For example, when
two concurrent transactions access the same cache line, and one access is a write, one HTM
transaction will detect the conflict when it receives the cache coherence invalidation message.
That transaction will immediately abort. The program will jump to the abort handler where
it should handle the abort. Thus, when the program is notified with the abort, it is already
too late to avoid it or decide which transaction was supposed to abort. In addition, Intel’s
HTM treat all reads/writes in a transaction as a transactional reads/writes, even if the
accessed object is not shared (i.e., a local variable). Non-transactional accesses inside a
transaction cannot be performed in the current HTM implementations.

Customizing the conflict resolution policy and control which transaction aborts means nec-
essarily detecting the conflict before it happens. However, this also means repeating what
HTM already does (i.e., conflict detection) with a minimal overhead because it is provided
at the hardware level. In addition, every access to shared data (read/write) should be mon-
itored for a potential conflict. In other words, every access to a shared object should be
instrumented such that we know if other transactions are accessing that object concurrently.
We also need to keep information about each object (i.e., meta data). That leads to another
problem, having a shared meta data for each object and reading/updating such meta data
will introduce more conflicts (we recall that HTM triggers an abort if any cache line is inval-
idated, even if in that cache line there is stored a non shared object). For example, if we will
add a read/write lock for each object which indicates which transaction is reading/writing
the object, then each transaction should read the lock status before reading/writing the ob-
ject. From the semantics standpoint, if the lock is acquired by one transaction for read and
another transaction reads the object, then it can proceed and acquire the lock for read too.
However, at the memory level, the acquisition of the lock means writing to the lock variable.
From the HTM standpoint, the lock is just an object enclosed in a cache line. Reading the
lock status will add it to the transaction read-set, and acquiring (updating) the lock will
add it to the write-set. Since all memory accesses in an HTM transaction are considered as
transactional, once a transaction acquires the lock, it will conflict with all other transactions
that read/wrote to the same lock. In order to solve this problem, we need a technique to
collect information about each object without introducing more conflict.

On the other hand, adding a scheduler in front of HTM transactions is more appealing be-
cause it does not necessarily require live information to operate. Such a scheduler uses static
information about incoming transactions, and based on these information, only those transac-
tions that are non conflicting can be concurrently scheduled (thus no conflicting transactions
can simultaneously execute in HTM). Thus, a scheduler can orchestrate transactions without
introducing more conflict. In addition, considering the best-effort nature of HTM transac-



Mohamed Mohamedin Chapter 5. Octonauts 52

tions, a scheduler should handle also the HTM fallback path efficiently (i.e., HTM-aware
scheduler). As an example, falling back to STM rather than global lock usually guarantees
better performance. Thus, the scheduler should allow HTM and STM transactions to run
concurrently without introducing more conflict due to HTM-STM synchronization. Finally,
the scheduler should also be adaptive, namely if a transaction cannot fit in HTM or is ir-
revocable (thus cannot be aborted), then the scheduler should start it directly as an STM
transaction or alone exploiting the single global lock.

5.2 Algorithm Design

We propose Octonauts, an HTM-aware Scheduler. Octonauts’s basic idea is to use
queues that guard shared objects. A transaction first declares its potential objects that will
be accessed during the transaction (called working-set). This information is provided by the
programmer or by a static analysis of the program. Before starting a transaction, the thread
subscribes to each object queue atomically. Then, when it reaches the top of all subscribed
queues (i.e., it is the top-standing), it can start the execution of the transaction. Finally, it
is dequeued from the subscribed queues thus allowing the following threads to proceed with
their transactions. Large transactions, which cannot fit as HTM, are started directly in STM
with their commit phase executed as a reduced hardware transaction (RHT) [68]. To allow
HTM and STM to run concurrently, HTM transactions runs in two modes. First mode is
entirely HTM, this means that no operations are instrumented. The second mode is initiated
when an STM transaction is executing. Here, a lightweight instrumentation is used to let the
concurrent STMs know about executing HTM transactions. In our scheduler we managed to
make this instrumentation transparent to HTM transactions, this way HTM transactions are
not aware of concurrent STM transactions. In fact, in our proposal HTM transactions notify
STM with their written objects signature. STM transactions uses the concurrent HTM’s
write signatures to determine whether its read-set is still consistent or an abort should
be invoked. This technique does not introduce any false conflicts in HTM transactions,
compared to other techniques such as subscribing to the global lock in the beginning of an
HTM transaction or at the end of it. If a transaction is irrevocable, it is stated directly using
global locking. In addition, if the selection of the adaptive technique turns out to be wrong,
then an HTM transaction will fallback to STM, and an STM transaction will fallback to
global locking.

Figure 5.1 shows how each thread subscribes to different queues based on their transaction
working-set, wait for their time to execute, and execute transactions. In this figure, T1 and
T2 are on the top of all queues required by their working-set. Thus, T1 and T2 started
executing their own transactions. T4 cannot start execution since it is still waiting to be
on the top of O2 queue. Once T2 finishes execution, it will be dequeued from O2 queue
allowing T4 to proceed. T5 must wait for T2 and T4 to finish in order to be on top of O2,
O5 and O6 queues and start execution. T3 just arrived and it is subscribing to O1, O3 and
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● T1 and T2 are executing now
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● T4 waiting on O2 queue (although
It is on top of O3 queue)

● T5 is waiting for O2, O5, and O6
queuesT4

Figure 5.1: Scheduling transactions.

O5 by enqueueing itself to the corresponding queues atomically.

5.3 Algorithm Details

Octonauts is an HTM-aware Scheduler. It is designed to fulfill the following tasks:

1. reduce conflicts between transactions;

2. allows HTM and STM transactions to run concurrently and efficiently;

3. analyze programs to detect potential transaction data size, duration and conflicts;

4. schedule large transaction immediately as STM transaction without an HTM trial.

5.3.1 Reducing Conflicts via Scheduling

As shown in Figure 5.1, every thread before starting a new transaction subscribes to each
object’s queue in its working-set. Each queue represents an object or a group of cache lines.
Once subscribed, the thread waits until it is on the top of all subscribed queues. Finally, it
executes the transaction and the thread is dequeue from all subscribed queues.

In order to implement this technique correctly and efficiently, we used a systems inspired
by the synchronization mechanism where tickets are leveraged. We use two integers i.e.,
enq counter and deq counter and a lock to represent each queue. To subscribe to a queue,
a thread atomically increments the enq counter of that queue (i.e., acquire a ticket). Then,
it loops on the deq counter until it reaches the value of its own ticket. To prevent deadlock,
a thread must subscribe to all required queues at the same time (i.e., atomically). To
accomplish this task, the thread acquires all required queues’ locks before incrementing
enq counter. When the thread finishes the execution of the transaction, it increments all
subscribed queues’ deq counter and therefore next (conflicting) transactions are allowed to
proceed.



Mohamed Mohamedin Chapter 5. Octonauts 54

  

W_tx1 (1,3,5) → Tickets 1(1,1), 3(1,1), 5(1,1)

1 1 1 1 1 1 1 1 1 1
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1 2 3 4 5

1 1 1 1 1 1 1 1 1 1
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1 2 3 4 5

2,1 1,1 1,1 1,1 2,2 1,1 1,2 1,1 2,1 1,1
1 2 3 4 5

R_tx3 (3,5) → Tickets 3(2,*), 5(2,*)

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5

2,1 1,1 1,1 1,1 2,3 1,1 1,2 1,1 2,2 1,1
1 2 3 4 5

R_tx4 (4,5) → Tickets 4(1,*), 5(2,*)

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5

2,1 1,1 1,1 1,1 2,3 1,1 1,3 1,1 2,3 1,1
1 2 3 4 5

W_tx5 (5) → Tickets 5(2,3)

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5

2,1 1,1 1,1 1,1 2,3 1,1 1,3 1,1 3,3 1,1
1 2 3 4 5

W_tx1 (1,3,5) → Done

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5

2,1 2,1 1,1 1,1 2,3 2,1 1,3 1,1 3,3 2,1
1 2 3 4 5

R_tx2 (3,4), R_tx3 (3,5),R_tx4 (4,5)  → Run 

R_tx3 (3,5),R_tx4 (4,5) → Done

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5

2,1 2,1 1,1 1,1 2,3 2,2 1,3 1,2 3,3 2,3
1 2 3 4 5

W_tx5 (5) → Run 

…
 

Figure 5.2: Readers-Writers ticketing technique.

Using the describe technique, two read-only transactions accessing the same object are not
allowed to execute concurrently. However, such a read-only transaction cannot conflict with
each other (because none of them writes) and serializing them affects the performance signif-
icantly, especially in read dominated workloads. To address this issue, we modified the afore-
mentioned ticketing technique to accommodate reader and writer tickets. Readers ticket’s
owners can proceed together if there is no active writers. Rather, conflicting writers are
serialized.

The readers/writers ticketing system works as follows. Instead of enq counter and deq counter,
we have w enq counter, w deq counter, r enq counter and r deq counter. Each trans-
action now has two tickets. A writer transaction increments w enq counter and reads the
current r enq counter, while a reader transaction increments r enq counter and reads the
current w enq counter. A writer transaction waits for w deq counter and r deq counter

to reach their tickets numbers. A reader transaction waits for w deq counter only. After ex-
ecuting the transaction, a reader transaction increments r deq counter only, while a writer
transaction increments w deq counter only. Following the example in figure 5.2, we notice
that one writer ticket can unlock many readers to proceed in parallel.

Figure 5.2 shows how reader and writer threads proceed using our readers-writers ticketing
technique. Reader threads are only blocked by conflicting writers (their tickets include the
w enq counter and any value for the r enq counter which is represented by * in the figure).
Writers threads are blocked by both conflicting readers and writers. The figure also shows
how multiple reader threads can proceed together.
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Figure 5.3: HTM-STM communication.

5.3.2 HTM-aware Scheduling

Intel’s HTM is a best efforts HTM where transactions are not guaranteed to commit. A
fallback path must be provided to ensure progress. In the previous sub-section, we showed
how to prevent conflicting transaction from running concurrently, which solves the problem
of aborts due to conflicts. However, HTM transactions can be also aborted for resource
limitations reasons (i.e., space or time) if the transaction cannot fit into the HW transactional
buffer or requires time larger than the OS scheduler time slice. This type of transactions
cannot successfully complete in HTM, and the only way to commit them is to let them run
alone using a global lock or run them as STM transaction. Acquiring a global lock reduces
the concurrency level of the system, thus we use the STM fallback at first. To guarantee
correctness, STM transaction must be aware of executing HTM transactions. As a result,
STM and HTM should communicate with each other.

Figure 5.3 shows our new lightweight communication. It has a twofold aim: it eliminates
HTM false conflicts due to HTM-STM communication and it priorities HTM transactions
over STM ones. HTM transactions works in two modes; plain HTM and instrumented HTM.
When the entire transactional workload runs in HTM, we use plain HTM. Once, an STM
transaction wants to start, it sets a flag so that all new HTM transactions start in the
instrumented HTM mode. The STM transaction waits until all plain HTM transactions
finish, and then starts execution. When the system finishes all STM transactions, it returns
back to plain HTM mode. Every STM transaction increments stm counter before starting
and decrements it when finishes to keep track of active STM transaction.

In instrumented HTM mode, we keep a circular buffer (the ring) which contains write-set
signatures of each committed HTM transaction. An HTM transaction gets an empty entry
from the ring before staring the transaction (i.e., non-transactionally using a CAS operation).
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During the HTM transaction, every write operation to a shared object is logged into a local
write-set signature (i.e., Bloom filter). Before committing the HTM transaction, the local
write-set signature is written to the reserved ring entry.

This design eliminates false conflicts due to shared HTM-STM meta data (in our case,
the ring). The ring entry is reserved before starting the HTM transaction and each HTM
transaction writes to its own private ring entry. For STM transactions, they read only the
ring entries so that they cannot conflict with HTM transactions.

STM transactions proceed speculatively until commit phase. Before committing, it validates
its read-set against concurrent HTM transactions. If it is still valid, it starts an HTM
transaction where it commits its write-set (i.e., reduced hardware transaction (RHT) [68]).
Before starting the commit phase of RHT, it checks the ring again to confirm that the ring
itself is not changed since last validation (which was executed outside the RHT). If the ring is
unchanged, then it the transaction can commit, it abort and re-validate. If the re-validation
fails, then the entire transaction is restarted.

This technique seems to favor HTM transactions, but since both HTM and STM transactions
subscribe to the same scheduler queues, HTM and STM transactions can only conflict due
to inaccurate determination of the working-set or due to Bloom filters false conflicts. Thus,
STM transaction cannot suffer from starvation.

For those transactions that cannot fit also as RHT due to their large write-set size or due
to some irrevocable call (e.g., system call), the global locking path has been introduced. We
implemented this path by simply adding a global lock before letting the scheduler work on
the queues. A transaction that should execute in mutual exclusion, first acquires the global
lock, which blocks all incoming transactions, then waits until all queues are empty before
starting the execution.

5.3.3 Transactions Analysis

Octonauts works based on the a priori knowledge of the transaction’s working-set, which
in our implementation is provided by the programmer at the time the transaction is defined.
Besides the working set, there is a number of additional parameters that are useful to bet-
ter characterize the transaction execution, especially having HTM as runtime environment.
Our analysis estimates the transaction size, duration, number of accessed cache lines, and
irrevocable action invoked. These information are used by the scheduler to adaptively start
a transaction with the best fitting technique (i.e., hardware, software or global lock), as
described in the following subsection.

Transaction’s size and duration are estimated statically at compile time, given the underlying
hardware model as input. Clearly this analysis can make mistakes, however if the estima-
tion is wrong the transaction will be aborted but eventually will be correctly committed as
software of global lock transaction. Finally, a transaction is marked as irrevocable if it call
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Figure 5.4: Throughput using Bank benchmark.

any irrevocable action or system call.

5.3.4 Adaptive Scheduling

The adaptivity in our scheduler is the process of selecting the right starting path for a
transaction according its characteristics (e.g., data size and duration). If we know from
the program analysis that a transaction does not fit in an HTM transaction, then it is
started as an STM transaction from the very beginning without first trying in HTM. The
same for transactions that call irrevocable operations, which are started directly using a
single global lock, without trying alternative paths. We also disable scheduling queues when
the contention level in the system is very low. In fact, at low contention level, scheduling
queues overhead can overcome its performance benefits and slowdown the system. When
the scheduling queues are disabled, a transaction starts immediately its execution without
the ticketing system. However the adaptivity module is always active because it uses offline
informations thus its overhead is minimal.
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Figure 5.5: Execution time using Bank benchmark (lower is better).

5.4 Evaluation

Octonauts has been implemented in C++. To conduct our evaluation, we used two
benchmarks: Bank, a known micro-benchmark that simulate monetary operations on a set
of accounts, and TPC-C [27], the famous on-line transaction processing (OLTP) benchmark
which simulates an ordering system on different warehouses. TPC-C includes five transaction
profiles, three of them are write transactions and two are read-only.

We compared Octonauts results to plain HTM with global locking fallback (HTM-GL).
In HTM-GL, a transaction is retried 5 times before falling back to global locking. In this
evaluation study we used Intel Haswell Core i7-4770 processor with hyper-threading enabled.
All the data points reported are the average of 5 repeated execution.

5.4.1 Bank

This benchmark simulates monetary operations on a set of accounts. It has two transactional
profiles: one is a write transaction, where a money transfer is done from one account to
another; the other profile is a read-only transaction, where the balance of an account is
checked. The accessed accounts are randomly chosen using a uniform distribution. When
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Figure 5.6: Throughput using TPC-C benchmark.
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Figure 5.7: Execution time using TPC-C benchmark.

the number of accounts is small, the contention level is higher. For this experiment, we used
10 accounts to produce a high level of contention. Each account on a unique cache lines
to guarantee that transactions accessing different account do not conflict. We changed the
ratio of write transactions (20%, 50%, 80%, and 100%). Increasing the percentage of write
transactions increases the contention level as well.

Figure 5.4 shows the results of Bank benchmark. From the experiments, we notice that
Octonauts overhead is high in low contention cases (Figure 5.4(a)). As the contention
level increases (Figure 5.4(b)), the gap between Octonauts and HTM-GL decreases. At
high contention levels (Figures 5.4(c) and 5.4(d)), Octonauts started to perform better
than HTM-GL. Specially at 8 threads and 100% writes, when Octonauts is 1× better
than HTM-GL.

5.4.2 TPC-C

This benchmark is an on-line transaction processing (OLTP) benchmark, which simulates
an e-commerce system on different warehouses. TPC-C transactions are more complex than
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Bank’s tarnsactions (i.e., larger in data size and longer in duration). The contention level
of TPC-C benchmark can be controlled by the number of warehouses in the system. In our
experiments, we used 10 and 20 warehouses to achieve a high and medium level of contention,
respectively. We also used the standard TPC-C settings as a mix of transaction profiles.

Figure 5.6 shows the results of TPC-C benchmark. The conflict level in TPC-Cis high, hence
Octonauts is particularly effective, being able to reduce the conflicts ratio significantly.
Octonauts performs better than HTM-GL starting from 4 threads. This experiment shows
the benefits of scheduling on workloads similar to real applications. In addition, when number
of threads is larger than cores, Octonauts is still able to scale. This is due to the fact that
scheduling the execution of transactions properly can lead to more concurrency than leaving
contending transactions to abort each other.



Chapter 6

Precise-TM

6.1 Problem Statement

Transactional Memory community reached a consensus that HTM provides performance and
scalability higher than STM. However, due to architecture design limitations, all the released
processors that support HTM have no guarantees on the progress of HTM transactions [72],
and hence any HTM algorithm is required to provide an alternative software fallback path.
The default HTM algorithm for intel TSX APIs [78] protects the slow-path with a single
global lock and monitors this lock at the beginning of the fast-path itself. We call this
algorithm HTM-GL hereafter in this chapter.

Based on the experience of a decade of research in STM, when research moved back to
HTM it was not surprising to propose the best STM algorithms as candidate fallback paths
to HTM transactions. That is why one of the first proposals was falling back to TL2-like
software path [68, 81] (we call it TL2-HTM). In the context of pure STM algorithms, it has
been shown that TL2 [35] performs and scales better than most of the other STM algorithms
because it uses fine-grained ownership records to lock and monitor memory locations, which
reduces false conflicts and increases the level of concurrency. However, in the HTM context,
proposals subsequent of TL2-HTM [69, 19, 20], which fall back to algorithms that do not
scale as good as TL2 in their software versions, have been shown to perform and scale better
than TL2-HTM. The main reason for this apparently inconsistent behavior is related to the
nature of HTM itself: execution optimistically starts in an HTM fast-path, and in case of
failure it falls back to a software slow-path. Based on this pattern, the software slow-path
should have a minimal interference with the HTM fast-path even if the slow-path becomes
less optimized. TL2-HTM fails to achieve that goal because it uses fine-grained meta-data
in the slow-path (i.e. the ownership records) that are required to be monitored in the fast-
path. This need of monitoring them adds at least one more read or write operation on a
meta-data per memory access. Considering the problem of having limited resources in the
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current HTM architectures, which has been discussed earlier in Chapter 4, the HTM fast-
path in TL2-HTM is negatively affected, and subsequently the overall performance degrades.
On the other hand, approaches that appear later in literature avoids this problem by using
lightweight software slow-paths that use minimal meta-data, usually one global lock that
is acquired either at the beginning or during the commit phase of the slow-path. Those
approaches limit the effect of the slow-path on the fast-path, similarly to HTM-GL.

6.1.1 Drawbacks of Using a Single Global Lock as Slow-path

Despite the importance of having a lightweight slow-path, relying on a global lock (which is
the common way to make the slow-path lightweight as proposed so far) has clear limitations
due to two major issues:

• The software slow-paths, or at least parts of them (usually their commit phases), are
executed sequentially, which results in poor scalability in the cases where transactions
repeatedly fall back to the slow-path.

• The global lock has to be monitored in the fast-path in order to guarantee the synchro-
nization with transactions running in the slow-path. The direct impact of monitoring
the global lock in the fast-path is that it gives higher priority to the slow-path than the
fast-path (i.e., HTM transactions running in the fast-path will abort when a transaction
running in the slow-path acquires the global lock).

Algorithm 1 shows how those two issues appear in HTM-GL. The first issue is clear because
the slow-paths are completely serialized using the global lock (Line 14). Even though we
acknowledge that a fallback path relying on a single global lock is needed to guarantee the
execution of those transactions that perform irrevocable (or more in general non-rollbackable)
operations, it is still true that it introduces a coarse-grained serialization point when those
(rare) transactions are not invoked. The second issue is raised because of Line 8, which
starts the fast-path by checking the global lock. This line is important for the safety of the
fast-path because it is not guaranteed whether any concurrent slow-path is conflicting with
it or not. However, Line 8 is too pessimistic since it prevents the fast-path from running
concurrently with any slow-path even if the two paths do not conflict with each other.

Summarizing, Lines 8 and 14 enforces Algorithm 1 to alternately execute transactions in two
mutually exclusive phases: one phase that executes multiple HTM fast-paths, and another
phase that executes a single software slow-path, while giving higher priority to the latter
than the former.

6.1.2 On Reducing the Effect of Global Locking

Some optimization has been recently proposed to enhance the performance of HTM-GL.
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Algorithm 1 HTM-GL Algorithm.

1: procedure Tx-Begin
2: tries ← 2
3: while true do
4: while isLocked(global-lock) do
5: PAUSE
6: status ← xbegin()
7: if status = OK then
8: if isLocked(global-lock) then
9: xabort();

10: break
11: else
12: tries ← tries - 1
13: if tries ≤ 0 then
14: acquire(global-lock)
15: break
16: end procedure

17:

18: procedure Read(x)
19: return x
20: end procedure
21:

22: procedure Write(x, val)
23: x ← val
24: end procedure
25:

26: procedure Tx-End
27: if tries > 0 then
28: xend()
29: else
30: release(global-lock)

31: end procedure

First, since it is useless to start an HTM fast-path while the lock is acquired by a concurrent
slow-path, any transaction waits until the global lock is released before starting the fast-
path (Line 4). Adding this line is important as it avoids the lemming effect of Line 8 (i.e.
cascading the failures in HTM, ending up with all transactions running in the slow-path) [33].
This optimization is enabled in the HTM-GL version we used in our implementation and
evaluation study.

Another common optimization is the lazy subscription to the global lock, which means
deferring Line 8 to the end of the fast-path [20]. This optimizations reduces the time the
global lock is monitored in the fast-path, and hence it reduces the probability of aborting
HTM transactions due to conflicts on the global lock. However, lazy subscription does not
solve the original problems of serializing the slow-paths and treating conflicting and non-
conflicting slow-paths similarly in the fast-path. Additionally, and more importantly, it has
been proven in [32] that this solution is not safe because it breaks opacity [45]. Although any
unexpected behaviour due to breaking opacity will be sandboxed by HTM in most workloads,
the authors of [32] show some scenarios where zombie transactions are not sandboxed and
may provide an unexpected behaviour. For that reason, we did not include this optimization
in the HTM-GL version we used.

Although the approaches we proposed in Chapters 4 and 5 address different problems related
to the best-effort nature of current HTM processors, they implicitly aim at solving the
same high-level problem: minimizing the effect of the global locking in the slow-path by
reducing the probability of falling back to it, either by partitioning long transactions to fit in
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HTM (in Part-htm) or by providing an efficient scheduling of HTM/STM transactions (in
Octonauts). A similar approach proposed in literature is to dynamically tune the number
of retrials in the fast-path before falling back to the slow-path [37].

However, the effectiveness of all those approaches decreases if the workload cannot avoid the
generation of some transaction that need to fall back to the slow-path for being successfully
executed. For example, if a transaction calls unsafe instructions1, it will always fall back
to the slow-path even with the existence of the aforementioned optimizations. Also, in
some dynamic workloads, the scheduling/tuning may not converge on accurate settings that
ensure high performance. The problem becomes more difficult to address if the workload
contains some transaction that always fails to execute in HTM, and some other transaction
that natively fits HTM time/space constraints. In those cases, using an inefficient global
locking approach may significantly affect the performance the latter by enforcing them to
unnecessarily abort and fall back to the slow-path (i.e., being serialized along with software
transactions).

In this chapter, we aim at solving the problem of global locking in such workloads by moving
back to the original fine-grained locking direction, but overcoming the existing limitations.
Since the main issue in the former fine-grained designs was in the overhead of handling meta-
data, our main target is to minimize this overhead. Specifically, we introduce Precise-tm,
an HTM algorithm that uses a fine-grained locking approach in the slow-path with a minimal
interference with the HTM fast-path.

Precise-tm is orthogonal to Part-htm and Octonauts: in the cases where those ap-
proaches succeed to avoid falling back to the slow-path, Precise-tm only adds a marginal
overhead to the fast-path, otherwise, Precise-tm reduces the overhead of acquiring a global
lock in the slow-path.

6.2 Precise-TM Design Principle: Fine-Grained Em-

bedded Locks

The core idea of Precise-tm is to replace the global lock that is acquired in the slow-path
(Line 14) and monitored in the fast path (Line 8) with fine-grained locks. Doing that naively
means that every read/write in the fast-path will check also the lock attached to the memory
location, which adds significant overheads on the fast path.

To avoid such an unnecessary overhead of the fine-grained locking mechanism, in Precise-
tm we exploit the following intuitions:

• References can be locked/monitored using address-embedded-locks: If a
transaction only reads and/or writes variables by reference, we can reuse the idea

1In TSX, Intel identified some instruction that will always result in aborting HTM transactions.
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of address-embedded-locks (or embedded locks) that we used in the opaque version of
Part-htm to synchronize transactions running in both fast-path and slow-path. The
idea can be reused in Precise-tm in a much simpler way than Part-htm.

Specifically, since the read/write operation is already on references, there is no need for
wrapping them. The only requirement is that the read/written references are properly
memory-aligned so that the stolen bits for embedding the locks are not used to identify
the referenced memory location. In Precise-tm, as we will show later, we need to
steal the least significant two bits of the references for embedding the locks, which
means that the referenced variables should be aligned at four bytes. This assumption
is acceptable when referencing most of the scalars (e.g. integers), as well as the structs
that are composed of those scalars.

The main advantage of embedding locks into the references themselves is that ev-
ery read/write in the fast-path does not need an extra meta-data to be read/written.
This way, we allow the fast-path to speculate references without any overhead on the
limited resources of HTM transactions (i.e., no additional cache-lines are needed). Ad-
ditionally, the conflict detection granularity is at the level of the memory references
themselves, which minimizes false conflicts, unlike the former techniques that use own-
ership records (e.g. TL2-HTM [68] or Refined Lock Elision [34]), where the granularity
of the lock tables is clearly more coarse-grained. Summarizing, the name “Precise-
tm” reflects the fact that it provides the most precise conflict detection between the
slow-path and the fast-path without any additional meta-data to be monitored in the
fast-path.

• Scalars can use the original global lock: For any transaction that reaches a read
or write operation where the locks cannot be embedded (e.g., scalar variables or non-
aligned references), a safe fallback strategy is to start locking or monitoring a global
lock. This means that for any arbitrary transaction, locking (in the slow-path) and
monitoring (in the fast-path) can be kept fine-grained until the first read or write that
is not compatible with the address-embedded-locking mechanism occurs.

The main advantage of this approach is that it guarantees an execution that is, in the
worst case, similar to the default HTM algorithm that falls back to global locking.

• Embedded locks are used only to notify HTM transactions: In the original
HTM-GL algorithm, the global lock is used for two reasons. First, if two transactions
fall back to the slow-path, the global lock guarantees executing them sequentially.
Second, if a transaction X is executing in the fast-path and transaction Y is executing
concurrently in the slow-path, the global lock is used to abort transaction X. In other
words, it allows both X and Y to run safely without the need for making the reads and
writes of transaction Y visible to transaction X.

Since it is clear that the last case (fast-path/fast-path synchronization) is internally
handled by HTM, any concurrent execution is guaranteed to be consistent irrespective
of the path of each transaction. Our address-embedded-locking mechanism focuses only
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on optimizing the fast-path/slow-path synchronization. Specifically, in the aforemen-
tioned example, it replaces the global locking approach with a mechanism that makes
reads/writes of transaction Y visible to transaction X. The importance of this observa-
tion is that slow-path/slow-path synchronization can be designed independently from
the address-embedded-locking mechanism. For example, the slow-paths can be still
sequentially executed using a global lock. Also they can be synchronized using tradi-
tional mutex locks or readers-writer locks. In Section 6.3, we show how this observation
allows for more optimizations in designing the slow-path.

Based on the above observations, we design two versions of Precise-tm. The first version
(we call it Precise-tm-v1) uses a global lock in the slow-path but does not naively monitor
it in the fast-path. Instead, the global lock is only monitored when the fast-path reaches a
read/write operation that cannot be monitored using address-embedded locks. The second
version (we call it Precise-tm-v2) uses the stolen bits as fine-grained mutex locks in the
slow-path instead of the global lock. In Section 6.3, we show the details of those two versions.
Then, in Section 6.4, we compare them with HTM-GL, showing the advantages of each.

6.3 Algorithm Details

6.3.1 Precise-TM-V1: Precise Monitoring in the Fast-Path

In Precise-tm-v1, like HTM-GL, we use a global lock to protect the slow-path. The main
difference between HTM-GL and Precise-tm-v1 is that the latter does not monitor the
global lock at the beginning of HTM transactions. Serializing the slow-paths simplifies the
design because it allows only one transaction (executing a slow-path) to lock/unlock the
address-embedded-locks of the references at a time.

In Precise-tm-v1, we steal two bits from any reference for embedding the locks, one for
reading and one for writing. Distinguishing the two cases is important because it optimizes
the read-read conflict cases. Generally, two transactions are conflicting if they both access
the same variable and at least one of them writes that. That is why, optimally, a fast-path
should never abort if it has a read-read conflict with a slow-path on a certain reference.
As we mentioned before, those stolen bits are only used to synchronize fast-paths with
slow-paths because slow-slow synchronization is guaranteed by the global lock, and fast-fast
synchronization is guaranteed by HTM. We only need two bits because the fast-path does
not need to know the owner of the lock and only cares whether the reference is locked or
not.

Algorithm 2 shows the implementation details of Precise-tm-v1. In the remaining of this
section, we briefly discuss each component in Algorithm 2. It is worth to note that since the
slow-path is executed in a mutual exclusion mode, any transaction that succeeds to acquire
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the global lock is guaranteed to complete. Thus, there is no need to define an abort handler
for those transactions.

Algorithm 2 Precise-tm-v1 Algorithm.

1: procedure Initialize
2: initialize reference-log array
3: end procedure
4:
5: procedure Tx-Begin
6: tries ← 2
7: while true do
8: status ← xbegin()
9: if status = OK then

10: break
11: else
12: tries ← tries - 1
13: if tries ≤ 0 then
14: acquire(global-lock)
15: break
16: end procedure
17:
18: procedure Read-Reference(x)
19: if fast-path then
20: if x & 0x0002 then
21: xabort();

22: else
23: x ← x | 0x0001
24: add(reference-log, x)

25: return x & !(0x0003)
26: end procedure
27:
28: procedure Write-Reference(x, val)
29: if fast-path then

30: if x & 0x0003 then
31: xabort();

32: x ← val
33: else
34: x ← val | 0x0002
35: add(reference-log, x)

36: end procedure
37:
38: procedure Read-Scalar(x)
39: if fast-path and isLocked(global-lock) then
40: xabort();

41: return x
42: end procedure
43:
44: procedure Write-Scalar(x, val)
45: if fast-path and isLocked(global-lock) then
46: xabort();

47: x ← val
48: end procedure
49:
50: procedure Tx-End
51: if tries > 0 then
52: xend()
53: else
54: for each ref in reference-log do
55: ref ← ref & !(0x0003)

56: clear(reference-log)
57: release(global-lock)

58: end procedure

Initialization

Each thread defines a local array of references (called reference-log array) that is used to
save the references accessed by its transactions during their slow-paths. This array is used
to reset the embedded locks at the end of the slow-path. We store this array, along with a
unique transaction ID, in a local context attached with each thread.

Transaction Begin

Each transaction tries n times in the fast-path before falling back to the slow-path as usual
(n = 2 in our evaluation study). Also, like HTM-GL, the slow-path starts with the global
lock acquisition. The transaction begin in Precise-tm-v1 differs from HTM-GL in two
aspects: i) the fast-path does not monitor the global lock; ii) there is no need to spin on the
global lock before starting the fast-path if it only accesses references because the fast-path



Mohamed Mohamedin Chapter 6. Precise-tm 68

will not be affected by the global lock in such cases. This simply means that Lines 4 and 8
in Algorithm 1 are removed.

Removing those lines is the main source of performance gain in Precise-tm-v1 because
it allows the fast-path to start immediately without the need of waiting for the completion
of concurrent slow-paths, and with a precise conflict management strategy that aborts in
the fast-path only if there is a real conflict with any of the concurrent transactions in the
slow-path.

Reading References

When a transaction reads a reference, it has the obligation to handle the address-embedded-
locks of that reference. Specifically, the address-embedded-locks should be acquired in the
slow-path and monitored in the fast-path. It is worth to recall that the opposite (i.e., acquiring
the address-embedded-locks by HTM transactions) is meaningless given that any modifica-
tion made by a HTM transaction is invisible to any other transactions (either software of
hardware) before the HTM transaction itself commits.

If a transaction is in the slow-path, it sets the read-lock bit to notify any concurrent fast-path
that attempts to write the value stored by the same reference. After that, the transaction
adds the reference to its local reference-log array. Then, it returns the reference with its
stolen bits cleared.

If a transaction is in the fast-path, it checks the write-lock bit of the reference and aborts
itself if it is locked (self abort). Checking the read-lock bit is not needed because read-read
conflicts are allowed. Avoiding this check saves unnecessary aborts when the transaction
reaches this read while a concurrent transaction is already acquiring the read-lock of the
reference. However, and unfortunately, once the reference is read, any access to that reference
in a concurrent slow-path will abort the transaction because the concurrent slow-path will
write (modify) the embedded read-lock of the reference and hence will invalidate the reference
itself.

Writing References

Similar to the case of reading references illustrated above, a transaction in the slow-path sets
the write-lock bit and then it adds the reference to its local reference-log array. There is
no need to distinguish between reads and writes in the reference-log array because in both
cases the two bits are cleared at the end of the transaction (recall that we restrict our design
to aligned references, where originally those two bits are always zeros, namely they do not
count in identifying the actual value addressed).

If a transaction is in the fast-path, it has to check both read-lock and write-lock bits to
avoid conflicting with both reading and writing slow-paths. Although this approach gives
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slow-paths higher priorities than fast-paths, it does so in a fine-grained manner, which has
much lower negative impact than the global lock fallback path in HTM-GL.

Reading/Writing Scalars

Precise-tm-v1 is favorable in workloads that mainly access references. However, we provide
a safe fallback strategy for transactions that access scalars at any point of their execution.
This is done by monitoring the global lock when the first read/write to a scalar appears.
Given that the global lock is already acquired at the beginning of the slow-path, starting from
this point Precise-tm-v1 behaves as HTM-GL, with a constant (and marginal) overhead
of checking the embedded locks before every read or write operation to a reference.

Transaction End

The transaction completion has the same responsibilities as HTM-GL. A transaction calls
xend if it is in the fast-path, and unlocks the global lock if it is in the slow-path. The only

difference is in the slow-path, where all the references accessed during the path (saved in the
local reference-log array) are unlocked by resetting their stolen bits. Then, the local array
itself is cleared. Resetting the embedded locks is safe because at most one transaction is
executing a slow-path at a time.

6.3.2 Precise-TM-V2: Precise Locking in the Slow-Path

Precise-tm-v1 reduces the contention management granularity between fast-path and slow-
path to the most precise level (i.e., the memory locations). However, it still serializes the
slow-paths using a global lock. Although this approach simplifies the design of the slow-
path, it may affect the performance if the transactions that fall back to the slow-path are
non-conflicting. Given that HTM transactions may fail due to many reasons other than con-
flicts, this scenario can practically happen, resulting in executing non-conflicting transactions
serially.

Precise-tm-v2 addresses this problem by reducing the contention management granularity
between two slow-paths as well. Since transactions in Precise-tm-v1 already steal two
bits from each references to manage conflicts with the fast-path, Precise-tm-v2 exploits
those bits to lock references in the slow-path instead of using a global lock. In that sense,
the precision in detecting conflicts between slow-path/slow-path becomes similar to that
of fast-path/slow-path. Given that the precision of the latter (i.e., fast-path/fast-path) is
non-configurable as it depends on the HTM contention management itself, Precise-tm-v2
achieves the best precision in all the cases.

Using fine-grained two-phase locking in the slow-path adds two obligations on the transaction
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execution: i) transactions have to eventually abort if they fail to acquire locks (otherwise
they may deadlock); ii) transactions have to save their writes to be undone in case of aborts.
Providing that is straightforward but it needs a particular care because, unlike Precise-
tm-v1, transactions in the slow-path may repeatedly abort and retry, and thus an efficient
contention manager would be needed. Generally, if transactions are conflicting, Precise-
tm-v1 is expected to be better because Precise-tm-v2 will suffer from frequents aborts
(Intuitively, the best way to execute conflicting transactions is to execute them sequentially).
We detail this point in the next section.

Algorithm 3 shows the implementation details of Precise-tm-v2. In the remaining of this
section, we briefly discuss each procedure of Algorithm 3. Specifically, we show how each
component is different from the corresponding one in Precise-tm-v1.

Initialization

Initialization in Precise-tm-v2 is similar to Precise-tm-v1 except that the reference-log
array should store both the references accessed and their old values. In case of slow-path
aborts, those values will be used to rollback the changes made by the transaction.

Transaction Begin

Unlike Precise-tm-v1, the global lock is not acquired when the slow-path starts. This is
the main performance advantage of Precise-tm-v2 over Precise-tm-v1 as it allows more
concurrency between slow-paths. Other than that, transaction begin handler is similar to
Precise-tm-v1.

Reading/Writing References

Reading and writing references in the fast-path is similar to Precise-tm-v1. In the slow-
path, however, the stolen bits need to be atomically modified in order to achieve an exclusive
access on the reference, and prevent any concurrent transaction running in the slow-path from
accessing the same reference. To do so, any transaction starts reading/writing references by
checking that this reference is not locked by any other transaction (either for reading or for
writing), specifically by checking the least significant two bits. Then it tries to atomically
change the corresponding bit (according to whether the operation is read or write). If it
fails, it aborts the transaction. If it succeeds, it saves the reference, along with its old value,
in the reference-log. For simplicity, we save the reference and its old value in both reads and
writes.

Although we differentiate between reading and writing in the fast-path, we do not do so in
the slow-path to keep the algorithm design simple. That is why we abort the transaction
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if the reference is locked by another transaction for either reading or writing. Transactions
clearly should not abort if the reference is self-locked. We detect this case by scanning
the reference-log array to know whether the lock is acquired by the same transaction or by
another one.

Reading/Writing Scalars

Before reading or writing scalars, transactions get an exclusive access to them. This is
achieved by acquiring the global lock before the first read/write to a scalar occurs in the
slow-path, and monitoring the global lock before the occurrence of every read/write to a
scalar in the fast-path. As we mentioned before, like most HTM algorithms, this approach
gives higher priority to the slow-path.

Unlike Precise-tm-v1, since the global lock is no longer the only lock acquired in the slow-
path, the tryLock primitive is used instead of Lock to avoid deadlocks. If the tryLock fails,
the transaction aborts similar to the way it does in reading/writing references.

Transaction End

This routine resets the stolen bits in all the accessed references and then clears the reference-
log array. Additionally, the global lock is released only if it was acquired due to a scalar
read/write operation.

Abort in the slow-path

The slow-path aborts when either the global lock or the lock of one of the accessed references
is found to be locked by another transaction. Aborting a slow-path is similar to the previous
routine (which represents committing a slow-path) except that for each entry in the reference-
log array the old value is restored (instead of resetting to the stolen bits for each entry).

At the end of the abort handler, we call a statistical assess-abort-rate method that measure
the frequency of aborts in the slow-path so far and decide accordingly whether it is better
to switch to Precise-tm-v1 or not. This method forms a simple contention management
approach that catches the cases when transactions start to repeatedly abort each other due
to competing on the same set of locks.

6.4 Evaluation

To evaluate Precise-tm, we implemented it in C++ and tested it on an Intel Haswell Core
i7-4770 processor (4 cores, 8 hardware threads) and GCC 4.8.2. All data points are the
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Figure 6.1: Execution time using Bank benchmark.

average of 5 repeated execution.

We compared Precise-tm to HTM-GL since we consider Precise-tm the precise fine-
grained version of HTM-GL. Showing such a comparison helps reasoning about the effect of
making any global-lock-based HTM algorithm more precise using our idea. We believe that
the same idea can be extended for algorithms other than HTM-GL.

To conduct a comprehensive evaluation, we tested Precise-tm in three different work-
loads: Bank; EigenBench [53]; and linked-list data structure. Those workloads have different
characteristics that show the advantages of both versions of Precise-tm as well as their
limitations.

6.4.1 Bank

The first set of experiments is a customized Bank benchmark, where a set of 64K accounts
(typically an array of accounts references) are accessed using two API methods: transfer,
which selects two random accounts and transfers money from one account to the other; and
check-balance which returns the current balance of an account. This way, both methods are
executed within a transaction that only reads from and writes into references, which is the
best test case of Precise-tm.

Figure 6.1 shows the results of an experiment that creates different number of client threads
and runs a fixed number of operations (10M operations) on each thread. The execution
time for three different configurations, where 0%, 20%, and 50% of the operations are trans-
fer operations (i.e., writing transactions), is measured in Figures 6.1(a), 6.1(b), and 6.1(c)
respectively.

A general observation in all the plots is that both Precise-tm-v1 and Precise-tm-v2
perform better than HTM-GL for high number of threads (4-threads and 8-threads). This
is expected because when contention increases, all algorithms start to observe more transac-
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Figure 6.2: Execution time using Bank benchmark with disjoint accesses to accounts.

tions falling back to the slow-path. Since HTM-GL acquires a global lock to execute those
transactions, more transactions fail in the fast-path because they monitor the global lock.
Precise-tm, on the other hand, does not monitor the global lock (Precise-tm-v2 does
not even acquire it in the slow-path), and thus it does not suffer from cascading aborts in
the fast-path.

The second observation is that when all the operations are check-balance operations (Figure
6.1(a)), the execution time in Precise-tm remains the same starting from two threads.
This is also expected because conflicts are rare, thus concurrency between transactions is
maximized. HTM-GL does not behave similarly because it suffers from failures due to reasons
other than conflicts (recall that HTM may fail due to other reasons like capacity failures and
external interferences). The level of concurrency of Precise-tm decreases in the writing
cases, but it remains better than HTM-GL.

For small number of threads (1-thread and 2-threads), HTM-GL performs better than
Precise-tm. The main reason for that is that Precise-tm adds a constant overhead
of locking and monitoring the stolen bits for each read and write without a real benefit
because most of the transactions succeed in the fast-path.

We also measure the percentage of transactions that fall back to the slow-path to better
understand the relation between performance and frequency of failures in the fast-path. We
found that in all the cases (even the read-only one) the average ratio of falling back to the
slow-path is 20% for 4-threads and 30% for 8-threads in HTM-GL, and almost 0% for the
two versions of Precise-tm in all thread counts, which confirms the results in Figure 6.1. It
is important to note that this measurement is not the only factor that affects the execution
time. For example, spinning on the global lock before starting the fast-path of HTM-GL is
another factor. However, measuring the fast-path aborts gives a good intuition about the
behaviour of each algorithm.

In Figure 6.2, we repeated the same experiment while making the accesses to accounts
disjoint (i.e. every thread accesses different set of accounts). This modification is biasing the
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Figure 6.3: Execution time using EigenBench benchmark for two special cases.

benchmark more to algorithms like Precise-tm because in this case there is no contention
at all. That is why both versions of Precise-tm linearly scale (which is inferred from
having a constant execution independent from the number of threads). On the other hand,
HTM-GL still suffers starting from four threads for the same problem of cascading aborts
(that are initially raised because of HTM limitations) due to monitoring/locking the global
lock. In low thread count, all the algorithms perform similarly.

6.4.2 EigenBench

EigenBench is a configurable benchmark that can be used to generate different workloads,
including the special cases of execution. We exploited that to generate two of those special
cases, shown in Figure 6.3 in order to complete the picture about the behaviour of Precise-
tm.

The first case, shown in Figure 6.3(a), is when all transactions fail in the fast-path (due to
capacity failures) and fall back to the slow-path. In this specific case, all algorithms will
behave similarly in the fast-path. That is why both HTM-GL and Precise-tm-v1 perform
similarly, because they also behave similarly in the slow-path (i.e. both acquire a global
lock). However, Precise-tm-v2 performs better in this case, which shows the benefits of
having fine-grained locking approach in the slow-path

The second case, shown in Figure 6.3(b), represents the case of having long transactions
with moderate contention, where not all transaction fail in the fast-path, but the percentage
of them is more than Bank benchmark. That is why HTM-GL starts to perform worse than
Precise-tm even for low number of threads.
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Figure 6.4: Execution time using linked-list benchmark of 5K elements and 20% write oper-
ations.

6.4.3 Linked-list

In this experiment, shown in Figure 6.4.3, we show the worst case for Precise-tm, where
a linked list of 5K elements is accessed with 20% write operations (inserts and removes). In
this case, as all the transactions start traversing the list from its head, it becomes useless for
Precise-tm to reduce the granularity of locking/monitoring because all transactions acquire
at least a read-lock on the head. This means that all the overheads added by Precise-tm are
not exploited. It is also clear why Precise-tm-v2 performs worse than Precise-tm-v1,
because it adds more overheads. In fact, this experiment shows one of the major drawbacks
of two-phase locking approaches in general.
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Algorithm 3 Precise-tm-v2 Algorithm.

1: procedure Initialize
2: initialize reference-log array
3: end procedure
4:
5: procedure Tx-Begin
6: tries ← 2
7: while true do
8: status ← xbegin()
9: if status = OK then

10: break
11: else
12: tries ← tries - 1
13: if tries ≤ 0 then
14: break
15: end procedure
16:
17: procedure Read-Reference(x)
18: if fast-path then
19: if x & 0x0002 then
20: xabort();

21: else
22: if !isLocked(x) then
23: if CAS(x, x & !(0x0003), x | 0x0001) then
24: add(reference-log, x)
25: elseAbort-Slow-Path()

26: else if isLockedByMe(x) then
27: x ← x | 0x0001
28: elseAbort-Slow-Path()

29: return x & !(0x0003)
30: end procedure
31:
32: procedure Write-Reference(x, val)
33: if fast-path then
34: if x & 0x0003 then
35: xabort();

36: x ← val
37: else
38: if !isLocked(x) then
39: if CAS(x, x & !(0x0003), val | 0x0002) then
40: add(reference-log, x)
41: elseAbort-Slow-Path()

42: else if isLockedByMe(x) then
43: x ← val | 0x0002
44: elseAbort-Slow-Path()

45: end procedure
46:
47: procedure Read-Scalar(x)
48: if fast-path then
49: if isLocked(global-lock) then
50: xabort();

51: else
52: if !isLockedByMe(global-lock) and !tryLock(global-

lock) then
53: Abort-Slow-Path()

54: return x
55: end procedure
56:
57: procedure Write-Scalar(x, val)
58: if fast-path then
59: if isLocked(global-lock) then
60: xabort();

61: else
62: if !isLockedByMe(global-lock) and !tryLock(global-

lock) then
63: Abort-Slow-Path()

64: x ← val
65: end procedure
66:
67: procedure Tx-End
68: if tries > 0 then
69: xend()
70: else
71: for each ref in reference-log do
72: ref ← ref & !(0x0003)

73: clear(reference-log)
74: if isLockedByMe(global-lock) then
75: release(global-lock)

76: end procedure
77: procedure Abort-Slow-Path
78: for each ref in reference-log do
79: ref ← ref-old-value
80: clear(reference-log)
81: if isLockedByMe(global-lock) then
82: release(global-lock)

83: if assess-abort-rate = HIGH then
84: Switch-to-Precise-tm-v1
85: Restart

86: end procedure



Chapter 7

Nemo

7.1 Problem Statement

Transactional Memory (TM) is a powerful programming abstraction for implementing par-
allel and concurrent applications. TM frees programmers from the complexity of managing
multiple threads that access the same set of shared objects. The advent of multi-core ar-
chitectures, which provide (sometimes massive) parallel computing capabilities for thread
execution, clearly favors the diffusion of TM. Today, this hardware is widely available on the
open market; even inexpensive processors are equipped with more than one physical core,
improving parallel computing capabilities.

The growing number of cores per processor has led designers to produce architectures where
the whole address space is divided into multiple slices (or zones). The latency for performing
a memory access varies depending on a number of factors, such as the processor on which
the thread executes and the actual placement of the accessed memory location. Such a
design, also called Non-Uniform Memory Access (NUMA) [65]), is becoming the de-facto
standard for upcoming multi-/many-core platforms which possess extremely high parallel
computing capability (e.g., Intel QuickPath Interconnect, Opteron/HyperTransport, Ultra-
SPARC/FirePlane [96, 8, 25]).

Many algorithms to manage contention have been proposed since TM became a real and
simple alternative to locking as a synchronization abstraction; however none of them have
been specifically designed to achieve scalability in NUMA multi-core architecture. This
stems from the fact that usually the logical content of the application itself prevents the full
exploitation of the underlying hardware parallelism. In fact, when two or more application
threads request the same memory space and at least one wants to perform a write operation
on it, they cannot proceed in parallel. Instead, one of them should be executed after the
other (i.e., serialized). Serializing their executions results in underutilizing one of the two
threads. As a result, the overall application performance cannot be increased further and
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scalability is no longer provided.

There is a class of workload where application data can be partitioned to provide scalability.
Examples include TPC-C [27], Bank (i.e., a micro-benchmark resembling monetary oper-
ations), and (in general) in-memory databases. In this class of applications, data can be
organized such that an object is placed in a zone close to the the thread the accesses the
object. This organization fits the NUMA design - a processor is physically bound to one
memory zone which offers very fast execution and access to other zones costs much more
than the local one.

The TM literature lacks solutions that scale for workloads with characteristics similar to the
ones described above. We name this class of workloads as scalable. Programmers expect these
applications’ performance to scale up when they increase the number of threads physically
executing in parallel; however, this does not happen in existing TM solutions.

To quantitatively support our claim, we conduct an evaluation study consisting of two major
tests. A detailed description and plots are reported in Section 7.2.

• With the first test, we deploy several state-of-the-art TM algorithms over an AMD 64-
core machine equipped with 4 physical sockets, each of which hosts a 16-core processor.
The memory is physically partitioned into 8 NUMA zones; each of these directly inter-
faces with 8 cores. We evaluate five algorithms, spanning from those relying on a single
lock or a global timestamp to protect the transaction commit phase to those that lock
individual written objects, thus enabling more concurrency at the cost of managing
more meta-data. For our application, we use a version of the well-known Bank bench-
mark, which performs monetary transfers from multiple accounts. The entire shared
dataset is partitioned across NUMA zones, and threads running on the cores of one
NUMA zone are forced to access only objects stored on that NUMA zone.

• The second test aims to identify the inherent cost of a NUMA architecture when a
single shared variable is used to manage the synchronization among parallel threads.
In this test, each application thread increments a shared timestamp. The purpose of
the test is to measure the difference in the latency needed to update (using a CAS
operation) a shared timestamp that is physically located in the same NUMA zone the
thread is working on versus one that is located in another NUMA zone.

The lesson learned from the above tests is twofold. On the one hand, letting non-conflicting
threads access some shared meta-data causes traffic on the physical bus interconnecting dif-
ferent processor sockets and thus the NUMA zones. This is a common practice in designing
TM solutions, as having shared meta-data allows transactions to efficiently identify an in-
consistent operation. Unfortunately, given the constraints of NUMA architectures, updating
that meta-data becomes the bottleneck when the workload is mostly non-conflicting (or scal-
able as defined above). On the other hand, when threads deployed within a single processor
socket cooperate using shared variables stored in the NUMA zone connected to that socket,
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the aforementioned bottleneck no longer arises, as the NUMA architecture handles such
traffic inside the socket itself without making use of the slower inter-sockets bus.

We use the above observations as the design principles of a new TM algorithm, which we
name Nemo. Nemo is scalable - in the presence of a scalable workload, its performance
increases when the number of threads deployed on different cores increases. The core idea
of Nemo is to treat conflicts involving transactions that execute within the same socket
differently from those that involve transactions on another socket (or NUMA zone1). This
allows Nemo to resolve some conflicts (e.g., those based on a single shared timestamp)
simply and efficiently within a single socket, as updating shared variables is fast. To identify
conflicts with a thread on another socket, it uses a low-overhead optimistic policy.

Such a design lets two threads access some common object or meta-data only when the
threads belong to the same physical socket or when they run conflicting transactions. We
name this property as NUMA Disjoint Access Parallelism (or NUMA-DAP) because it is
built on top of the original (and more theoretical) DAP proposed in [55], where the NUMA
performance constraints were not taken into account.

More practically, Nemo uses a single shared timestamp to synchronize the operations of
threads executing within a socket. This timestamp is updated every time a writing transac-
tion commits, and it is also used as a means for detecting a possibly dangerous transactional
access to a shared object created after the transaction begins. When a transaction con-
flicts with a transaction executing on another socket, additional synchronization is needed
to preserve the protocol’s correctness. To do this, each thread keeps a cached version of
the timestamps of other NUMA zones. Obviously, those cached copies are not necessarily
up-to-date with the actual value of the timestamp stored in each NUMA zone. This results
from the fact that given the NUMA-DAP property, non-conflicting transactions running on
different NUMA zones should not access any common object - which also means that they
cannot update the cached copy of the timestamp of another NUMA zone. The cached copies
update when a transaction requests an object located in a different NUMA zone, and the
object is associated with a newer timestamp than that of the cached copy. Thus, the object
cannot perform a consistent operation. When such a case occurs, the transaction undergoes
an additional check which reveals whether an abort/restart is needed or not. After that, the
transaction updates its cached value of the other NUMA zone’s timestamp and can proceed.

Clearly, aborting the transaction after discovering that the cached copy of a timestamp is
outdated may seem costly; however this will likely happen infrequently when the applica-
tion provides a scalable workload. In order to further reduce this overhead, we designed a
version of Nemo that makes all of the cached copies of the other NUMA zones’ timestamps
available to all threads of one NUMA zone. That way, per-thread meta-data is reduced and
transactions can benefit from accessing more recently-cached timestamps, even if the thread
they are running on never accessed that NUMA zone. We name this version of Nemo as
Nemo-Vector.

1In the rest of the chapter we use the terms ”socket” and ”NUMA zone” interchangeably.



Mohamed Mohamedin Chapter 7. Nemo 80

Nemo provides Serializability [13] as a correctness level, as both flavors of Nemo ensure that
the versions of the objects read during the transaction execution are identical to those cur-
rently committed before applying the modifications to the shared memory (i.e., committing
the writes).

Nemo has been implemented in C++ and evaluated using well-known benchmarks (e.g.,
TPC-C [27]) which are properly modified to provide scalable workloads. However, in order
to also assess the new protocol’s performance in adverse scenarios, we tuned the percentage
of transactions that perform accesses to objects allocated in a non-local NUMA zone. Our
findings show that Nemo’s scalability is strong. It is the only solution that continues to
offer increased application performance beyond the threshold corresponding to the number
of cores enclosed in a single socket. Specifically, Nemo outperforms TLC [12] and TL2-
GV5 [35], which are NUMA-compatible, and all other STM approaches that we tested.

7.2 Non-Uniform Memory Access: architecture, char-

acteristics, and performance using atomic opera-

tions

Recent multi-/many-core hardware architectures are composed of multiple sockets (usually
4 or 8), each of which can deploy a multi-core chip. In commercial platforms, a shared bus
interconnection enables communication among hardware threads executing on different sock-
ets. Emerging architectures also include a physical communication grid in which interactions
exploit the message-passing paradigm.

The Non-Uniform Memory Access (NUMA) design is the de-facto standard for interfacing
hardware threads with the main memory. In a NUMA design, one memory socket (i.e., a
memory chip that constitutes a part of the overall system memory) is physically attached
with one processor socket (or, if the socket is capable of maintaining multi-dies, one die
inside the socket), thus creasing the so called NUMA zone. We say that a thread executing
on a particular socket accesses a local NUMA zone when it accesses a memory location that
is maintained within the NUMA zone connected to that socket. Otherwise, we say that the
thread accesses a remote NUMA zone.

When a hardware thread accesses a memory location whose address is located in the local
NUMA zone, the latency is very small (e.g., 9 nsec using DDR3-2000 memory) and the
access is performed without contention on the shared bus resource. On the other hand,
if the memory location is stored in a remote NUMA zone, the hardware thread is forced
to use the shared bus that interconnects all of the sockets to fetch the desired value. The
latter access is clearly slower than the former, and it decreases the overall parallel computing
capability because the access to the shared bus is exclusive - only one thread at a time can
use it. Conversely, if two threads operating in two different NUMA zones work on data
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Figure 7.1: Hardware architecture of an AMD Opteron 64-cores (4 sockets and a 16 cores
processor per socket.

stored in their own local NUMA zones, they can proceed in parallel without any hardware
synchronization point (as is represented by the bus itself).

Figure 7.1 shows the hardware architecture of a widely used AMD 64-core commercially-
available server. The figure shows the presence of four sockets, each containing a processor
with two dies; each die contains 8 cores. There are a total of 8 NUMA zones (one per die).
Overall, a set of 8 threads has fast access to its local NUMA zone.

On this machine, we perform the tests described in Section 7.1. Shortly, in the first test
we deploy a version of the Bank benchmark where all of the accounts (the most contested
object in Bank) are partitioned across NUMA zones and application threads operate only
on accounts stored in their local NUMA zone. This workload matches our definition of scal-
able. As well-known TM algorithms, we implement TL2 [35], SwissTM [40], TinySTM [43],
RingSTM [90], and NOrec [29]. TL2, SwissTM, and TinySTM use different conflict detec-
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tion policies, but all lock written objects individually by relying on a shared lock table which
in our case is partitioned across NUMA zones. Conversely, NOrec protects the transaction
commit phase using a single shared lock, and RingSTM uses a (complex) ring data structure
to catch invalid executions and abort them.
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Figure 7.2: Bank benchmark configured for producing a scalable workload (disjoint transac-
tional accesses).

The result of this experiment are shown in Figure 7.2. As expected, the algorithms using per
object locks provide better performance than the others because they allow for more concur-
rency in the system, which pays off under a scalable workload. However, beside the specific
performance provided, all of the algorithms stop scaling after 16 threads. This configuration
represents the maximum number of parallel threads allowed within a single socket. After
that point, the cost of updating global meta-data becomes very high as this operation likely
involves traversing the shared bus that connects different sockets, therefore hampering the
overall scalability. As an example SwissTM, which provides the best performance, relies on a
single timestamp to validate transaction’s read-set. This timestamp is incremented by every
writing transaction, which represents a high contention bottleneck.

The second experiment shows specifically the latency needed for incrementing a shared times-
tamp. Two configurations are deployed. One uses a single timestamp located in one NUMA
zone that all application threads increment. The other configuration includes 8 timestamps,
where each is located in one NUMA zone and threads increment only the timestamp located
in their local NUMA zone. The plot in Figure 7.3 shows the average time (in millisec) to
perform 100k increments. On the x-axis we vary the number of threads per NUMA zone. For
example, the datapoint at 3 threads represents the configuration with 3 threads per NUMA
zone executing update operations, producing a total of 24 threads given the 8 NUMA zones
available in the testbed.

Results show that updating a single timestamp does not provide any scalable performance
given the high traffic generated on the shared bus among sockets. On the other hand, the cost
for updating a local timestamp using a CAS operation is very small. It is worth noting that
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Figure 7.3: Average cost of 100k increment operations of a centralized vs local timestamp.

at any point in time there are always 8 timestamps getting updated in parallel using atomic
operations. This consideration is important because it shows that even though there is local
contention, the hardware is able to handle it locally at each socket without significantly
affecting the work performed on other sockets. The centralized configuration ensures strong
scalability.

The results detailed in this section form the basis of Nemo, our solution for providing
scalable performance in the presence of scalable workloads. To accomplish such a goal, two
principles should be taken into account: 1) threads executing on data stored in different
NUMA zones should not interfere with each other if the transactions they are executing
do not manifest any conflict; 2) threads executing on the same socket are allowed to share
information to make their execution faster, as this cooperation will not significantly affect
the performance of threads executing on other sockets. Nemo develops a solution that takes
advantage of these characteristics.

7.3 Algorithm Design

Based on our observations of current NUMA machines as described in Section 7.2, a NUMA-
aware TM algorithm should avoid any centralized shared meta-data and should limit data
transfers between NUMA zones. In addition, we perform specific tests to show the interfer-
ences between atomic operations (e.g., CAS) executed on different NUMA zones in parallel.
FIX:We find that each NUMA zone can handle NUMA-local those privileged operations
without any scalability bottlenecks. Thus, our basic idea is to use a traditional centralized-
like STM algorithm inside a NUMA zone and limit inter-NUMA zones communication to
when they are actually needed - namely, when the transaction requests an object stored in
another NUMA zone.

In Nemo, we present two algorithms that satisfy these two main requirements: Nemo-TS
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and Nemo-Vector. In general, these algorithms work intra-NUMA zone, like TL2 [35],
and inter-NUMA zone, like TLC [12], but with fine-grained caching techniques and other
algorithmic optimizations. Another important factor is to keep meta-data in the same NUMA
zone of its corresponding data (e.g., a separate lock-table per NUMA zone). In fact, it does
not make sense paying an expensive cost for accessing an object located in a certain NUMA
zone and then paying an additional cost to access another NUMA zone so as to analyze the
object’s meta-data.

The basic idea of Nemo-TS is to have a separate timestamp for each NUMA zone, called a
local timestamp. Local transactions, which are those that work only on a single NUMA zone,
use the local timestamp to perform a validation. No inter-NUMA-zone communication is
needed in such a case. Similar to TL2, local transactions use invisible reads ; thus concurrent
writing transactions do not know about concurrent readers of their written object2. Each
object has a version, which is the value of the local timestamp at the time the writing
transaction commits. In addition, each transaction keeps a list of all read object in its read-
set. A consistent view of read objects is maintained by validating the read-set using the
transaction starting time (taken from the local timestamp when a transaction begins) and
objects’ versions. If a transaction reads an object with a version greater that the transaction’s
starting time, then the transaction aborts.

Transaction writes are buffered in the write-set until commit time. At commit time, a
transaction acquires all locks associated with written objects in the write-set; it revalidates
the read-set; it writes back the whole write-set to the main memory; it atomically increments
the local timestamp; and finally it updates the acquired locks with the new timestamp value
and unlocks them. If the locks acquisition fails or the read-set results are invalid after
invoking the validation procedure, then the transaction aborts and restarts.

To support inter-NUMA-zone transactions, each thread keeps a local copy (or cached) of
other NUMA zones’ timestamps. This local cache acts like the starting time of a local
transaction. When a transaction reads an object from a NUMA zone with a version greater
than the local cached timestamp of that NUMA zone, the transaction aborts and updates
the local cache of that zone. In order to reduce the number of unnecessary aborts due
to outdated caching, we periodically refresh the cached timestamps. The latter operation
is done without saturating the shared bus connecting the system’s NUMA zones. In fact,
when there is the chance of having outdated cached timestamps, it means that the shared bus
is likely not busy given that few transactions are accessing objects from non-local NUMA
zones. In such a case, it is worth using the shared bus to update the cached timestamp
because very few transactions will be affected; many future transactions will benefit from
this task by preventing unnecessary aborts.

When an inter-NUMA-zone transaction commits, it follows the same procedure of a local
transaction; however, it also atomically increments all accessed NUMA zones’ timestamps
and updates the cached timestamps with the incremented values.

2We use the term object to refer to memory locations
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Nemo-Vector optimizes over Nemo-TS by introducing a vector clock per NUMA zone.
This decision has a twofold benefit: 1) The local cache of other NUMA zones’ timestamps
is at the NUMA zone level instead of at the thread level; and 2) we can avoid some of the
false conflicts due to outdated caching (as detailed later).

With Nemo-Vector, at the beginning of a transaction, the NUMA zone’s vector clock is
copied into the transaction context as its starting time. A local transaction proceeds the same
as Nemo-TS. The local NUMA zone’s entry in the vector clock represents the NUMA zone’s
local timestamp. Inter-NUMA transactions also proceed in a similar fashion to Nemo-TS,
but when a conflict is detected, the NUMA zone’s vector clock is updated. In addition, given
that now there is no single value (i.e., the timestamp) to update, Nemo-Vector proposes
an optimized solution to increment those multiple values efficiently. Accessed NUMA zone’s
vector clocks are locked, and the entries inside each vector are updated. For example, suppose
the system is equipped with three NUMA zones Z1, Z2, and Z3. Each zone will have a vector
clock x of three entries V CZx[i] where i is 1, 2, or 3. If a transaction touched Z1, and Z3, then
at commit time, V CZ1 and V CZ3 are locked and entries V CZ1[1], V CZ1[3], V CZ3[1], and
V CZ3[3] are updated to max(V CZ1[1], V CZ1[3], V CZ3[1], V CZ3[3]) + 1. We also designed
another technique to update these vector clocks without locking, which will be illustrated in
Section 7.4.

Nemo-Vector can also avoid the following false conflict scenario, which is critical to achieve
high performance as it happens often. Suppose a transaction T1 on a NUMA zone Z1 wants
to read from Z2 for the first time (i.e., read XZ2). If the version of XZ2 is greater than
the local cache at the starting time, then in Nemo-TS the transaction will be aborted. In
Nemo-Vector, we can save this abort if V CZ2[1] is less than or equal to, the transaction’s
starting time. In other words, this condition means that the transaction that wrote XZ2

did not invalidate T1’s read-set as it did not write to any object from Z1. Our experiments
showed that this condition saves 10% of the false conflict cases.

It is important to mention again that the working set of each transaction should be mostly
local to reduce the communication overhead on the shared bus between NUMA zones. For
this reason, we also localize meta-data alongside of the data itself. For example, all objects
on NUMA zone Z1 are protected by a lock table maintained by Z1 itself (e.g., the lock table
is partitioned across NUMA zones). That way, in our approach transactions on different
NUMA zones can proceed in a completely-isolated manner if their operations are all local.

Another important issue to address with Nemo is the way memory is allocated. In order to
maintain data locality, newly allocated memory must be placed on a specific NUMA zone
(e.g., adding a new element to a linked list in zone Z1 must allocate the new list node on Z1

memory). Nemo provides a custom memory allocator to properly organize an application’s
shared memory.
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7.4 Algorithm Details

In this section Nemo-TS and Nemo-Vector are detailed.

7.4.1 Nemo-TS

Figure 7.4 shows the pseudo-code of Nemo-TS’s core operations. In the following subsec-
tions we refer to a specific pseudo-code line using the notation [Line X].

  

tx_commit()
27. if (write_set.is_empty()) return; //read-only tx
28. foreach (w in write_set)
29.     zone = zone_of(w.addr);
30.     hash = hash(w.addr);
31.     entry = &lock_table[zone][hash];
32.     if (entry->lock == id) continue;
33.     if (!CAS(entry->lock, 0, id))
34.         tx_abort();
35.     else
36.         w.acquired = true;
    //validate read-set
37. foreach (r in read_set)
38.     zone = zone_of(r.addr);
39.     hash = hash(r.addr);
40.     entry = &lock_table[zone][hash];
41.     if (entry->version > start_time[zone] 
                || (entry->lock && entry->lock != id))
42.         tx_abort();
43. write_set.writeback();
44. foreach (z in numa_zones)
45.     if (touched_zones[z])
46.         end_timestamp[z] = atomic_inc(timestamps[z]);
47.         start_time[z] = end_timestamp[z];
48. foreach (w in write_set)
49.     zone = zone_of(w.addr);
50.     hash = hash(w.addr);
51.     entry = &lock_table[zone][hash];
52.     entry->version = end_timestamp[zone];
53.     entry->lock = 0; //unlock

tx_begin()
1.  if (cache_is_too_old)
2.    foreach (z in numa_zones)
3.       start_time[z] = timestamps[z]
4.  else
5.    start_time[numa_zone] = timestamps[numa_zone]

tx_read(addr)
6.  if (write_set.exist(addr)) 
7.      return write_set.find(addr);
8.  zone = zone_of(addr);
9.  hash = hash(addr);
10. entry = &lock_table[zone][hash];
11. v1 = entry->version;
12. val = *addr;
13. v2 = entry->version;
14. if (v1 > start_time[zone] || v1 != v2 || entry->lock)
15.    start_time[zone] = timestamps[zone]
16.    tx_abort();
17. read_set.add(addr);
18. return val;

tx_write(addr, val)
19. write_set.add(addr, val);
20. touched_zones[zone_of(addr)] = true

tx_abort()
21. foreach (w in write_set)
22.    if (w.acquired)
23.        zone = zone_of(w.addr);
24.        hash = hash(w.addr);
25.        lock_table[zone][hash].lock = 0; //unlock
26. tx_restart()

Figure 7.4: Nemo-TS’s pseudo-code.

Protocol Meta-data

Nemo-TS uses the following thread-local and NUMA-local meta-data (i.e., meta-data shared
by all threads belonging to certain NUMA zone).

Thread-local Meta-data. Each thread (and transaction given that a thread can execute
only one transaction at a time) records a local:

- read-set, a list of all objects read by the transaction. It is used to validate that the
transaction has seen a consistent view.

- write-set, a write-buffer of all written objects. It is implemented as a hash table to enhance
the get and update operations.
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- start-time, an array storing all the NUMA zones timestamps seen by the thread. It contains
an entry for each NUMA zone in the system.

- touched-zones, an array that shows which NUMA zone the transaction wrote to.

NUMA-local Meta-data. Each NUMA zone has its local:

- timestamp, a counter that is incremented with every writing transaction that touches its
associated NUMA zone. Its value is used to mark the versions of objects’ locks in the
lock-table and know the chronological order of transactions.

- lock-table, a large array of versioned locks where an object is mapped to its associated lock
using a hash function.

Begin

Nemo-TS reads the transaction’s NUMA-zone timestamp at the beginning of each trans-
action and update the start-time entry of that zone [Line 5]. Other entries in start-time
remain unchanged from the previous transaction executed by the current thread.

Periodically, we update all start-time entries when the cache is outdated [Line 1-3]. Different
policies can be used to guess that the cache is outdated. One policy is to use the actual time;
thus the cache is updated periodically. Another policy is to use a probabilistic function. In
our implementation we use a probabilistic function that updates the cache 1/50 of the time.

Transactional Read and Write Operation

A read operation checks first if the requested object was previously written by the transac-
tion. In that case, the buffered value is returned from the write-set [Line 6-7].

The read operation reads the object’s version before and after reading the object itself [Line
11-13] to ensure that nothing changed between reading the object and its associated version.
If these two versions do not match, the object is locked. If the object version is greater
than the transaction start-time of that object’s NUMA zone [Line 14], then the transaction
updates the local cache and aborts [Line 15-16]. Otherwise, the object is added to the
read-set and the read value is returned [Line 17-18].

The write operation is much simpler: the written object is added to the write-set and the
object’s zone is marked as touched [Line 19-20]

The function zone of is used to get the NUMA zone of an object. Since we have our own
NUMA memory allocator, we know the address range of each NUMA zone memory in out
process address space.
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Commit and Abort

If a transaction is read-only (i.e., no write operation is performed), then nothing more is
needed and the commit operation immediately returns [Line 27]. For write transactions,
a commit operation starts by acquiring locks of all write-set entries [Line 28-36]. In some
cases, two objects from the write-set map to the same lock-table entry due to a hash collision.
This case is handled by marking the lock owner with the thread id [Line 33]. If an object is
already locked by the same thread, it is simply skipped [Line 32]. If acquiring any lock fails,
then the transaction aborts [Line 34].

After successfully acquiring all write-set objects’ locks, the read-set has to be validated. The
validation confirms that the read-set that was used to produce the transaction write-set is
still consistent. The validation is done by confirming that read-set entries’ versions are still
less than or equal to the transaction start-time of each object’s zone. It also confirms that
read-set objects are not locked by other transactions [Line 37-42].

At this stage, the transaction can safely write-back the write-set buffer to the main memory
[Line 43]. Then, the transaction atomically increment all touched zones timestamps and
updates the local cache [Line 44-47]. The new timestamps’ values are used as the new
versions of the written objects [Line 52]. The last step in the commit operation is to update
all write-set objects’ versions and then unlock them [Line 48-53].

7.4.2 Nemo-Vector

Figure 7.5 shows the pseudo-code of Nemo-Vector’s core operations.

Protocol Meta-data

Nemo-Vector uses the same meta-data of Nemo-TS except for timestamps. Timestamps
are replaced with vector-clocks. A vector-clock is an array that represents a NUMA zone view
of all NUMA zones timestamps. It contains an entry for each NUMA zone in the system.
Entry z inside vector-clock of NUMA zone z represents the zone z timestamp and is always
up-to-date. Other entries represent NUMA-level caches of other zones’ timestamps.

Begin

A transaction begins by copying its NUMA zone vector-clock to its start-time [Line 1-2]. In
pseudo-code, we represent vector-clock as a 2-D array named vectors, where vectors[z]

represents the vector-clock of zone z.



Mohamed Mohamedin Chapter 7. Nemo 89

  

tx_commit()
37. if (write_set.is_empty()) return; //read-only tx
38. foreach (w in write_set)
39.     zone = zone_of(w.addr);
40.     hash = hash(w.addr);
41.     entry = &lock_table[zone][hash];
42.     if (entry->lock == id) continue;
43.     if (!CAS(entry->lock, 0, id))
44.         tx_abort();
45.     else
46.         w.acquired = true;
    //validate read-set
47. foreach (r in read_set)
48.     zone = zone_of(r.addr);
49.     hash = hash(r.addr);
50.     entry = &lock_table[zone][hash];
51.     if (entry->version > start_time[zone] 
                || (entry->lock && entry->lock != id))
52.         tx_abort();
53. write_set.writeback();
54. foreach (z in numa_zones)
55.     if (touched_zones[z] & WRITE)
56.        tx_zones.add(z)
57. max_ts = 0;
58. foreach (z in tx_zones)
59.    vectors[z].lock();
60.    if (vectors[z][z] > max_ts)
61.          max_ts = vectors[z][z];
62. max_ts++;
63. foreach (z in tx_zones)
64.   foreach (z2 in tx_zones)
65.      vectors[z][z2] = max_ts;
66.   vectors[z].unlock();
67. foreach (w in write_set)
68.     zone = zone_of(w.addr);
69.     hash = hash(w.addr);
70.     entry = &lock_table[zone][hash];
71.     entry->version = max_ts;
72.     entry->lock = 0; //unlock

tx_begin()
1.  foreach (z in numa_zones)
2.     start_time[z] = vectors[numa_zone][z]

tx_read(addr)
3.  if (write_set.exist(addr)) 
4.      return write_set.find(addr);
5.  zone = zone_of(addr);
6.  hash = hash(addr);
7.  entry = &lock_table[zone][hash];
8.  v1 = entry->version;
9.  val = *addr;
10. v2 = entry->version;
11. if (v1 != v2 || entry->lock)
12.    tx_abort();
13. if (v1 > start_time[zone])
14.    if (zone != numa_zone)
15.       if (vectors[numa_zone][zone] < v1)
16.          vectors[numa_zone].lock();
17.          vectors[numa_zone][zone] = vectors[zone][zone];
18.          vectors[numa_zone].unlock();
19.       if (!touched_zones[zone])
20.          foreach (z in touched_zones)
21.             if (vectors[zone][z] > start_time[z])
22.                tx_abort();
23.          start_time[zone] = vectors[zone][zone];
24.    else
25.       tx_abort();
26. touched_zones[zone] |= READ;
27. read_set.add(addr);
28. return val;

tx_write(addr, val)
29. write_set.add(addr, val);
30. touched_zones[zone_of(addr)] |= WRITE;

tx_abort()
31. foreach (w in write_set)
32.    if (w.acquired)
33.        zone = zone_of(w.addr);
34.        hash = hash(w.addr);
35.        lock_table[zone][hash].lock = 0; //unlock
36. tx_restart()

Figure 7.5: Nemo-Vector’s pseudo-code.

Transactional Read and Write Operation

The read operation in Nemo-Vector is changed such that we can avoid some of the false
conflicts of Nemo-TS. When an object Xz with a newer version is read from another NUMA
zone z [Line 13-14], we first update the vector-clock entry of that thread’s zone [Line 15-18].
Before updating the vector-clock, we must acquire its associated lock first [Line 16].

If this is the first time reading from NUMA zone z, then an abort can be avoided if NUMA
zone z did not invalidate any of the transaction’s touched zones. The condition V CZz[w] ≤
V CZw[w] guarantees that zone z did not change any object in zone w since V CZz[w]. We
want to know, however, if any transaction in zone z invalidated any object in zone w since
transaction T started. The condition is changed to V CZz[w] ≤ STT [w] where STT is the
start-time of transaction T . If this condition is true for all zones touched by T [Line 20-22]
then the read is valid and we can safely advance the start-time of zone z (STT [z]) to the
current timestamp of zone z (V CZz[z]) [Line 23].

Another change in Nemo-Vector is that we need to keep track of all zones that a trans-
action read from them. This is important to know if reading for the first time from a given
zone[Line 19, 26, 30]. The touched-zones array now is used to mark both read and written
zones using different flags.
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tx_commit()
38. if (write_set.is_empty()) return; //read-only tx
39. foreach (w in write_set)
40.     zone = zone_of(w.addr);
41.     hash = hash(w.addr);
42.     entry = &lock_table[zone][hash];
43.     if (entry->lock == id) continue;
44.     if (!CAS(entry->lock, 0, id))
45.         tx_abort();
46.     else
47.         w.acquired = true;
    //validate read-set
48. foreach (r in read_set)
49.     zone = zone_of(r.addr);
50.     hash = hash(r.addr);
51.     entry = &lock_table[zone][hash];
52.     if (entry->version > start_time[zone] 
                || (entry->lock && entry->lock != id))
53.         tx_abort();
54. write_set.writeback();
55. foreach (z in numa_zones)
56.     if (touched_zones[z] & WRITE)
57.        tx_zones.add(z)
58. foreach (z in tx_zones)
59.    end_ts[z] = atomic_inc(vectors[z][z]);
60. foreach (z in tx_zones)
61.    foreach (z2 in tx_zones)
62.       if (z != z2)
63.          ts = vectors[z][z2];
64.          while (ts < end_ts[z2])
65.             old_val = CAS_val(vectors[z][z2], ts, end_ts[z2]);
66.             if (old_val > ts)
67.                ts = old_val
68. foreach (w in write_set)
69.     zone = zone_of(w.addr);
70.     hash = hash(w.addr);
71.     entry = &lock_table[zone][hash];
72.     entry->version = end_ts[zone];
73.     entry->lock = 0; //unlock

tx_begin()
1.  foreach (z in numa_zones)
2.     start_time[z] = vectors[numa_zone][z]

tx_read(addr)
3.  if (write_set.exist(addr)) 
4.      return write_set.find(addr);
5.  zone = zone_of(addr);
6.  hash = hash(addr);
7.  entry = &lock_table[zone][hash];
8.  v1 = entry->version;
9.  val = *addr;
10. v2 = entry->version;
11. if (v1 != v2 || entry->lock)
12.    tx_abort();
13. if (v1 > start_time[zone])
14.    if (zone != numa_zone)
15.       ts = vectors[numa_zone][zone];
16.       while (ts < v1)
17.          old_val = CAS_val(vectors[numa_zone][zone], ts,   
                            vectors[zone][zone]);
18.          if (old_val > ts)
19.             ts = old_val
20.       if (!touched_zones[zone])
21.          foreach (z in touched_zones)
22.             if (vectors[zone][z] > start_time[z])
23.                tx_abort();
24.          start_time[zone] = vectors[zone][zone];
25.    else
26.       tx_abort();
27. touched_zones[zone] |= READ;
28. read_set.add(addr);
29. return val;

tx_write(addr, val)
30. write_set.add(addr, val);
31. touched_zones[zone_of(addr)] |= WRITE;

tx_abort()
32. foreach (w in write_set)
33.    if (w.acquired)
34.        zone = zone_of(w.addr);
35.        hash = hash(w.addr);
36.        lock_table[zone][hash].lock = 0; //unlock
37. tx_restart()

Figure 7.6: Lock-free version of Nemo-Vector’s pseudo-code.

Commit and Abort

The commit operation is the same as Nemo-TS until the write-back stage [Line 53]. The
main difference is how we update the vector-clocks. First, we acquire the locks of all touched
NUMA zones (touched in a write operation) [Line 58-59]. Then we find the maximum
timestamp max ts in all touched zones’ timestamps [Line 58-61]. This maximum value is
incremented and used to update touched zones’ vector-clocks entries (the entries of touched
zones only) [Line 62-65]. Then the vector-clocks locks are released [Line 66].

Finally, the maximum timestamp value max ts is used as the new version of the transaction’s
written objects [Line 67-72].

Lock-free version of Nemo-Vector

Locking the entire vector-clocks to update them is costly; thus, we designed a lock-free
version of Nemo-Vector. Figure 7.6 shows the pseudo-code of the lock-free version of
Nemo-Vector’s core operations. This version is identical to the original Nemo-Vector
except for how vector-clocks are updated.
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In read operation [Line 16-19], instead of locking the entire vector-clock, we use an atomic
compare-and-swap (CAS) operation to update the outdated entry. We use the version of
CAS that returns the old value [Line 17]. Using this old value, we can know if another
thread updated the same entry and finished the job (if the entry value is now greater than
or equal to the desired value) [Line 16, 18]. Otherwise, we retry the CAS operation until the
entry is updated (or some other thread updates it)

In commit operations, we care about incrementing the timestamps of touched zones correctly
(using atomic increment) [Line 58-59]. Then we try to update the other cache entries in each
vector-clock. The update is done in a similar fashion of the read operation. Using the version
of CAS that returns the old value, we keep trying to update an entry until it reaches the
desired value (via a successful CAS or by another thread) [Line 60-67].

Our argument that this lock-free way of updating vector-clocks is safe is as follows. By
atomically incrementing the main timestamps entry in each vector-clock, we guarantee the
correctness of the objects’ new versions. Then, while updating the cache entries, the write-set
entries are locked and other transactions cannot read from them. Thus, until the operation
is finished, no invalid object can be read. In addition, using atomic CAS operation to update
the cache ensures that threads do not overwrite the values of each other and guarantees that
the final value matches the latest increment of each timestamp. This is because each thread
tries to update the cache entry with its own value, but it stops in case some other thread
updated the cache entry with a greater value.

7.4.3 NUMA Memory Allocator

A NUMA library (i.e., libnuma in Linux) provides an API to allocate memory in a specific
NUMA zone memory (numa alloc onnode). numa alloc onnode allocates the requested
memory size rounded up to a multiple of the system page size. In addition, numa alloc onnode

is relatively slow compared to malloc. Thus, we decided to build our own NUMA memory
allocator, which uses numa alloc onnode internally. For example, to allocate an int using
numa alloc onnode, you will end up with a whole system page. In our NUMA allocator, we
consume the page returned from numa alloc onnode completely before requesting another
page.

7.4.4 Nemo and multi-sockets HTM architectures

Next generation HTM processors from Intel (Haswell-EX, e.g., Xeon E7-48xx v3 and Xeon
E7-88xx v3) were introduced in May 2015. Each processor has a high core count (up to
18 cores) and supports multi-sockets operation (up to 8 sockets). These processors adopt a
NUMA architecture in their multi-socket operations. In addition, HTM support still comes
from cache coherence protocol; thus, HTM will suffer from the same scalability problems of
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non-HTM NUMA architectures.

Our approach that decouples intra-NUMA transactions from inter-NUMA transactions can
be extended to support HTM transactions. Clearly, we cannot change the hardware - thus
the way contention between hardware transactions is handled cannot be modified, but our
approach can improve the software fallback path. Using a single global lock will definitely
impact the performance similar to NOrec results (see Section 7.5). A NUMA-aware global
lock can enhance performance, but it still reduces concurrency as only one transaction will
be allowed to run at a time. Nemo can be extended to allow concurrency between HTM
and the software fallback path by relying on the solution presented in Chapter 6.

7.5 Evaluation

Nemo has been implemented in C++. Since Nemo is a solution to provide scalable perfor-
mance in presence of scalable workload, we modify our tested benchmarks to be NUMA-local
- namely, to exploit data locality of the NUMA zone which the transaction is executing on.
We conduct a comprehensive evaluation using the following benchmarks: Bank, Linked-List,
and TPC-C. Bank mimics a monetary application that transfers capital between accounts.
We modify Bank to be NUMA-local by partitioning accounts among NUMA zones. Inter-
NUMA-zone operations represent operation that work on accounts stored on different NUMA
zones (e.g., a transfer from an account in the NUMA zone z1 to an account in the NUMA
zone z2). NUMA-Linked-list is a new benchmark where we place a separate and independent
linked-list in each NUMA zone. Inter-NUMA-zone operations represent moving an object
from one NUMA zone to another (e.g., a remove operation from the linked-list of the NUMA
zone z1 followed by an add operation in the linked-list of the NUMA zone z2). TPC-C [27] is
the famous on-line transaction processing (OLTP) benchmark which simulates an ordering
system on different warehouses. TPC-C includes five transaction profiles, three of which are
write transactions and two of which are read-only. TPC-C is modified to be NUMA-local by
partitioning the in-memory database tables that represent it. Each group of warehouses is
located in a single NUMA zone along with all its related data. Since TPC-C default trans-
action profiles work on a single warehouse, we choose to represent inter-NUMA operations
by running a transaction on a remote warehouse.

As competitors, we include two state-of-the-art centralized STM protocols, TL2 [35] and
NOrec [29]; two NUMA-optimized STM protocols, TLC [12] and TL2 GV5 [35]; and we
also develop a version of NOrec enhanced by our implementation of the NUMA-aware lock
of [36] (specifically C-BO-BO Lock [36]). In addition, we also compare against strict 2-
Phase Locking (2PL), which is a complete DAP approach that strictly uses no shared meta-
data. TLC has no shared global timestamp at all, but instead each thread has its own
timestamp. In addition, a thread-local cache of other threads’ timestamps is maintained
in each thread. When a thread reads an object with a version newer than its local cache,
it aborts and updates its local cache. The object version includes both the writing thread
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id and that thread’s timestamp at the time of writing. TL2 GV5 is a version of TL2 that
limits updates of the shared global timestamp to aborted transactions (when a timestamp
conflict is detected). When a transaction reads an object with a version that is greater than
the global timestamp, the transaction aborts and updates the global timestamp with the
object’s version.

The NUMA-aware lock implementation is not available, so we implemented it by using
the provided description in [36]. The tests of our implementation of the NUMA-lock show
that it is working correctly. Figure 7.7 shows a comparison of a centralized lock and our
implementation of the NUMA-lock. In this experiment, each thread tries to acquire the lock
100,000 times, performs some dummy work, and then releases the lock. The reported data
is the average time spent by each thread to finish the task; thus lower is better. It is worth
noting that threads are distributed among NUMA zones in a round-robin fashion (e.g., the
configuration with 8 threads means 1 thread per NUMA zone, while 16 threads means 2
threads per NUMA zone). Thus, lock cohorting of the NUMA-lock has no benefits at 1 and
8 threads.
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Figure 7.7: Comparison of a centralized global lock and a global NUMA-lock.

In this evaluation study we use the 64-core machine described in Section 7.2 and Figure 7.1.
It has four AMD Opteron 6376 Processors (2.3 GHz) and 128 GB of memory. This machine
has 8 NUMA zones (2 per chip) and each NUMA zone has 16 GB of the memory. The code
is compiled with GCC 4.8.2 using the O3 optimization level. We ran the experiments using
Ubuntu 14.04 LTS and libnuma. All data points are the average of 5 repeated execution.

Bank

In this benchmark, each transaction produces 10 transfer operations accessing 20 random
bank accounts. Each NUMA zone has 1 million accounts (a total of 8 million accounts).
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Thus, the contention level in this configuration is very low. In addition, 10% of the trans-
actions are inter-NUMA-zone, which means that they invoke a transfer operation between
two different NUMA zones.
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Figure 7.8: Throughput using Bank benchmark.

Figure 7.8 shows the results. Nemo-TS (NemoTS) and the lock-free version of Nemo-
Vector (NemoVec-LF) have the best performance and scalability. Nemo-Vector (NemoVec)
starts to suffer at high threads count due to the contention on vector-clocks’s locks. TLC
has very close performance to Nemo since the level of contention in this benchmark is very
low, and thus it does not suffer from a high number of aborts. 2-Phase locking scales well,
but the overhead of acquiring locks on both read and written objects at encounter-time is
evident, even with such low contention level. TL2-GV5 stopped scaling after 32 threads as it
is still using a centralized single timestamp. TL2 does not scale beyond 16 threads (a single
socket). NOrec and NOrec with NUMA-lock (NOrec-NUMA) have very limited scalability
up to 16 threads. It is clear that using a NUMA-aware lock enhances performance, but
serializing the commit phase in a write-dominated benchmark kills performance.

NUMA-Linked-list

In this benchmark, each NUMA zone has a sorted linked-list of size 10000 elements. Initially
the linked-list is half-empty. Each transaction does an insert (30%), a remove (30%), or
a contains (40%) operation on a single linked-list. Inter-NUMA-zone transactions removes
an item from one linked-list and add it to another linked-list. Given the large size of the
linked-lists, transaction execution time is long. In addition, each transaction traverses the
linked-list from the beginning to the desired node. During this traversal, all visited nodes
are kept in the transaction read-set. Thus, the contention level is high since any write to a
node that is read by another transaction will abort the reading transaction.

Figure 7.9 shows the results. In this benchmark, we notice that all approaches cannot
scale well; the level of contention is high and the cost of aborting a transaction is high as
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Figure 7.9: Throughput using NUMA-Linked-list benchmark.

well given the transaction’s long duration. All Nemo approaches are the best in terms of
scalability and performance. TLC suffers from high abort rates in this benchmark because
of the outdated cache in each thread. TL2 shows no scalability after 8 threads. TL2-GV5
also suffers from high number of aborts since transactions access common objects frequently
and the global timestamp is not updated with every write. Thus, even a single thread
aborts every other transaction when it reads an object written in the previous transaction
(by the same transaction). NOrec and NOrec-NUMA show better performance since there
is 40% read-only transactions which can proceed concurrently. 2PL suffers significantly in
this benchmark because transactions are blocked by read-locked objects and are aborted.

TPC-C

In this benchmark, we partition TPC-C in a memory database such that each NUMA zone
has 20 warehouses with its associated data. Inter-NUMA transactions are actually out-of-
NUMA transactions in this benchmark, where a thread queries or updates a remote partition.
TPC-C transactions are complex and long, and it also has a medium level of contention given
20 warehouses per zone. This workload represents the sweet spot for Nemo.

Figure 7.10 shows the results. NemoTS and NemoVec-LF have the best scalability. In
addition, NemoVec-LF is better than NemoTS since it is better optimized and the moder-
ate contention workload allows these optimizations to pay-off. As the number of threads
increases, NemoVec suffers from a bottleneck due to the vector-clocks locking. TLC also
suffers from a large number of aborts in this benchmark. TL2 did not scale after 16 threads.
TL-GV5 shows the effect of relaxing the contention of centralized global meta-data. As the
contention level is moderate, TL-GV5 is able to scale up to 32 threads. 2PL suffers in moder-
ate contention workloads too. Acquiring objects’ read-locks increases the level of contention
and the abort rate. NOrec and NOrec-NUMA do not scale at all as 92% of TPC-C’s default
workload is write transactions.
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Figure 7.10: Throughput using TPC-C benchmark.

7.5.1 Effect of Inter-NUMA zones Transactions
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Figure 7.11: Throughput using Bank benchmark under different inter-NUMA-zone transac-
tions percentage. The number of threads is 48.

In this experiment we show the effect of increasing the percentage of transactions accessing
objects stored in different NUMA zones. Figure 7.11 show the results of the Bank benchmark
with the same configuration as shown above. We fix the number of thread to 48 threads so
that we have enough contention in each NUMA zone without saturating it.

Clearly, Nemo is not originally designed to support a high number of non-NUMA-local
transactions. The results shows that Nemo-Vector cannot scale beyond 10% because of
the bottleneck introduced by the locks on the vector-clocks. The lock-free version of Nemo-
Vector scales much better up to 25%. Nemo-TS has the best scalability. Practically,
Nemo is designed to handle up to 10% inter-NUMA-zone transactions.

Figure 7.12 reports the detailed performance in the range of 0% to 10% of Figure 7.11.
Here we see that the lock-free version of Nemo-TS has the best results. TLC is slightly
affected with the percentage of inter-NUMA-zone transactions as it has no overhead related
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Figure 7.12: Zooming Figure 7.11 in between the 0% datapoint and the 10% datapoint.

to updating the different NUMA zones meta-data.

7.5.2 Summary

Our experiments results show that Nemo has the best performance and scalability when
the majority of the workload is scalable (i.e., it minimizes the operations involving more
than one NUMA zone). In addition, our best results are achieved when the contention
level is medium/high. Nemo-Vector’s performance does not match our other approaches
because it suffers from the bottleneck due to vector-clocks locking. This bottleneck has been
eliminated in the lock-free version of Nemo-Vector that achieved the best performance in
the low and medium contention scenarios.



Chapter 8

Conclusions

In this dissertation, we proposed contributions aimed at optimizing the performance of con-
current applications by leveraging Transactional Memory (TM). We exploited HTM as one
of the best candidates for improving performance of applications deployed on multi-core
architectures, and easing the parallel programming. Our target is to overcome most of best-
effort HTM limitations. We identified three major limitations: resource limitations; lack
of an advanced contention manager; and poor communication techniques between HTM
and the software fallback path. We addressed the resource limitations problem in Part-
htm; we addressed the lack of an advanced contention manager by an HTM-aware scheduler
(Octonauts); and we addressed the communication problem by a fine-grained fallback
mechanism in Precise-tm. Another important problem that affects TM systems in general
is scalability on Non-Uniform Memory Access (NUMA) architectures, a problem that affects
current STM systems and will affect HTM systems in the near future. Nemo addresses this
problem by proposing a NUMA-aware design, and by supporting NUMA-locality.

We presented Part-htm, a hybrid TM, which aims at committing those HTM transactions
that cannot be fully executed as HTM due to space and/or time limitation. The core idea of
Part-htm is splitting hardware transactions into multiple sub-transactions and run them
in hardware with a minimal instrumentation. Part-htm’s performance is appealing. In
our evaluation it is the best in almost all the tested workloads, and it is close to HTM’s
performance where HTM performs the best. Part-htm represents the first solution that
solves the resource limitation of best-effort HTM.

Octonauts represents one of the first HTM-aware schedulers. It depends on a priori
knowledge of transactions working-set. Using that knowledge, it prevents the activation of
conflicting transactions simultaneously. Being HTM-aware, it supports concurrent execution
of HTM and STM transaction with minimal added overhead. Octonauts is also adaptive,
based on the transaction characteristics (i.e., data size, duration, irrevocable calls) it selects
the best path among HTM, STM, or global locking. Octonauts results shows performance
improvement at high contention levels which confirms the need for an advanced contention
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manager for HTM systems.

Precise-tm tackles the problem of the coarse-grained fallback path of best-effort HTM
where HTM transactions are interrupted by transactions executing in the software fallback
path. It presents a unique and precise technique for a fine-grained fallback path without
introducing any share meta-data, which would be a source of high overhead. Precise-tm
used the address-embedded lock technique to implement fine-grained locks because it has no
space overhead (as it steals bits from pointers) and minimal instrumentation overhead. In
addition, HTM transactions and software fallback path communicate with each other only
when they access a common object as imposed by the application logic itself. Results show
that Precise-tm allows more concurrency between transactions, reduces false conflicts, and
minimizes added meta-data.

Finally, we presented Nemo, a NUMA-aware scalable STM algorithm that exploits NUMA-
local workloads. Nemo allows intra-NUMA transactions to run efficiently and share NUMA-
local meta-data to achieve the best possible performance. Inter-NUMA zones transactions,
which represent the uncommon case, can still be executed efficiently but without interference
with NUMA-local transactions. Nemo results showed a near perfect scalability for scalable
workloads, while other STM algorithms stop scaling after 16 parallel threads in a 64-core
AMD multi-core machine.

8.1 Summary of Contributions

Our contributions are summarize as follows:

• Part-htm is the first hybrid TM that solves the problem of resource limitations
(space/time) of current best-effort HTM. Part-htm has the best performance in all
tested cases that are not suitable for HTM (where HTM cannot be outperformed).

• Octonauts is one of the first HTM-aware schedulers that orchestrates conflicting
transactions. One of the main contributions of Octonauts is identifying the issues
of HTM-aware schedulers and why solving the well-studied problem of scheduling is
not trivial for current best-effort HTM implementations. This is because current HTM
design does not support non-transactional instructions and thus it does not provide
enough information about aborted transactions so that effective scheduling policies can
be defined. Results show performance improvement when Octonauts is deployed in
comparison with pure HTM with falling back to global locking.

• Precise-tm is a unique approach to solve the granularity of the software fallback path
of best-efforts HTM. It presented a new and precise technique towards fine-grained soft-
ware fallback path. Results show that our precise fine-grained fallback path allows more
concurrency between transactions and reduces false aborts with minimal space/time
overhead.
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• Nemo is a NUMA-aware STM algorithm that provides scalable performance in the
presence of locality-aware workloads. Nemo aims at optimizing the common case of
transactions running within one NUMA-zone, and handling inter-NUMA-zone transac-
tions efficiently by minimizing the thread interferences if transactions are not actually
conflicting (an idea inspired by the Disjoint-Access-Parallelism property).

8.2 Future Work

As a future work, we suggest extending Nemo to support the newly released NUMA archi-
tectures with HTM support integrated with the cache-coherence protocol that manages the
consistency of caches on the whole machine, including other sockets and NUMA-zones. We
see Precise-tm as a good candidate to be adapted and integrated into Nemo, as it already
supports the Disjoint-Access-Parallelism property. The focus should be on the software fall-
back path as the conflict detection of HTM transactions is handled by the hardware itself.
A fine-grained fallback path in crucial for HTM in NUMA settings where coarse-grained
locking or unnecessary communications degrade performance and scalability.

Another extension for Precise-tm is to allow a more efficient STM-STM synchronization
technique, which would allow for more concurrency between transactions running in the
software fallback path. In addition, a good contention manager would be needed to manage
conflicts in the software fallback path itself. Thus, merging Octonauts and Precise-tm
is another good possible research direction to develop.
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