Mutex Locking versus Hardware Transactional Memory: An
Experimental Evaluation

Sean R. Moore

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
n
Computer Engineering

Binoy Ravindran, Chair
Roberto Palmieri
Dongyoon Lee

September 16, 2015
Blacksburg, Virginia

Keywords: Hardware Transactional Memory, Global Lock, GNU C Library
Copyright 2015, Sean R. Moore

Mutex Locking versus Hardware Transactional Memory: An Experimental
Evaluation

Sean R. Moore
(ABSTRACT)

It has historically been the case that CPUs have run programs ever faster without significant
intervention on the behalf of the programmer. However, this “free lunch” has largely ended
due to the end of exponentially increasing core frequency and the current slow increase in
instruction-level parallelism but continues to a degree in cache size improvements. But since
Moore’s law still largely continues “lunch”, i.e. program performance, can still be bought at
the price of rewriting code for multiple cores, enabled by the trend Moore’s law describes.
Multicore architectures cannot aid performance for problems whose solutions are necessarily
sequential in nature and writing efficient and correct concurrent programs is not easy in all
cases when using synchronization methods like fine-grained mutex locks.

Transactional memory and its implementation as hardware transactional memory allow pro-
grammers to write concurrent applications without the attendant complexity of programming
with mutex locks. This allows programmers to focus on optimizing the application for per-
formance. Given that transactions can run two segments of code in parallel that a mutex
lock would force to run sequentially and that transactions can abort, causing a program to
do the same work more than once, whether transactions perform better or worse than mutex
locks is dependent on the program’s execution profile and the coarseness or fineness at which
mutex locks are used.

In this thesis the GNU C Library’s futex implementation of mutex locks and Intel’s Re-
stricted Transactional Memory have been compared and the behavior of those transactions
have been analyzed. This analysis includes a pathological behavior permitted by the GNU
C Library’s hardware transactional memory implementation of mutex locks. The tradeoffs
between fine-grained and global locking implementations have been discussed, compared
and used in the context of fallback locks for hardware transactions. This thesis provides
evidence to the effect that fine-grained locking is not critical for program performance and
that in many cases global locking and hardware transactions can provide nearly equivalent
performance without the programming difficulties. This work has shown that across the 23
applications examined, with relation to their original locking implementation, a global lock-
ing scheme without elision has a 0.96x speedup, Intel’s Restricted Transactional Memory
(RTM) with the application’s original locks as fallback has a 1.01x speedup and with global
lock fallback RTM has a speedup of 0.97x.

This work is supported in part by NAVSEA /NEEC under grant 3003279297. Any opinions,
findings, and conclusions or recommendations expressed in this thesis are those of the author
and do not necessarily reflect the views of NAVSEA.

Acknowledgments

I want to thank

Dr. Binoy Ravindran for advising me during my time as a graduate student at Virginia
Tech and chairing my advisory committee,

Dr. Dongyoon Lee for serving on my advisory committee,

Dr. Roberto Palmieri for serving on my advisory committee and providing excellent guid-
ance,

Dr. Mohamed Mohamedin and Dr. Ahmed Hassan for getting me up to speed on rele-
vant work in hardware transactional memory;,

Duane Niles Jr. for discussing with me his share of interesting dilemmas from the soft-
ware side of transactional memory,

the Systems Software Research Group members and alumni that I have had the pleasure of
meeting,

and lastly my friends and family for enabling me to pursue this degree and for giving me
innumerable opportunities.

1ii

Contents

1 Introduction

1.1 Motivation
1.2 Contributions
1.3 Thesis Organization

2 Background

2.1 Mutex Locks
2.1.1 Difficulty with Fine-grained Locking Designs
2.1.2 Deadlockso
2.1.3 Livelocks

2.2 Transactional Memory
2.2.1 Fallback Locks

3 Related Work

3.1 Draft C++ TM
3.1.1 Transactionalized memcached
3.2 GNU C Library Mutex Locks

4 GNU C Library and Hardware Transactional Memory

4.1 Modifying the Library
4.2 Fine-grained Versus Global Fallback and Futex Versus HTM
4.2.1 Semantic Differences

v

e N B I

©

10
10
12
16
16

19
19
19
20

4.2.2 High-level Performance Differences

5 Experiments

5.1 Experimental Setup
5.1.1 Hardware
5.1.2 Software
5.2 Data Reporting
5.3 memcached
5.3.1 Notable Synchronization Methods
5.3.2 Lock Cascade Failure L.
533 Results.
54 PARSEC and SPLASH-2x
5.4.1 Results. o

6 Conclusion and Future Work

6.1 Conclusion
6.2 Future Work
A Data

B Source Examples

34
34
34
35
35
37
37
38
40
41
42

45
45
46

50

58

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Al
A2
A3
A4
A5
A6
AT
A8
A9

Deadlock Scenarios Lo 11
Trylock Livelocko o 13
Livelock Cycles 0 15
Lock Fallback Timing 25
Committed Transaction Timing 26
Fine-Grained Sentinel Spinlocko 32
Global Sentinel Spinlocko 33
Empty Critical Section Ordering 33
Contents of Iscpu 35
Contents of cpuid 36
Quadratic Elision/Acquire Lock Cascade Failure 40
memcached: Region-of-Interest Duration 50
memcached: Region-of-Interest Duration Normalized 51
memcached: Ratio Transaction Commits — Starts 51
memcached: Ratio Ticks Aborted — Region-of-Interest 52
memcached: Ratio Tick Transaction — Region-of-Interest 52
PARSEC and SPLASH-2x: Region-of-Interest Duration 53
PARSEC and SPLASH-2x: Region-of-Interest Duration Normalized 54
PARSEC and SPLASH-2x: Ratio Transaction Commits — Starts 55
PARSEC and SPLASH-2x: Ratio Ticks Aborted — Region-of-Interest 56

vi

A.10 PARSEC and SPLASH-2x: Ratio Tick Transaction — Region-of-Interest . . . 57

vii

List of Tables

1.1

2.1
2.2

4.1
4.2
4.3

5.1

B.1
B.2
B.3
B.4

fluidanimate Proof of Concept L. 6
Increment with Race Condition 9
Atomic Increment Lo 10
Mutex Lock 23
Deadlock Hiding 27
Empty Critical Section Blocking 30
PARSEC and SPLASH-2x Programs 42
Elision Locking 58
Elision Trylocking o 59
Elision Unlock 61
Max Nest Depth Detection 61

viil

Chapter 1

Introduction

Multicore is the present and the foreseeable future of CPUs ever since hardware advances
which sped up execution of serial applications have largely come to a stop [21]. The trend
which Moore’s law describes has allowed CPU designers to increase the number of cores that
can be crammed onto a chip while other trends helping serial execution speed have come to
a halt or at least slowed down [22, 21]. Programmers are now faced with the reality that
getting a program to take full advantage of improvements in hardware requires thinking
about their program as a parallel one.

When programmers plan or write code, whether from scratch or for maintenance, they
have to understand and deal with the difficulties associated with the current approaches of
programming concurrent and parallel applications. For instance, Java had to fix the mem-
ory semantics it had previously employed [24] and C++ had postponed defining a memory
model leaving projects like the Linux kernel to assume certain memory semantics where
none were specified [23]. In addition to the ambiguity and errors introduced and left by the
standards, concurrent processing is prone to hard-to-debug programming errors such as data
races which are hard to replicate as they are triggered pseudorandomly and their behavior
is left undefined by languages like Java and C++ [24, 23].

Programmers writing concurrent programs also have to worry about possible side-effects
of their synchronization methods. Deadlocks are one of these side-effects and occur when a
program causes one or more streams of execution to wait on some condition to become true
and each stream in the deadlock eventually requires itself to progress before being allowed
to progress. Another such side-effect is livelocking. Livelock requires that a stream of exe-
cution is created with the assumption that it may read or write data which other streams of
execution may also write. Those streams of execution are also responsible for redoing (and
possibly undoing) work upon interference from another stream of execution or reaching some
undesirable state (e.g. deadlock). Livelock occurs when each stream in the livelock indef-
initely performs work and rolls that work back without ever actually completing the task.

Sean R. Moore Chapter 1. Introduction 2

Ensuring that a program is free from these and other deleterious effects is only complicated
by maintaining the program over its life-cycle. The original programming effort to architect
the original program to prevent these effects can be cross-cutting, making modifications of
the original program difficult.

How is a programmer to take advantage of the performance benefits of hardware paral-
lelism while avoiding the complications that come with concurrency?

Mutex locks, while a useful abstraction, have their drawbacks. Mutexes must, in many
cases, follow a prescribed locking order throughout the entirety of a program to ensure that
deadlocks cannot occur. This can be hard to enforce and even harder to maintain if complex,
application-level procedures acquire locks that the stream of execution holds after returning
from those procedures and even worse if that lock is determined dynamically. However, this
lock-ordering requirement can be bypassed if the programmer is clever enough to realize that
trylocking and rolling back work can violate a locking order yet still be free of deadlocks or
data races.

Let us say for example that some programmer wants to perform a macro-operation on a
dataset which accepts three records in any order each with their own lock which operates
on the first item, the second then the third, carrying data between records with the entire
macro-operation needing to appear atomic. If the sub-operations take a lengthy period of
time the programmer would either be forced to acquire locks before they are needed in order
to satisfy a lock-ordering requirement or could “cheat” the lock ordering by allowing some
permutations to attempt to acquire locks out of order but roll back work if an acquire fails
to immediately acquire the lock (for example, using trylock). This brings with it, if not
planned carefully, the possibility of a livelock with some of the streams of execution contin-
ually causing each other to roll back indefinitely.

While not necessarily the hardest conceptual issue to solve, mutex locks also require that
operations that appear atomic be wrapped in an acquire and release pair. If a programmer
uses a library with thread-safe data structures the programmer can (probably) be assured
that any single function call to the library caused some effect or returned some result that
is sensible to a programmer familiar with sequential programs. However, if the programmer
puts two function calls back-to-back that they expected to occur together they might not
get the expected result because the library did not know that those operations should be
executed together atomically. If a region of memory accessible by the application is made
accessible to the library as well (or vice-versa) it may be unclear how to protect this segment
of memory with mutexes.

Can Transactional Memory (TM) help improve the situation? TM, abstractly speaking,
is a programming interface intended to allow programmers to easily write lock-free programs
(in the sense that there is no mutual exclusion) [4]. TM ensures atomicity with begin and

Sean R. Moore Chapter 1. Introduction 3

commit semantics where mutex locks ensure mutual exclusion using lock and unlock seman-
tics. Mutual exclusion ensures that in any group of streams of execution at most one stream
“holds” the mutex, i.e. it issued a lock call without yet having issued an unlock call. Any
stream that wants to lock an already acquired lock must wait until the stream which owns
it releases it. TM attempts to avoid this waiting using transactions.

Transactions start with a “begin” which marks the beginning of enforcement of isolation
requirements, preventing other streams of execution updating that transaction’s data in an
unexpected way. The “begin” also marks a point to which a transaction can undo its work
if it is aborted. Aborts can occur because the TM implementation could not guarantee that
a transaction would be sufficiently isolated from streams of execution other than the one on
which it executes, or that it could satisfy the all-or-nothing requirement for that transac-
tion. It may be possible for two critical sections which run serially under mutual exclusion
to run in parallel with transactions but it runs the risk of taking longer due to aborts. Each
successful transaction completes with a “commit” which ensures that its updates are visible
to all other streams of execution.

A draft has been proposed that would, if ratified, make TM part of the C++ standard [10].
The GNU Compiler Collection (GCC) has already begun including this proposed functional-
ity which has been used and evaluated in previous studies [12, 13]. However, the C++ draft
specification syntax suggests (if not outright requires) that a transaction begin and end on
the same syntactic expression (e.g. a statement, expression, basic block, etc.) [10]. While
it does not necessarily forbid practical programming patterns it does introduce the dilemma
of applying an atomic section over entire functions calls that need only the beginning (or
end) to be atomic with preceding (or succeeding) operations or violating encapsulation to
get better performance.

Given that TM is gaining mainstream support and that issues like deadlock and livelock
are largely relegated to the TM implementation it appears that this method of synchroniza-
tion will have longevity. Since TM has varying types of implementation, each with different
performance considerations, some of them are discussed below.

One grouping of TM implementation is Software Transactional Memory (STM). STM is
non-blocking [27] and its contention management, i.e. atomicity /isolation violation detec-
tion, is done away from the programmer. Instead of needing to work out some synchroniza-
tion scheme that avoids side-effects which break the software, the programmer can just mark
which sections of code are executed with the appearance of atomicity. Once such sections are
marked, the library which the implementation uses or code inserted by the compiler handles
this synchronization. However, it currently has drawbacks that limit its usability and act as
hurdles to widespread adoption as a software engineering tool.

The GCC implementation of C++’s STM proposal (plus a few extensions), in many cases,

Sean R. Moore Chapter 1. Introduction 4

instruments memory accesses for the transactional versions of code segments, this increases
the time taken to execute an atomic section [12]. Because of this instrumentation when
a function is usable within a transaction both an instrumented version (usable within a
transaction) and a non-instrumented version (fast but unsafe within a transaction) may be
generated by the compiler [12]. However, not all function definitions, including common
library functions, may be capable of generating a transaction-safe version or a function may
indeed be provably transaction-safe but the compiler cannot recognize this fact [12]. This
has lead to functions as conceptually simple as determining a C-string’s length needing to
be re-written to prevent unnecessary serialization of the active transaction in prior work [12].

For these reasons STM is close to but not ready to be a mainstream engineering tool. This
is in addition to the overhead in performance which is necessarily incurred from memory
access instrumentation.

This brings us to Hardware Transactional Memory (HTM). The concept of HTM was origi-
nally just TM when proposed by Herlihy et. al. [4] (“TM” is used to refer to either HTM,
STM or both in this work) and recently got a mainstream, commodity implementation in
Intel’s Haswell processors with Restricted Transactional Memory (RTM) [3]. RTM and Hard-
ware Lock Elision (HLE) make up Intel’s Transactional Synchronous Extensions (TSX) [2].
RTM has some shortcomings as well, even segments of code which are known to otherwise
take finite periods of time cannot be guaranteed to complete and must have a fallback path
to guarantee progress [2], this can take the form of any synchronization method which inter-
operates with or prevents/terminates operation of potential, parallel hardware transactions.
In addition to this, most implementations of HT'M also have responder loses conflict manage-
ment, i.e. a core which writes a memory location accessed by a transaction on another core
aborts the transaction (whether or not the core which did the writing was in transactional
mode) which is more prone to a finite form of livelock than responder wins [26].

However, HTM (and as a consequence RTM) has upsides which makes it a useful engi-
neering tool. When using a global recursive mutex lock as a fallback for HTM a deadlock
cannot be created without writing code which explicitly waits for another stream of execu-
tion to change some memory value. Also, while HT'M on its own cannot make any progress
guarantees, when combined with properly employed mutex locks progress can be ensured,
including with a very coarse global recursive mutex. HTM with a global lock is arguably
fairly easy to maintain and support for these reasons. Where code which uses fine-grained
mutex locks needs to make clear to the maintainer which locks are held at a given state
of the program, which locks cannot be held during a procedure call, which locks cannot be
acquired while the program is in a particular state and what data that lock protects. Of
those concerns, a maintainer of a program written with global lock fallback HTM only has
to worry about what data needs to be protected from races. Also, in HT'M atomic sections
are not prolonged by instrumentation of memory accesses. Since instrumentation does not
need to occur the libraries that are called from code which uses HT'M do not need to be

Sean R. Moore Chapter 1. Introduction 5)

rewritten to use such atomic sections or recompiled to be instrumented.

One might ask whether or not HTM is capable of achieving the same level of performance of
fine-grained mutex locks, especially HT'M which uses only a global lock fallback. This work
shows that it is indeed the case that the vast majority of multi-threaded programs when run
with global lock fallback HTM, in this case RTM, are competitive with their fine-grained
mutex (futex) implementations.

1.1 Motivation

Why should a programmer want to use hardware transactional memory over mutex locks?

This question can be answered with the ease of use of hardware transactional memory while
not introducing prohibitive overhead. Given that this work has already introduced the is-
sues with the usability of mutex locks and STM this work now provides an example of the
low overhead possible with HTM compared with other synchronization methods. To show
this advantage we will look at a particular application included in the PARSEC [8] suite
of programs called “fuidanimate”. The distributors of PARSEC describe fluidanimate as
a program for “[f]luid dynamics for animation purposes with Smoothed Particle Hydrody-
namics (SPH) method” [8]. It is also a program which uses POSIX threads and mutexes to
manage concurrency. Given that, in this case, a fine-grained mutex version is available can
it be improved for performance or preserve performance and be simplified for maintainability?

In theory a programmer could modify the source code of the program so that all locks
referred to a single global lock visible across the entirety of the program. If that programmer
did this they would be spared having to follow a lock-ordering scheme or much of the effort
in proving, testing, or re-proving various progress or correctness guarantees as there would
only be a single, recursive, blocking lock. This might not be a bad approach if this does not
affect the correctness/deadlock-freedom of the program. However, if more than one thread
of a program spends a large amount of time holding different locks those threads will now
be unnecessarily delayed when converted to the global lock approach. This turns out to be
the case with fluidanimate, as it spends an appreciable amount of time (compared to the
duration of the program) holding locks at higher numbers of threads which, when converted
to the global futex implementation, causes a noticeable slowdown.

One might also consider going with the approach of maintaining multiple mutex locks but
using HTM to attempt to allow concurrent threads to act as if they both own the lock at the
same time. This approach implies the expectation that the overhead of the transaction and
its aborts will not be worse than the improvement from eliding the lock. In cases where two
threads which acquire the same lock would rarely cause conflicting accesses with each other
this could be a good idea. However, because the fine-grained approach also has to account

Sean R. Moore Chapter 1. Introduction 6

for the fallback path it has the same difficulties that come with guaranteeing that the mutex
version is free from deadlocks, livelocks and data races in addition to maintenance compli-
cations. This occurs because while HTM is the fast path, progress cannot be guaranteed
with RTM alone (or any best-effort HTM for that matter) and may need to revert to the
mutex locks to move forward, which can reproduce the fine-grained mutex execution. It also
turns out that for fluidanimate any improvements in throughput gained with speculative
execution are lost, which indicates that the contention represented by the fine-grained locks
closely represents the true data contention of the program.

Lastly, we come to the combination of a global futex lock and HTM. This approach has
the simplified deadlock properties of the global lock approach as well as the ability for mul-
tiple threads to optimistically “own” the same lock at once. As stated earlier the global lock
approach can become inefficient if threads would have spent a lot of time holding different
locks but now hold the same lock. But because HT'M allows those threads to “mutually ex-
clusively share” (an intentional oxymoron) that lock they can largely simulate fine-grained
locking with a single lock. As a result, we end up with a program with much simpler syn-
chronization without incurring the full performance penalty associated with it.

Table 1.1: fluidanimate Proof of Concept: region-of-interest duration under different con-
figurations at 8 threads.

Configuration | Time (s)
Fine-grained Futex | 69.1243

Global Futex | 457.904
Fine-grained HTM | 76.3357

Global HTM | 79.861

When we apply these approaches to fluidanimate this bares out. Table 1.1 shows what
happens when each of these configurations is applied to fluidanimate. Since fluidanimate
spends a large proportion of its time inside critical sections (this is shown in Figure A.10 but
needs to be explained further) it suffers significantly when converted to using a global lock
from fine-grained mutexes with a 6.62x slowdown. Even fine-grained fallback HTM does
not end up achieving a speedup but is slowed down 1.10x compared to fine-grained mutexes
alone. Lastly, the global fallback HTM approach also slows down 1.16x compared to the
fine-grained mutex approach but, like the global lock approach, has a simpler locking scheme.
The fact that the global mutex version has such a high slowdown but the global fallback
HTM version suffers so little comparatively indicates that, for at least some programs, coarse-
grained locking can incur a high overhead which HTM may counteract.

Sean R. Moore Chapter 1. Introduction 7

1.2 Contributions

This thesis presents the following research contributions:

e This work describes a conversion of glibc’s implementation of mutex locks so that a
program originally written to use fine-grained mutex locks can be evaluated for perfor-
mance using other locking implementations without modifying the source code. glibc
originally provided a fine-grained futex and fine-grained fallback RTM lock implemen-
tation. This work added a global lock futex implementation as well as a global lock
fallback RTM implementation. In addition to the already listed implementations a
version of both fine-grained fallback RTM and global fallback RTM was created with
trylock aborts removed to examine their impact on performance.

e This work shows that global fallback lock HTM is competitive with fine-grained mutex
locks in terms of performance for nearly all of a set of 23 multi-threaded programs. No-
tably the implementations are modified by changing the libraries to which the program
links, leaving the source code intact.

e Additionally, a performance pathology of the lock elision code used in glibc, termed
as lock cascade failure, is analytically described, to the knowledge of the author of this
work, for the first time here. This can cause atomic sections which do not account
for the effect to grow quadratically in duration otherwise bounded by interrupts and
transaction nesting depth. Additionally, a method to determine with high probably the
maximum nesting depth is provided to aid in determining this bound in RTM-capable
processors. Recommendations on how to prevent it are provided.

e As a part of this work a set of open-source modifications are made available which
allow global locking and global lock fallback.

1.3 Thesis Organization

Chapter 2 explains the background necessary to understand the difficulties with using mutex
locks as well as the basic mechanics of HTM. Chapter 3 discusses other attempts to bring
transactional memory implementations into practical use. Chapter 4 describes the changes
made to the GNU C Library to support global mutexes (including the HTM fallback version),
the statistics recording mechanics used for data gathering as well as some of the differences
between mutexes and HTM as well as fine-grained and global locks. Chapter 5 lays out the
experimental setup used in this thesis as well as the performance and characteristic results
of each synchronization implementation. Chapter 6 summarizes this thesis and the main
takeaways as well potential next steps. Appendix A contains the main quantitative results
of each program under each configuration. Appendix B lists short pieces of code to illustrate

Sean R. Moore Chapter 1. Introduction 8

how RTM transactions are used and how to extract otherwise hidden implementation-specific
data.

Chapter 2

Background

From here onwards the “streams of execution” and the overall context will be assumed to be
threads. Some of the concepts discussed here also apply to other models of parallel execution
but are not discussed here.

2.1 Mutex Locks

Mutex locks are characterized by the fact that they may only be owned by 0 or 1 threads
simultaneously. The exclusive ownership of the lock can be used to allow only 1 thread
access to a particular data item at a time, a property known as mutual exclusion. This
behavior can be formally stated as in Equation 2.1. Where owns(x,a,t) means “thread z
has ownership of lock a at time t”.

Va € Lock, © € Thread, t € Time, owns(z,a,t) —

(Ay € Thread | (x # y) A owns(y, a,t)) (2.1)

Different techniques exist to enforce the property of mutual exclusion with varying tradeoffs.
Traditional implementations deal with multiple threads contending for the lock by causing
threads requesting ownership to wait in some way.

The use of mutex locks is motivated by the need to prevent race conditions when accessing

data used by more than one thread. A simply illustrated race condition involves incrementing
a shared counter.

Table 2.1: Increment with Race Condition: b might lose increments.

l1le=b
2lc=c+1
3| b=c¢c

9

Sean R. Moore Chapter 2. Background 10

Table 2.2: Atomic Increment: no lost increments if b is protected by a.

lock(a)
c=Db
c=c+1
b=c
unlock(a)

Ol k= W N~

In Table 2.1, assuming c is thread-local and b is shared, it is possible that a thread reads the
value for b and before it stores the new value back another thread reads b’s value. At this
point at least one of the threads will have the increment it has or will perform on b nullified.
Whereas for Table 2.2 lock a ensures that two or more threads executing this same piece of
code cannot reach a state where the atomic section appears to have been logically interlaced
with other threads (which also want the lock). The fact that any thread attempting to take
ownership of lock a while another thread owns it waits is incidental as long as the logically
atomic operation appears atomic.

Mutex locks themselves do not directly protect data from being exposed to race condi-
tions like the one illustrated by Table 2.1. Instead a programmer must ensure that mutex
locks are acquired and released in such a way that as a side-effect shared data is not accessed
in a way that could potentially lead to a violation of the program’s consistency expectations.

2.1.1 Difficulty with Fine-grained Locking Designs

For the sake of clarity, deadlock and livelock are discussed in this section in the sense of
not being starvation-free, i.e. some non-zero number of threads are unable to complete their
work, implicitly. Deadlock and livelock in the sense of being lock-free, i.e. some non-zero
number of threads are guaranteed to make progress after a finite period of time, are used
explicitly as “system-wide” deadlock or livelock.

2.1.2 Deadlocks

As an artifact of the way in which mutex locks help to ensure against race conditions it is
possible that an improperly written program can end up in deadlock, preventing forward
progress. Figure 2.1(a) illustrates a generic deadlock in which a thread ¢ has some depen-
dency on some lock being released while holding lock a but those dependencies ends up with

Sean R. Moore Chapter 2. Background 11

the thread eventually relying on it releasing its own lock to progress. Figure 2.1(b) shows
the simplest form of deadlock in which thread ¢t acquires lock a and then tries to reacquire
it without releasing it. This pattern does not necessarily lead to a deadlock if lock a is a
recursive mutex. A recursive mutex only acquires the lock (or performs a blocking wait) if it
does not already own the lock and only releases the lock when the number of calls to acquire
the lock and calls to release the lock are matched for the given thread.

Figure 2.1(c) illustrates a case of deadlock which can occur from failing to enforce proper
lock ordering. One way to create a lock ordering is to create a partial order “<” over the
set of locks which will exist in a program and forbid a thread from attempting to acquire a
lock which is “smaller” (according to the ordering predicate) than any one or more of the
locks the thread already holds as in Equation 2.2.

Vo € Thread,a € Lock,t € Time, <€ PartialOrder, (
Acquire DAGV alid(z,a,t, <) =

2.2
VI € Lock,owns(z,l,t) — (I < a) 22)

)

Such an ordering and its transitive closure forms a directed acyclic graph (DAG) and the
currently held set of locks for a given thread can be viewed as a path on that DAG. Since
no subgraph of a DAG can form cycles no dependency cycles can form within or between
threads. However, if the ordering predicate “<” does not form a DAG then following other
rules cannot guarantee freedom from deadlocks. In Figure 2.1(c) it is possible that the
statements a < b and b < a are both simultaneously true due to a programming error. As
a result it could be the case that thread ¢ acquires a, thread u acquires b, thread ¢t blocks
attempting to acquire b and thread u blocks attempting to acquire a with neither thread
making progress.

Figure 2.1: Deadlock Scenarios: there are an infinite number of deadlocked configurations.
Deadlock occurs for a thread ¢ when it waits on thread z to release a lock while z waits on
t to release lock a.

(a) Generic deadlock (b) 1 thread deadlock (c) 2 thread deadlock
P eI b
e i e

t t
— .. ?
? .]
a a

Partial orderings of mutex locks is a useful mechanism for preventing deadlocks. However,

Sean R. Moore Chapter 2. Background 12

guaranteeing that a given system cannot result in a deadlock requires that the programmer
knows what order threads can acquire and release locks statically. If the behavior cannot
be sufficiently predicted ahead of time because of its difficulty or impossibility using locks
safely becomes difficult.

2.1.3 Livelocks

Livelock is a condition that occurs when a thread continually performs work but cannot
progress. A livelock condition can appear in fairly subtle ways, the following example is
used to show why it can be hard to determine if a program is or is not livelock-free.

Take a program that read-modify-updates an object)y, then)1, then)5 with each read
and update occurring atomically. Each of these objects is associated with a lock Lgy, L
and Ly respectively. If locks A, B and C' are instantiated with the lock ordering property
A < B < C'it is possible for this program to operate on the objects in six permutations, PO
through P5. For example, one permutation could set Ly = A, L; = C and L, = B.

The programmer could choose to acquire A (Lg), operate on Qq, acquire B (Ls), acquire
C' (Ly), operate on ()7 then operate on ()2 and then release all the held locks. Such an
approach respects the lock ordering requirement but does work on (); while holding B (L)
is not logically necessary except to prevent a potential deadlock with a thread which respects
the lock ordering.

A clever programmer might consider getting around this situation by using non-blocking
acquires (e.g. trylocks) and roll-back the work (including releasing acquired locks) of the
atomic operation upon failure to acquire a lock in a certain period of time and immediately
restart the operation. A trylock only needs to occur when the lock order is being violated
to avoid a deadlock. All permutations of the locks A, B and C' are shown in Figure 2.2 as
well as whether or not a trylock must occur to avoid deadlock (under the assumption that
PO, which uses only blocking acquires, may be concurrent with any of the permutations).
The rest of this discussion assumes lock acquisitions are done as shown in Figure 2.2. It’s
straightforward to show that any subset of the permutations are deadlock-free as no permu-
tation attempts a blocking acquire which violates the lock ordering and any acquires which
do immediately release all locks preventing any dependency cycles. No guarantees are made
here that such a program is faster or slower than using only blocking acquires which respect
lock ordering under a given workload.

These trylocked permutations may introduce system-wide livelock into a system which makes
use of them. The “may” is emphasized as it is possible that subsets or other constrained uses
of the permutations may be used while still ensuring that system-wide livelock is impossible.
For example, a system which only issues operations using PO and P5 (using locks which at

Sean R. Moore Chapter 2. Background 13

Figure 2.2: Trylock Livelock: black arrows indicate blocking acquisitions, red arrows marked
“t” indicate an attempt at a trylock acquisition which finishes in a finite period of time. The
arrow’s target indicates the lock (A, B or C) it is attempting to acquire. Attempting to
acquire 3 locks in any order permits these permutations as long as a failed trylock rolls back
all work and jumps to () and releases the held locks before retrying.

PO P1 P2 P3 P4 P5
) (f 0 0 0 0
A A A A ? ?
B B B B t B |t Bt

I | I
C C C C C C

least guarantee finite bypass) can guarantee that some thread makes progress . If the system
does not know apriori which permutations of a set, S, of statically known permutations a
thread will issue then some values of S are safe from system-wide livelock while other values
are not.

This variation in system-wide livelock-freedom is due to the fact that some states of the
atomic operation permutations can cause others to roll back their work where others cannot.
Take for example a system which only issues operations using permutations PO, P1 and P3.
It is possible that a thread issuing PO acquires lock A, and acquires lock C' while another
thread issuing P3 acquires lock B. At this point P3’s thread cannot advance as it is using a
blocking acquire on lock C' but P1’s thread holds it. P1’s thread must fail its trylock because
P3’s thread already holds it and undoes its work and releases locks A and C' then attempts
to retry. P1’s thread can reacquire lock A but block on C' (as P3’s thread already holds it)
causing P3’s thread to fail its trylock, undo its work and release B and C'. P3’s thread can
reacquire lock B and P1’s thread can reacquire lock C'. This brings the system back to a
previous state, resulting in a potentially infinite loop of changing states, a livelock.

It is possible for a livelock between some number of threads to grow to encompass any
larger number of threads since a two threads that do not hold any locks (whether due to

LA system which uses only PO and finite bypass locks can guarantee starvation-freedom in addition to the
absence of livelocks but no system which uses any of the other permutations can guarantee starvation-freedom
as a system may continually issue PO operations, denying progress to other permutations. However, systems
using only PO and P5 can guarantee that if a finite number of atomic operations are started (or infrequently
enough) all atomic operations complete in finite time, making its starvation-freedom conditional.

Sean R. Moore Chapter 2. Background 14

rolling back work or because they have not attempted the operation yet) that try the same
permutation are indistinguishable in this protocol. This means that permutations which can
mutually cause each other to roll back their work can expand to system-wide livelock?. Guar-
anteeing that the livelock eventually ends would require comprehensive knowledge about that
system’s instruction timing and thread scheduling.

However, system-wide livelocks in the proposed program can be statically ruled out if the
set of usable permutations, S, is known statically as well. The “lively” relationship can be
stated as in Equation 2.3. Note that Pk[n| is a permutation state of permutation k& about
to acquire lock L,,.

VYa € PermutationState, Yb € PermutationState,
Lively(a,b) =
(Fk €N, In € N, a = Pkln| ANb= Pk[n + 1])V
RolledBackBy(a,b)

(2.3)

The RolledBack By relationship is true if-and-only-if the locks held by both operands are
disjoint and the 1st operand is attempting to trylock a lock held by the 2nd operand. This
can be formally stated as in Equation 2.4, note that time is part of the “owns” relationship
but is largely irrelevant for Rolled Back By’s definition. Executing is true if-and-only-if the
Ist operand (a thread) is executing the 2nd operand (a permutation state) at the 3rd operand
(a point in time). A permutation state Trylocks a lock if-and-only-if it is attempting to do
so via trylock.

Va € Thread, Yy € Thread, ¥t € Time,
Vp € PermutationState, Yq € PermutationState,
RolledBackBy(p, q) =
Executing(z,p, t)A (2.4)
Executing(y, q, t)A
(a € Lock,owns(z,a,t) A owns(y, a,t))A
(Ja € Lock, Trylocks(p,a) A owns(y, a,t))

If no cycles occur in the graph of “lively” edges and permutation states then no system-wide
livelock can occur. Figure 2.3 shows the cycles in a graph of the states of each permutation
with a “lively” relationship. That figure indicates that the maximum sets of permutations
which do not permit a system-wide livelock are {P0, P1, P4, P5}, {P0, P2, P3, P5} and
{P0, P3, P4, P5}. One can imagine a situation where a clever programmer writes a program
that can be proven to be free from both deadlocks and system-wide livelocks by selecting a
subset of one of these sets but does not insert sanity-checking code which ensures that the
only a subset of one of those sets is used. In such a situation a maintainer may return to

2Regardless of the subsequent work.

Sean R. Moore Chapter 2. Background 15

Figure 2.3: Livelock Cycles: Each node, Pmn], is a state of permutation k£ (i.e. PO, P1,
P2, P3, P4 or P5) which is about to attempt to acquire the nth lock (Oth, 1st or 2nd lock)
as described in Figure 2.2. For example, P0[0] attempts to blocking acquire lock A while
P5[2] attempts to trylock lock A. The edges are the union of edges Pk[n| — Pk[n + 1] and
nodes which can fail a trylock — nodes which can cause that failure. Edges and nodes which
cannot contribute to cycles are removed. Cycles represent potential system-wide livelocks.

the program, possibly years later, unaware of the constraint in the program. The maintainer
might add code which uses a new permutation which is incompatible with the maximum,
safe sets. This maintainer may or may not see the detrimental effects of livelock because the
particular hardware, scheduler or system load the code is tested with might not match the
production system.

The main takeaway here is that protocols which are susceptible to livelock and system-
wide livelock and factors which cause a system to suffer from it can be hard to engineer for
when intertwined with the application itself. After all, the system under examination just
involved acquiring three locks in some order.

Sean R. Moore Chapter 2. Background 16

2.2 Transactional Memory

Transactional Memory (TM) was introduced as a way to implement data structures that
are lock-free, in the sense that they are not starved for work, with support from hardware
mechanisms like cache [4]. Transactional memory is similar to mutex locking in that it is
also built around atomic sections that must appear to be logically indivisible called trans-
actions. However, transactions are distinct from locked atomic sections in that they do not
necessarily artificially delay the execution of an atomic section by waiting. Instead, in the
normal case, they optimistically begin execution as soon as the atomic section is encoun-
tered. If there are any conflicts which could cause the program to become inconsistent by
failing to ensure logical atomicity then the transaction is aborted, canceling the effects the
transactions would have taken and resumes execution just before the start of the transaction.

Since the time transactional memory was proposed as a hardware mechanism Software Trans-
actional Memory (STM) system has been introduced [27]. When distinguishing between the
two hardware transactional memory (HTM) will be used to refer to the original, hardware-
centric conception.

Intel’s Transactional Synchronous Extensions (TSX) contains an implementation of HTM
known as Restricted Transactional Memory (RTM) which usually cannot guarantee that a
given transaction can complete for various reasons [2]. As a result this implementation is
known as a “best-effort-only” method of synchronization [26]. In situations where best-effort-
only HTM cannot guarantee progress, fallback locks are critical to ensure that a transaction
eventually completes.

2.2.1 Fallback Locks

Among the reasons why an HTM transaction cannot in general be guaranteed to complete [2]:

e True data conflicts: occurs when a transaction cannot guarantee that a transaction’s
start, commit and all operation in-between appear atomic. Because the conflict resolu-
tion scheme has the transaction whose data was made outdated abort it is possible that
transactions could mutually abort each other indefinitely [26] without using a fallback
lock.

e False data conflicts: which behave similarly to true data conflicts but occur due to
cache lines being shared between processors as opposed to the data itself.

e Cache pressure: if the cache cannot store the data from the read-set and write-set of
the transaction it must abort. This also includes cases when the set associativity of
the cache prevents it from storing a cache line even while other sets are not full.

Sean R. Moore Chapter 2. Background 17

e Incompatible Instructions: some assembly instructions are guaranteed to cause aborts
while others may do so according to implementation.

e Transactional Nesting: when composing transactional routines of other transactional
routines transactions may be nested. However, the TSX specification laid out in [2]
only guarantees that 7 levels of nesting are allowed.

e Software XABORT: some high-level guarantees may be required of the software by
the programmer for which an explicit abort prevents transactional completion. This
factor might be controllable by a software engineer with sufficient knowledge of the
application but may also prevent a transactional region from committing. This issue
will appear in analysis of memcached in Section 5.3.1

e Exceptions, Traps and Interrupts: notably this can apply to timer interrupts meaning
that if a transaction is interrupted by the kernel for thread preemption the thread may
be aborted [3]. This applies to thread preemption but not directly to other threading
techniques such as hyper-threading or fibers.

As a result it is typical that if a thread’s transaction surpasses some number of transactional
aborts or a condition in which re-execution is not expected to result in a transactional commit
then the thread acquires a fallback lock.

HTM-Lock Coherence

All transactions which may be replaced by an acquisition of a fallback lock must also check
if the fallback lock is held and abort if so. This ensures that the HTM execution path is
consistent with the fallback lock execution path and does so in two ways.

The first is that a thread following the HTM path may begin a transaction while the fallback
lock is held and commit its state before the lock is released. This may cause a race condition
because the thread holding the fallback lock must assume that it is the only one accessing
the data guarded by that lock. When the thread following the incorrect HTM path commits
it could violate that assumption and corrupt the data the thread on the fallback path sees.
Explicitly aborting from the transaction when the lock is observed (i.e. read) as being held
prevents this behavior in this case.

The second way is that a thread following the HTM path will observe (i.e. read) the state of
the lock sometime between the start and commit of a transaction as being free. By simply
observing (reading) the lock as not being held causes the memory locations which describe
the lock status to be added to the transaction’s read set. If those memory locations are
overwritten before the end of the transaction, i.e. the lock is acquired by a thread on the
fallback path, then the transaction will abort without an explicit instruction. Failing to

Sean R. Moore Chapter 2. Background 18

abort in this case can also lead to race conditions as above. Implicitly aborting from the
transaction when the lock state changes prevents this behavior in this case.

For this work the fallback lock is read before any application memory locations are ac-
cessed. This is the approach used in [6] for code samples not marked as wrong. Such an
approach is referred to as eager subscription in [29]. Lazy subscription instead reads the
state of the fallback lock as late as possible [29].

Lazy subscription techniques are not considered here as they cannot guarantee opacity with-
out potentially invasive analysis [29]. Opacity is important because it means that the trans-
action will always observe a consistent state (according to the isolation requirements and so
long as it is capable of committing) [29]. In [29] an example is given which relies on the ap-
plication to cause RTM’s hardware sandbox to capture an exception when an inconsistency
occurs. The example given in [29] uses the invariant Y = X + 1 and invokes an exception by
calculating yi + When an inconsistency causes X =Y to be true when the division occurs in
the transaction. If lazy subscription is distinct from eager subscription in a hardware system
then it implies that cache lines can be updated by a snooping mechanism after a transaction
on that processor has started but before that line has been added to the read or write set
of that processor’s transaction. This would mean that any data read before the transaction
reads the cache line(s) fallback paths are obligated to write to could be inconsistent with
any other data. Such consistency behavior is incompatible with that of a single global lock.

Lemming Effect

Since the first piece of code inside a transaction determines if the fallback lock is held and
abort if so it is wise to prevent unnecessary aborts by first checking outside the transaction
that the lock is available. Failing to do so could lead to the lemming effect [5, 6]. The
lemming effect starts when a transaction exhausts its number of tries and the thread reverts
to the fallback lock path. Another thread then comes along and attempts to start a transac-
tion, sees that the fallback lock is held and aborts explicitly (and either quickly exhausts its
transaction attempts or immediately falls back to the lock). Once the lemming effect begins
this positive feedback occurs until no more threads are attempting to acquire the fallback
lock and the thread currently holding the lock releases the lock before any new incoming
thread falls back on the lock.

The lemming effect can be prevented by making sure that while the fallback lock is held
transactions are not attempted immediately one after the other. This can be done by read-
ing the lock state in a spinlock-like loop before the transactional section and not attempting
to start a transaction until the lock is free. The point at which the thread breaks out of the
spinlock-like loop is the earliest chance at which the transaction could begin and commit
successfully.

Chapter 3

Related Work

3.1 Draft C++ TM

A proposal was put forward to include transactional memory constructs directly into C++ [10].
This proposal has been included in implementations of the GNU Compiler Collection (GCC)
for C++ and C which behaves as if it were guarded by a single, global lock [11]. Since the
proposed C++ constructs are at the language level they also require that any program
adapted to use transactional memory this way be modified at the source level as they would
have to be converted from one synchronization method to C++ transactions. This language
extension is not explicitly targeted at Hardware Transactional Memory or Software Trans-
actional Memory alone.

3.1.1 Transactionalized memcached

Ruan et al. applied C++’s proposed transactional memory constructs to memcached to
assess the proposal [12]. Their analysis involved: applying different types of transactional
blocks to various parts of memcached previously guarded by locks, modifying condition
synchronization, replacing volatile and atomic variables with regular variables protected by
transactions [12]. Ruan et al. claimed the need to convert some parts of code to transactions
in order to support the portions they had originally sought to convert [12]. They claimed
to have to make this additional transformation for per-thread statistics counters because
“any operation on a mutex lock is unsafe to perform in an atomic transaction” (emphasis
theirs) [12]. Ruan et al. claimed to need to transform condition synchronization variables
manually because the C++ proposal did not support condition variables [12]. However,
there is work which attempts to solve the problem [13]. Additionally, Ruan et al. had to

19

Sean R. Moore Chapter 3. Related Work 20

manually verify that volatile and atomic variables did not attempt to communicate between
critical sections/transactions and voiced skepticism that this would be applicable to larger
programs [12].

According to Ruan et al., certain functions used in transactions are duplicated (by the
compiler), one to be used from outside transactions and one for use inside of transactions
that have their loads and stores instrumented for use in rollbacks on abort [12]. As the
language constructs are lexically scoped to aid in this instrumentation beginning and com-
mitting transactions must be done at the same lexical level.

Ruan et al. conclude that incremental transactionalization is a myth [12]. However, the
reason for this seems to be due to the lack of the transactional “safety” property in lock-
ing /unlocking mutexes. Hardware Transactional Memory is not restricted from acquiring
a mutex in the normal way. They also assess that the GCC C++4 TM implementation
assumes that serialization is common and optimize for that case at the expense of the opti-
mistic case [12]. This assumption is not necessarily well-founded. The authors also suggest
the introduction of more transaction-safe libraries to obviate the need for workarounds and
re-implementing library functionality [12].

3.2 GNU C Library Mutex Locks

The GNU C Library (glibc) is a software library used in Unix-like operating systems to
handle common functionality required by programs written in the C ([14]) as well as C++
programming languages. While necessary for C/C++ programs in general it is important to
this discussion because it has already had hardware transactional memory introduced into
it [16]. The glibc use of HTM is switched on or off by a configuration flag as well as code
within the library which detects if the processor on which it runs is capable of HTM. Intel’s
Restricted Transactional Memory is supported by glibc when running on processors which
support it and the library is built with the correct configuration.

This usage of hardware transactional memory provides an important baseline from which
to create other versions of the library which also use hardware transactional memory. In-
stead of requiring that the application writer use a language-level interface in the targeted
application glibc has code on the library side alone which, instead of performing operations
on the standard futex, elides the futex, pursuant to certain rules, and silently carries the
transactional state from the library to the application.

The way hardware transactional memory is used within the library has some properties
that need to be explained. The first is the fact that transactions are tied to individual
application-level mutexes. This is important because it means that the library allows for
fine-grained fallbacks (whereas the GCC implementation of TM assumes a global fallback).

Sean R. Moore Chapter 3. Related Work 21

This does not mean that a global fallback lock is impossible with the unmodified library
since it can be easily done by creating one, recursive, mutex used throughout the application
to the same effect. However, using multiple, distinct fallback locks has different behavior
apart from simply causing threads to serialize less often in this case.

Whenever a mutex is constructed it sets a variable which indicates how many times a thread
is allowed to try to carry out a hardware transaction before being required to fall back and ac-
quire the futex (this is set to 3 tries). This variable is initialized by aconf.retry_try xbegin
in code Table B.1 but is absent for trylock elision in Table B.2. A thread might fall back
before trying that many times if an abort reason is given in the abort code which indicates
that it should not attempt to retry a transaction. Note that this does not occur in the same
way for trylocks because trylocks without elision are assumed to not put a thread to sleep
by blocking which allows a programmer to assume that a call to a trylock to be very fast
especially if it fails. While the elision locking code has a loop (code Table B.1 lines 9-39)
which allows for transactional retries the elision trylock does not.

In order to prevent a lock from being elided in favor of trying a transaction constantly
and failing to commit a fixed backoff is introduced (this is set to 3). This means that when
a lock falls back and the abort reason indicates that it should not retry the transaction on
that futex it will acquire the futex 3 times normally before allowing it to be elided again.
This backoff is tracked by adapt_count in code Table B.1 and Table B.2. Given that the
library is set up with multiple mutexes in mind it will possibly incur less of a serialization
penalty compared to a global lock implementation since other threads are less likely to also
be in contention for that lock so there is less of a consequence to serializing. But when
using a fine-grained implementation more futex acquisitions have to be performed to clear
the backoff period, possibly resulting in more serialized work.

One should note that Intel’s Restricted Transactional Memory is flat-nested, meaning that
if an abort occurs while more than one level of transaction is active all levels for that thread
get aborted and their work rolled back (it also means there are no partial commits) [3]. As
a result if there is more than one lock currently being elided in place of a transaction and an
abort occurs the outermost lock will handle the abort and have its try counter decremented
instead of the more local innermost lock.

In glibc’s elision implementation of trylock one of the first (also unconditional) statements
is an explicit abort. The presence of this explicit abort is explained as being due to the need
to handle an “assert” condition [16] (in which a program may perform a sanity check on the
state of the program by ensuring that a certain lock is held). This behavior is considered by
the author to be indicative of an already existing bug in the application’s code [16].

Chapter 4

GNU C Library and Hardware
Transactional Memory

As described in Section 3.2 the GNU C Library (glibc) is already capable of performing lock
elision using Intel’s Restricted Transactional Memory (RTM) for fine-grained mutex locks,
as well as the requisite mutex locking using futexes. In this section the necessary changes to
the library to introduce global locking are described.

While a programmer would not necessarily want to have all of their mutex locks silently
converted to a single lock out of their control in some applications, especially those that
thoroughly exercise the functionality of the pthread mutex locks, it can provide insight into
whether or not certain synchronization approaches are effective without a significant invest-
ment of effort.

Where the behavior of hardware transactions and global locks cannot cover the behavior
provided by mutexes is discussed later. The differences that are identified are due to latent
bugs and weak isolation assumptions. Such issues are best resolved by fixing or deprecating
the original code behavior or by using a synchronization method which allows for sufficiently
weak isolation (which a global lock by itself does not permit).

4.1 Modifying the Library

Since glibc already incorporates RTM into its implementation of mutex locks introducing
global locking into the library will provide the same kind of simplified programming model
provided by the proposed C++ TM without source code modifications.

22

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 23

global_lock.{c,h}

global lock.h holds the declaration for a process-wide global mutex where global lock.c
holds its definition and initialization. The global mutex is initialized at startup in the global
scope but could have been initialized by the first thread to call a lock-related API. There
would need to be a mutex-less method of making sure that the mutex was initialized oth-
erwise the initialization problem regresses infinitely. Atomic fetch-and-set to an auxiliary
variable with a known initialization at process startup and spin-waits is sufficient to do this.

Since the expectation is that the original program that we are dealing with has at least
one lock, but likely more, this case needs to be considered upon conversion to a global lock.
It is possible that the original application writer had a thread acquire some lock and then
acquire another lock without releasing the original lock. This behavior does not necessarily
cause a deadlock in the original code but if those two locks were the same and non-recursive
it necessarily would. This is the case with a global lock. So the global lock is guarded in the
same way as a recursive mutex. A thread-local counter GlobalLevel is initialized to zero
when each thread is started so that it does not act as if it has the global lock. When the
thread makes a call from the application to attempt to acquire or unlock any mutex lock
if the compiled version of the library is enabled to use the global lock then all application
locks will be quietly substituted with the global lock inside the library. If the global lock
is being used the thread-local GlobalLevel may take on the change of state instead of the
global lock.

nptl/pthread mutex_{lock,timedlock,trylock,unlock}.c

The labels pthread mutex_lock, pthread mutex_trylock, pthread mutex _timedlock,
pthread mutex unlock (or more precisely the labels to which those labels alias) were “lifted”
away from their original definitions. Meaning that those labels had a _sub suffix appended
and moved to declare and define new functions. pthread mutex lock uses a preprocessor
switch to choose between using a global lock or the application’s fine-grained lock. If the
application lock is to be used it simply calls the original implementation. If the global lock
is to be used the thread first checks GlobalLevel, if it is zero it calls the underlying lock
implementation and increments GlobalLevel if successful but if it is non-zero it simply skips
the call to the underlying implementation and increments the counter. The source code can
be found in Table 4.1.

Table 4.1: Mutex Lock: permits use of a global lock via preprocessor switch and implements
half of the recursive locking behavior. Unused code is removed from this excerpt.

1] int
2 | __pthread _mutex_trylock (mutex)
3 pthread_mutex_t *mutex;

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 24

1)
) int r = 0;
6
7 #if GLOBALLOCK
8 if (!GlobalLevel)
9 {
10 r = __pthread_mutex_trylock_sub(&GlobalLock);
11 }
12 if (Ir)
13 {
14 GlobalLevel++;
15 }
16 #else
17 r = __pthread _mutex_trylock_sub(mutex);
18 #endif
19
20 return r;
21 |}

elision-{lock,trylock,unlock}.c

Because _ 111 lock elision, 111 trylock elision, 111 unlock elision (which map
to the similarly named files) are already implemented in the version of glibc used for this
evaluation only the changes made will be discussed. Their implementation, without the
statistics gathering, can be seen in Appendix B. The first addition is code to prevent threads
from starting transactions while the relevant lock is held by another thread then starting a
transaction and almost immediately aborting because it sees the lock is already held. This
anti-lemming effect code (Table B.1 lines 14-17) is simple but critical as it prevents unnec-
essary serialization.

The other modifications are those used to gather timing information about synchronization
methods. Directly after finding that adapt_count is greater than zero elision stat _self is
called (which is described later in detail) but returns a per-thread structure holding the sum
of time intervals and counters. If xtest indicates that the thread is not in a transaction
then it increments a counter, count_xbegin flat, in the per-thread structure to indicate
that the thread is about to attempt to begin a hardware transaction. If, in addition to not
currently being in a hardware transaction, the transaction try-loop (Table B.1 lines 9-39)
has not previously been entered on the current function invocation a timestamp is captured
to mark the start of the first attempt at a transaction. Additionally, if the try-loop is cur-

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 25

rently not in a hardware transaction then before a transaction starts another timestamp is
captured (the timestamp associated with the first transaction attempt is the same as the
first timestamp capture). These periods represent the intervals “HTM abort interval” and
“HTM interval” in Figure 4.1 and Figure 4.2. Note that the “lock interval” in Figure 4.1
does not exclude a simultaneous occurrence of “HTM interval” within it as it is possible that
an outer mutex is acquired normally but that an inner mutex is elided.

When __111 unlock_elision is called if the futex it is concerned with is acquired nor-
mally then the futex is unlocked normally. But if the futex is not marked as locked and the
unlock function is called then: the program has attempted to unlock a mutex which failed
to be locked in the matching lock call, the program never attempted to lock the mutex, or
the mutex is elided. Under the POSIX specification not all types of locks need to cleanly
return an error so we will leave the original assumption of not needing to cleanly handle
bad unlocks [7]. If the futex was elided and after calling xend is no longer in a hardware
transaction a thread-local counter, count _xend flat, is incremented.

Every time a thread attempts to elide a futex a thread-local counter, count xbegin (as
opposed to the flat one), is incremented and for every end to a lock elision increments
count _xend. Note that these counters are not durable as they can be rolled back on a
transactional abort.

Figure 4.1: Lock Fallback Timing: timing for fallen back synchronization. Height is not a
quantity, width is time but is not to scale. There is no gap between the HT'M abort interval
and the lock interval or “blocking wait” and “lock critical section”. Other intervals may be
non-zero. the lock interval period is not reported in this analysis.

HTM interval

A
- N

HTM abort interval lock interval

A

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 26

Figure 4.2: Committed Transaction Timing: timing for committed transactions. Height is
not a quantity, width is time but is not to scale. There is no gap between the HT'M abort
interval and the HTM commit interval. The HTM interval is exactly the sum of the abort
and commit intervals. Other intervals may be non-zero.

HTM interval

S
- I

HTM abort interval HTM commit interval

txn
committing

=
o
w0
()]
=
1S
S
9
ol
)
=
©

elision-stat.{h,c}

This file defines the interval periods and counters recorded by the elision-{lock,trylock,unlock}.c
files in a thread-local structure. This is done using a short, inline function which determines
if the thread already has such a structure and returns it immediately if so. If not it allocates
the structure and prepends it, wait-free, to a thread-safe linked-list.

These files also define an inline function which gets a timestamp using the RDTSC assembly
instruction. According to Intel’s documentation ([3]) the RDTSC instruction is not guaranteed
to not cause a transactional abort. To sidestep whether or not this incurs aborts this instruc-
tion is not called by the changes introduced to the library during a transaction. If the CPU’s
timer is an “Invariant TSC” it ticks at a constant rate in various power states [3]. People
working with the RDTSC instruction ([17, 18, 19]) have found that timer warps do not gen-
erally occur between cores on the same socket. Section 5.1.1 will show that the experiments
which use this library follow these assumptions. The timing methodology is not expected to
necessarily be easily replicatable but is expected to be reproducible and repeatable.

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 27

nptl/pthread_cond_{signal,broadcast,wait,timedwait}.c

Since the applications that were evaluated required use of condition variables, which interact
with mutex locks, these functions had to be modified. Unlike the work involved in making
condition variables safe for the proposed C++ TM specification ([13]) which had to reimple-
ment condition variables to conform to the TM’s requirements converting condition variables
to use a global lock is much more straightforward. Like the pthread mutex interfaces the
symbols __pthread _cond timedwait and __pthread_cond wait were lifted away from their
definitions which were relabeled with the _sub suffix. The original labels were redefined to
use a preprocessor switch to use the global lock or the provided fine-grain lock and the public
(non-double-underscored) version of the label aliased to this new definition.

pthread_cond_signal and pthread cond broadcast are left untouched as they do not di-
rectly accept an application mutex lock.

4.2 Fine-grained Versus Global Fallback and Futex Ver-
sus HTM

4.2.1 Semantic Differences

In some situations locking implementations which use fine-grained futexes, global futex,
fine-grained fallback HTM and global fallback HTM can behave differently in the same ap-
plication.

Deadlock Introduction and Hiding

One such instance is the appearance of deadlocks. In an implementation which used fine-
grained futex locking one might accidentally leave a valid execution which causes a deadlock.
While it is not advisable to determine if a program is free from deadlocks dynamically (or by
trial-and-error as the case may be) it is possible that more forgiving lock implementations
will provably operate correctly whereas others will not. For example, let us consider a simple
case which violates the suggested lock-ordering property in Section 2.1.2 for code Table 4.2.

Table 4.2: Deadlock Hiding: deadlocks present in incorrect programs may hidden by different
lock implementations.

1 ‘ thread A(){

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 28

2 lock(a)
3 e
4 lock(b)
) e
6 unlock(b)
7 e
8 unlock(a)
9}
10
11 | threadB(){
12 lock(b)
13 e
14 lock(a)
15 e
16 unlock(a)
17 e
18 unlock(b)
19|}

Using fine-grained futex locks the program can end up with thread A holding lock a and
thread B holding lock b simultaneously and then become dependent on each other to re-
lease their locks causing a dependency cycle. Fine-grained fallback HTM is similar except
that deadlocks which could occur with fine-grained futexes could be avoided due to the fact
that thread A will not always need to truly acquire lock a and B, b but this only affects the
probability of a deadlock, it does not guarantee that some that would normally occur cannot.

However, global futex and global fallback HTM will not deadlock by mutex locks alone.
The reason for this is that for the “global” implementations all calls to lock a mutex have
the pointer which indicates which mutex to lock silently substituted with a global mutex. To
better handle this silent substitution the global mutex behaves recursively in the futex and
HTM versions whether or not the mutex locks used in the original application are recursive.
As a result since only one thread at a time can hold a lock at all the graph template in
Figure 2.1(a) is constrained to dependency cycles of size 1, i.e. Figure 2.1(b). But, as stated
earlier, recursive mutexes prevent deadlocks in this situation so no deadlocks can occur at
all.

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 29

Global/Fine-grained Lock Behavior in Communicating Critical Sections

Certain situations which do not involve synchronization primitives can still result in dead-
locks when threads require non-serializable behavior with respect to the acquisition and
release of the global lock. A programmer might want to use multiple mutex locks when writ-
ing a multi-threaded program so that no unnecessary waiting is done. However, it is possible
that a programmer could write a program in which a thread acquires a lock, another thread
acquires a different lock, both threads do some work and both threads pass messages to each
other with those messages protected by a 3rd lock atomically with its previous work. This
behavior is not necessarily explicable via a linearizable specification and is not intended to
be explained that way. Regardless of how common this situation is it lies outside of the set
of programs that can be created using a single global lock. Additionally, this behavior can-
not be replicated in transactions alone (it must fall back to mutexes) and as a consequence
cannot occur in HTM with a global fallback.

Figure 4.3 illustrates a possible implementation of the above specification. Thread 1 locks
b. It then locks c, reads the sentinel value, unlocks c, sees that the value of sentinel
was 0 and repeats while sentinel is 0. At some point thread 0 acquires lock c, writes 1 to
sentinel, unlocks ¢ and continues on unlocking a later on. Thread 1 then locks c, reads
sentinel, unlocks c, sees that the value of sentinel was 1, breaks out of its loop and later
unlocks b.

Figure 4.4 illustrates why this behavior could fail for the global lock version. Thread 1
virtually locks b (but really locks the global lock), virtually locks ¢ (but really increments
the recursion counter), reads sentinel value as 0, virtually unlocks ¢ (but really decrements
the recursion counter). At this point thread 1 holds the global lock and will spin forever
locking, reading and unlocking. This is because while thread 1 holds the global lock thread
0 cannot virtually lock a, ¢ and set sentinel. Whether a deadlock occurs in this situation
is down to a race condition but sending messages in both directions can guarantee a deadlock.

This situation is similar to one mentioned by Ruan et al. for the proposed C++ imple-
mentation of transactional memory involving relaxed transactions communicating to each
other via atomic variables [12].

Empty Critical Sections

The synchronization methods used in the modified version of the library follow single global
lock atomicity semantics for the global locking methods and an analogous set of semantics
for the fine-grained methods [25]. This “lock atomicity” can lead to situations which vary
with the intended lock-free nature of TM.

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 30

Take for example Table 4.3. If begin() and end() are both lock-free then threadB is
guaranteed to print “Hello” eventually. However, because best-effort HTM may have to
resort to a fallback lock it is possible that threadA acquires a lock that it never releases
and causes threadB to never make progress. Programmers creating an application from
scratch may incorrectly assume that this use of HT'M is lock-free because TM is meant to
be a simple way to implement lock-free data structures. However, this is of little concern as
it alters the program’s semantics only when a critical section cannot complete in isolation
and is converted to a global (fallback) lock, similar to the communicating critical section
example.

Table 4.3: An example to show the difference between purely atomic sections and global
lock semantic critical sections from [25]. Truly non-blocking atomic sections would guarantee
that “Hello” is eventually printed but global locking semantics do not.

1 | threadA(){

2 begin();

3 while(1){};

4 end();

51}

6

7 | threadB()

8 begin();

9 end();
10 print("Hello");
11|}

Another semantic difference from TM occurs which causes the synchronization methods to
behave more like locks is shown in Figure 4.5. For transactional memory implementations
which publicize their writes to non-transactional atomically inserting empty atomic sections
does not change the semantics of the example program in that figure. However, empty
critical sections can, as a side-effect, cause published writes to be synchronized with memory
accesses that are not directly within a critical section where some of the effects may otherwise
be unordered. This could be a concern if a program is written to rely on the fact that atomic
sections will not make their changes visible until commit time even to non-transactional code
and do so atomically and is then is converted to using lock semantics. The recommended
remedy would be to simply not implement application-level synchronization primitives and
to access shared data only while the corresponding lock is held or an atomic section is known
to be active.

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 31

4.2.2 High-level Performance Differences

For global lock implementations, since only one thread can truly hold a lock at a time if
threads spend a large fraction of their time in critical sections this could negatively impact
performance. However, for global fallback HTM it has more slack in performance. For the
global futex implementation it is not possible for the sum of the time spent by each thread
in the critical section to be longer than the run-length of the entire program

Tprogram 2 Z Gz (41)
1=0

This relationship is described in Equation 4.1 where T),,4gram is the duration of the entire
program and G; is the amount of time spent in the global futex lock critical section by thread
1. Even with a global fallback, HTM can exceed this limitation because it can elide locks
causing two threads to act as if they both held the same global lock without causing race
conditions. Instead, the total time spent in critical sections is bounded by the sum of the of
the duration of the threads as in Equation 4.2.

Zn: T, > Zn: G, (4.2)
1=0 =0

There is no direct benefit to spending a large fraction of a program’s lifetime inside crit-
ical sections but there is in how and why those variants become enforced. If a program has
two threads which both have critical sections and within those critical sections each thread
has high data locality with itself and low data locality with the other thread then among the
global locking implementations HT'M would be preferred because it would avoid unnecessary
waiting.

Sean R. Moore Chapter 4. GNU C Library and Hardware Transactional Memory 32

Figure 4.3: Fine-Grained Sentinel Spinlock: Thread 1 spins on both lock ¢ and the sentinel
variable while holding lock b. Thread 0 holds lock a and takes lock ¢ and writes 1 to the
sentinel which allows Thread 1 to break out of the spinlock loop.

(a) Thread 1 reads sentinel value as 0. (b) Thread 0 writes sentinel value as 1.

t0 tl t0 tl

LA~ 1L <

¢ ¢ ¢ ¢

a b a b
C C
v s=sentinel 6 sentinel=1
sentinel sentinel
(d) Thread 1 breaks out of loop, releas-
(c) Thread 1 reads sentinel value as 1. ing locks.
t0 tl to tl

|

¢ ¢ ¢ ¢

a b a b

C
vs=sentinel

sentinel sentinel

Y Y Y

Sean R.

Moore Chapter 4. GNU C Library and Hardware Transactional Memory 33

Figure 4.4: Global Sentinel Spinlock: an attempt to convert the fine-grained program in
Figure 4.3 to a global lock program would end up deadlocking because Thread 1 depends on
the progress of Thread 0 but Thread 1 impedes the progress of Thread 0.

(a) Thread 1 acquires virtual b and vir-
tual ¢, reads 0 from sentinel. Thread 0
blocks virtual a.

t0 v t1
|

VS=sentineI

sentinel
=0

(b) Thread 1 decrements the global
lock recursive count (releases virtual c).

t0 v t1
I

?
a global y b

sentinel
=0

Figure 4.5: Empty Critical Sections: the semantics of HTM with a global lock fallback
follow much the same semantics as global locks as seen in this example from [25]. Each
arrow indicates a “happens before” constraint except in the HTM+-global lock case where
either the read or blue arrows are enforced but not both.

global lock atomic TM HTM+global lock
begin(); while(!v){} begin(); while(!'v){} begin(); while(!'v){}
v=1;/begin(); v=1; begin(); v=1; begin();
x=1; end(); x=1; end(); x=1; end();
end(); X=2; end(); X=2; end(); X=2;
x=2 x=2 x=2

begin(); while(!'v){} begin(); while(!'v){} begin(); while('v){}
v=1; v=1; v=1;
x=1; x=1; x=1;
end();*x=2; end(); _— x=2; end()}’x=2;

x=undef x=2 (x=2)

(x=undef)

x=undef

Chapter 5

Experiments

5.1 Experimental Setup

5.1.1 Hardware

As stated in Section 4.1 the validity of the RDTSC instruction is dependent on whether or
not the timestamp counter is invariant and whether or not all the cores from which RDTSC is
called are in the same socket. Table 5.1 shows that, indeed, all cores are located in the same
socket and additionally in the same, lone NUMA zone. One will also observe that there are
8 CPUs while there are 4 cores; Hyper-threading is turned on which provides 2 hardware
threads per core.

In order to show that the timestamp counters in each of the cores are invariant (and thus
stable intra-core and synchronized between cores of the same socket) the 8th bit of the EDX
register must be set by CPUID [3]. Linux provides a utility to dump the raw data from the
CPUID instruction so it can be directly examined. This output is shown in Table 5.2 and
confirms that for each CPU (including Hyper-threaded ones) that their timestamp counters
are invariant.

The CPU the experiments are run on is an Intel Core i7-4770 with a nominal clock speed
of 3.40GHz, with 16GiB of memory, 8192K L3 cache, 256K L2 cache and 32K each of data
and instruction L1 cache. Additionally, the maximum allowed depth of RTM nesting as
determined by Table B.4 is 7, which successfully commits in 99.9851% of 1 million trials
while a nesting depth of 8 commits in no trials out of 1 million. This nesting depth will be
important for a principle to be introduced later.

34

Sean R. Moore Chapter 5. Experiments 35

Figure 5.1: Contents of Iscpu: 1 socket, 1 NUMA zone, 4 cores, Hyper-threading enabled

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8

On-line CPU(s) list: 0-7
Thread(s) per core: 2

Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: Genuinelntel
CPU family: 6

Model: 60

Stepping: 3

CPU MHz: 3401.000
BogoMIPS: 6798.27
Virtualization: VT-x

Li1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 8192K

NUMA nodeO CPU(s): 0-7

5.1.2 Software

The version of the GNU C Library used was version 2.19 and based on (truncated) commit
hash value 2623655 which can be found in [15]. Each instance of the GNU C Library was
compiled with the -02 code optimization option. These experiments were run in Ubuntu
14.04 LTS, Linux version 3.13.0-63-generic, and the relevant source code compiled with
gee/g++ version 4.9.2.

5.2 Data Reporting

The relevant data to the following sections is located in Section A. To aid in understanding
the data represented in the graphs their descriptions are provided below.

Region-of-Interest Duration: each bar in these graphs represents the average time it
takes, in seconds, for the given program to execute a given “region-of-interest” which is in-

Sean R. Moore Chapter 5. Experiments 36

Figure 5.2: Contents of cpuid: according to [3] when cpuid loads address 0x80000007 into
register EDX bit 8 being set indicates that the timestamp counter is invariant.

$ cpuid -r | grep -E "0x80000007|CPU" | cut -f 1,2,9 -d " "
CPU O:
edx=0x00000100
CPU 1:
edx=0x00000100
CPU 2:
edx=0x00000100
CPU 3:
edx=0x00000100
CPU 4:
edx=0x00000100
CPU b:
edx=0x00000100
CPU 6:
edx=0x00000100
CPU 7:
edx=0x00000100

teresting for analysis for a given number of threads. The duration of the region of interest as
reported for memcached is given by memslap and for PARSEC and SPLASH-2x applications
this is reported by the “hooks” library. Note that the region of interest intentionally avoids
one-time costs like program startup.

Region-of-Interest Duration Normalized: this is the same information as reported
by “Region-of-Interest Duration” but each data point is normalized so that it is expressed as
a speedup over the fine-grained futex locking implementation of the same number of threads.

Ratio Transaction Commits — Starts: each bar indicates what fraction of started trans-
actions successfully commit. This is effectively the ratio of outermost xend invocations over
outermost xbegin invocations. Since the outermost invocations can be counted without risk
of being rolled back and are counted per-thread and collected after all other threads have
stopped there is no risk of losing updates.

Ratio Ticks Aborted — Region-of-Interest: each bar indicates the ratio of the number
of ticks counted by RDTSC around transactions (again, outside outermost xbegin and xend
calls only) over the number of ticks for the region of interest. Care is needed when consid-
ering these values. One thread, in theory, could end up with a value slightly higher than 1
since it may perform a transaction in startup code. Also, if there are N threads it is possible
that they each perform transactions for more than % of the duration of the region-of-interest

Sean R. Moore Chapter 5. Experiments 37

leading to a ratio greater than 1 but not much greater than N.

Ratio Tick Transaction — Region-of-Interest: these graphs are similar to “Ratio Ticks
Aborted — Region-of-Interest” but instead report timing for both successful and aborted
transactions.

5.3 memcached

memcached is an in-memory object cache which can be used in distributed configurations
and is meant to speed up web applications by moving some work the database system would
have to do into an object cache and is used in very large websites [20]. It makes use of some
real-world or at least non-trivial synchronization techniques which make it an interesting
candidate for evaluating different synchronization implementations.

memcached version 1.4.24 and tested using memslap from libmemcached-1.0.18 was used
for this evaluation.

5.3.1 Notable Synchronization Methods
Nested Trylocks

There are instances in which pthread mutex_trylock is called while locks are already held
which, as previously stated in Section 3.2, will cause a hardware transaction to abort if
one is active. However, removing this explicit abort does not necessarily cause an actual
error and may be removed in some correctly written applications. This overhead can be
examined by compiling out the explicit abort. Leaving the abort in can incur a significant
overhead if not handled correctly which will be examined in Section 5.3.2. For this reason
memcached will be examined using a global futex lock, fine-grained futex locks, HTM with
fine-grained fallback locks, HT'M with a global fallback lock, HTM with fine-grained fallback
locks without a trylock abort and HTM with a global fallback lock without a trylock abort.
Strictly speaking, trylock aborts should not occur for the HTM global fallback version of
the library as nested transactions are not possible and so a version of that library without
trylock aborts should be unnecessary, however it is included for completeness. No trylock
aborts were incurred with either of the HT'M global fallback implementations.

Condition Variables

Unlike C++’s TM for GCC which needs to instrument functions and make individual func-
tions safe for its transaction model ([12, 13]) hardware transactions are more flexible. With

Sean R. Moore Chapter 5. Experiments 38

condition variables a mutex needs to be acquired by the thread before waiting on a condition
variable which atomically releases the mutex and blocks on the condition variable which may
cause the thread to sleep. The condition variable wait does not need to follow special rules
or need particularly close integration with the application to work correctly. Although, if the
thread goes to sleep blocking on the condition variable the transaction will be aborted but
since the thread which incurs the abort was about to go to sleep this is unlikely to negatively
affect performance anyway.

Hanging Atomic Sections

In some cases a thread will acquire a mutex lock and hold it indefinitely while another thread
attempts to acquire the same lock with the next function immediately being a lock release.
The original behavior would cause the first thread to hold the lock while the second thread
would go to sleep for extended periods until the first thread releases the lock. Any number
of additional threads could go to sleep in the same way as the second thread.

However, with hardware transactions it is possible that the first thread elides the lock while
the second thread comes upon the lock function call and then runs through the lock and
unlock functions without waiting using a hardware transaction because it sees that the mu-
tex is not acquired. This can be an issue if the original program ensured an ordering such
that the first thread is guaranteed to acquire the lock before the second thread attempts to
acquire it. A blocking realization of such an ordering constraint would end up behaving like
condition synchronization and end up with the intended consequence of the empty critical
section anyway. However, if one was so compelled to write such code, or a non-blocking
realization of the constraint which “remembers” having passed through the hanging atomic
section, it may break the original program’s semantics on conversion to HTM.

5.3.2 Lock Cascade Failure

In some situations it is possible that a thread will acquire multiple locks (and possibly do
other work in-between acquisitions) but will always, or almost always, be aborted causing the
thread to re-elide all but a certain bounded number of locks. This can cause the amount of
work actually performed to grow unexpectedly. The version of glibc used for this evaluation
has an “adapt count” which causes the library to skip attempts at lock elision for a given
lock, without regard for the thread, for a certain number of acquisitions when a thread incurs
certain kinds of aborts. In Table B.1 the pointer to adapt_count is specific to the mutex
lock but not to the thread which incurs the abort. Since the abort does not reliably relay
the conditions which led to the abort or the locks that were elided when the abort occurred
a thread which attempts to elide multiple locks simultaneously and then aborts only knows
to fallback for the outermost lock in glibc. Ideally the thread would be aware of all the locks
which were elided when the abort occurred so it would not attempt to re-elide until after

Sean R. Moore Chapter 5. Experiments 39

reaching the point at which it last aborted.

As a result it is possible that a thread acquires N locks (Ly_; being the first, outermost
lock and Ly being the latest, innermost lock) doing some amount of work W; between ac-
quiring/eliding L; and the point at which the thread aborts which takes a quadratic amount
of processor effort to perform a linear amount of work (assuming all segments of work take
about the same amount of time). On the first pass the thread does the the work Wy _; and
then aborts, acquiring Ly _; normally and then performs Wy _; again, aborts, acquires Ly_»
normally and performs Wy _5. This program control flow is depicted in Figure 5.3. W, can
be re-written as the work done between acquisition of L; and L;_; (or between Ly and the
abort for Wy), P, as in Equation 5.1. The total work that has to be done in this situation
can be expressed as in Equation 5.2. Note that, for a given 7, the amount of work done in
P; is assumed to be constant for every time its encountered.

i+1
W= Py (5.1)
k=0
N
Wrotal = Z(Z +2) % Py_iq (5.2)
i—0

There will also be a minimum segment of work, P,,;,, and a maximum segment of work,
Pprae (which need not be distinct). Knowing this, the upper and lower bounds of Wy, can
be found as described in Equation 5.3.

(5.3)

This behavior is relevant to memcached in particular because it acquires more than one
lock at a time and then performs a trylock which always causes an abort in the origi-
nal glibc. Intel’s implementation of hardware transactional memory has a counter which
is inaccessible from software which tracks the depth of transaction nesting for a given
core [3]. Each core is also restricted in how many transactions deep it can nest, this value
is MAX_RTM_NEST_COUNT [3] and for the first implementations was set to a value of 7 [2]. For
implementations which still follow this rule the additional constraint can be written as in
Equation 5.4.

Prin(N? +3N)

2

MAX RTM_NEST _COUNT can be detected with very high probability using a small program as
shown in code Table B.4. While any number of runs cannot determine this value with abso-
lute certainty the likelihood of a spurious event which causes an abort is very low for small
nesting depths.

Praz(N? +3N)

S WTotal S S 35Pmax (54)

Sean R. Moore Chapter 5. Experiments 40

Figure 5.3: Quadratic Elision/Acquire Lock Cascade Failure: lock 2 through 0 perform
normal locking or normal elision with LT being trylocked. L2 will elide once before being
acquired; L1, twice; L0, three times. This results in a quadratic amount of work needing to
be done before advancing instead of a linear amount. LT itself does not add to the length
of the cascade and is here only to illustrate that a trylock can reliably cause an abort. This
same behavior can occur for segments of code for which repetitive aborts are possible.

xbegin

Q" ~ [~ A~

xbegin
o°° o°°
(L L

xbegin

Xxabort xabort xabort

One should note that the quadratic nature of this effect disappears with a recursive global
lock as no would-be nested transactions are issued, if the global lock is locked (not elided)
then no inner transactions can start, the counter for the global lock is just incremented.

5.3.3 Results

All data points presented in this section are generated using a linear average of ten runs
of the program with the same configuration. Additionally, memcached is pinned to four
Hyper-thread cores all on the same two real cores and memslap pinned to the other four
Hyper-thread cores. As a result when using more than four threads the CPUs on which
memcached and memslap run are overcommitted.

One will note that in Figure A.2 the global futex implementation, surprisingly, actually

Sean R. Moore Chapter 5. Experiments 41

performs virtually equal to or better than the fine-grained futex implementation in some
cases (as it has a speedup greater than 1 in some cases). This would suggest that mem-
cached, at least under this load, is actually too fine-grained for the period of time it spends
in locked critical sections. Instead of incurring a slowdown due to blocking waits introduced
by coarsened locking a speedup is achieved because once the global lock is acquired by a
thread it does not need to execute the full locking function again until after the global lock
is completely released.

While the data gathering is not invasive enough to unambiguously determine if any sig-
nificant changes to the amount of time spent in aborted transactions are due to lock cascade
failure Figure A.4 does show a significant difference in the amount of time spent on aborted
transactions for fine-grained fallbacks. Interestingly, the trylock abortive implementations
show noticeably less time spent in aborted transactions than their non-trylock abortive coun-
terparts despite having a closely matching commit rate (Figure A.3). The reason for this
discrepancy in the global lock versions is unknown.

The time spent on aborted transactions and transactions overall is much higher for mem-
cached than almost all of the programs in PARSEC and SPLASH-2x. This suggests that
there is probably a coverage gap in the union of PARSEC+SPLASH-2x of programs with
a high ratio of time spent in transactions to the overall program duration. Despite this the
HTM global fallback version performs on par with the original, fine-grained futex version.

5.4 PARSEC and SPLASH-2x

PARSEC is a benchmark suite of programs geared towards multithreading and emerging
workloads but explicitly away from High-Performance Computing niches [8]. The creator(s)
of the PARSEC suite describe “emerging applications” as being a new software type that
might arise because of progress in its field of research, the way users interact with the soft-
ware or the computational burden it puts on the computer system [8].

SPLASH-2x is different as it is based on a benchmark suite of multithreaded programs
released in the early 1990’s, SPLASH-2, when computers that could make use of parallel
programs were uncommon [8, 9]. As a result it targets high-performance computing [8, 9].

For this evaluation only a subset of the programs packaged with the suites will be con-
sidered. The actual download comes with PARSEC 3.0, SPLASH-2 and SPLASH-2x but as
SPLASH-2x is an update to SPLASH-2 based on input set scaling SPLASH-2 will not be
considered in this evaluation [9]. However, SPLASH-2x will be used as its authors packaged
it with PARSEC with the understanding that it has been found to complement the char-
acteristics which PARSEC exercises [9]. PARSEC comes with 16 programs, ten of which
are classified as applications, three as kernels and three as network applications. Since the

Sean R. Moore Chapter 5. Experiments 42

Table 5.1: PARSEC and SPLASH-2x Programs: programs used for this evaluation.

Suite Class | Program Domain [§]
blackscholes Financial Analysis
bodytrack Computer Vision
apps facesim Animation
ferret Similarity Search
PARSEC fluidanimate Animation
canneal Engineering
kernels | dedup Enterprise Storage
streamcluster Data Mining
barnes High-Performance Computing
fmm High-Performance Computing
ocean_cp High-Performance Computing
ocean_ncp High-Performance Computing
apps radiosity Graphics
raytrace Graphics
volrend Graphics
SPLASH-2x water_nsquared | High-Performance Computing
water_spatial High-Performance Computing
cholesky High-Performance Computing
ftt Signal Processing
kernels | lu_ch High-Performance Computing
lu_ncb High-Performance Computing
radix General

networked applications also have a non-networked version the networked version will not be
examined. Five of the ten applications and all three kernels will be examined. The programs
which will be evaluated are shown in Table 5.1.

5.4.1 Results

All data points presented in this section are generated using a linear average of three runs of
the program with the same configuration. Unlike memcached there were no trylock aborts
reported for any run of any of the PARSEC or SPLASH-2x tests so the versions of glibc
without the explicit trylock abort were not used.

Figure A.6 shows the absolute run time (in seconds) of each of the programs of interest.
Figure A.7 shows the run time for each configuration normalized such that they are ex-
pressed as a ratio of the runtime of the given configuration at the given number of threads
over the runtime of the fine-grained futex configuration at the given number of threads. The

Sean R. Moore Chapter 5. Experiments 43

data for Figure A.7 is simply a different representation of the data in Figure A.6. If the
fine-grained futex data points were displayed in Figure A.7 they would be, by definition, 1.

Note that the data for SPLASH-2x’s volrend program is invalid for single-threaded oper-
ation since the program duration it reports in the original implementation is negative and
must be incorrect.

One should note that the bars in Figure A.7 are relatively flat, meaning that in many
cases the actual implementation of synchronization is unimportant. There are however some
exceptions.

PARSEC:dedup

A dramatic exception is PARSEC’s dedup which incurs almost a 5x slowdown when using
8 threads and a global lock but maintains near parity with the fine-grained futex implemen-
tation when only hardware transactions are introduced. Figure A.9 shows that the program
spends less than 20% of its time in aborted transactions (in either fine-grained or global fall-
back HTM) despite being the one that spends the largest percentage of its time on aborted
transactions (when running using 8 threads). This suggests that the overhead primarily
comes from synchronization using global locks. This agrees with the fact that the global
futex version has a nearly equivalent slowdown and that the fine-grained fallback version has
almost no slowdown.

PASREC:fluidanimate

Another dramatic exception is PARSEC’s fluidanimate. Like dedup the global futex imple-
mentation has a high overhead and a more than 5x slowdown. However, unlike dedup the
global fallback HTM version maintains most of its performance, slowing down by no more
than 20%. Figure A.8 shows that fluidanimate very rarely ended up aborting a transaction
and Figure A.9 shows that even when it did the cost for doing so was extremely low. One
should note that the proportion of the program spent on aborted transactions is very small in
comparison to the slowdown the global fallback HT'M incurred meaning that this remaining
extra time was also likely spent on synchronization of futexes.

Unlike most of the other programs fluidanimate spends a fairly appreciable amount of time
doing work inside transactions as shown in Figure A.10 (but note that the value of that ratio
is only strongly bound by the number of threads the fact that for eight threads, global lock
fallback HTM the value is near 1 is coincidental). This, along with the fact that slowdowns
are rare among other applications using the global futex implementation, indicates that these
programs spend little time in synchronized sections as a programmer would aim to do when
parallelizing code.

Sean R. Moore Chapter 5. Experiments 44

General Trends

Even for programs with very high success committing transactions (PARSEC: bodytrack,
facesim, fluidanimate; SPLASH-2x: barnes, cholesky, fmm, radiosity, raytrace, volrend, wa-
ter_nsquared, water_spatial) all but a few (PARSEC: fluidanimate; SPLASH-2x: barnes,
radiosity) spend an appreciable amount of time actually performing transactions.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work has shown that for many multithreaded programs the distinction between fine-
grained and coarse-grained locking approaches is not largely critical to an application’s per-
formance. Additionally, this work has shown that in some cases hardware transactional
memory can alleviate the performance penalty imposed when switching to a coarse-grained
(global in this case) locking scheme.

This work has also covered situations in which global locks and Intel’s Restricted Trans-
actional Memory may lead to pathologies which affect a program’s ability to operate well or
at all under either synchronization method. In cases where global locks cannot support the
behavior of the program certain assumptions about threads communicate with each other
have to be rolled back in order to regain support. For programmers considering whether
or not to use hardware transactions in their new application assumptions which explicitly
break isolation properties do not necessarily need to be introduced. For maintainers that
are instead supporting legacy applications the program should be analyzed for such commu-
nication patterns so that deadlocks can ruled out.

Assuming that PARSEC and SPLASH-2x are representative samples of the space of multi-
threaded programs the conclusion must be that in the majority of cases a locking structure
more complex than a single global lock incurs little performance penalty and that in the
cases with appreciable overhead hardware transactions can typically recover much of the
performance. This leads to a recommendation. Programmers writing multithreaded soft-
ware should assume, if there is no evidence to the contrary, that under conditions similar to
those given in this evaluation the duration of critical sections will be small compared to the
duration of the program’s duration. As a consequence of this coarse-grained locking is likely
to be more appropriate than fine-grained locking as fewer restraints need to be followed to

45

Sean R. Moore Chapter 6. Conclusion and Future Work 46

ensure that no potential deadlocks are introduced when writing a new application. However,
there exists situations where the critical section is an appreciable duration compared to that
of the program overall. Some of these situations can recover much of the performance of the
fine-grained locking version by using hardware transactional memory to elide coarser locks.
These findings indicate that fine-grained locking should be considered a last-resort to speed
up program execution in favor of using coarse (even global) locks and hardware transactional
memory, both of which have much more straightforward methods of reasoning about their
correctness.

6.2 Future Work

Fundamentally speaking, hardware transactions do not need to suffer from lock cascade fail-
ure. If a condition which would consistently cause an abort could be detected from within
a transaction a small amount of information could be passed back through an abort status
code so that the locking implementation knows when it is performance-safe to begin eliding
again. Assuming that the the abort code does not hold enough information to perfectly
represent the relevant state the locking implementation would need to satisfice and start
eliding after having run a certain duration or doing a certain amount of work without seeing
the offending condition.

POSIX defines a spinlock synchronization primitive which is similar to the futex imple-
mentation of mutexes except that the thread which blocks on a spinlock does not go to sleep
but instead busy waits on that lock [7]. This behavior is rather similar to what hardware
transactional memory does except that it has the opportunity to do less waiting. However,
spinlocks by their nature have very low latency because they do not put threads to sleep
when waiting for the lock to be released. A series of hardware transactions could potentially
take noticeably longer to execute than the sum of the durations of the critical sections if they
are attempted more than once. This evaluation considers “performance” to only consist of
how long a program takes to execute its region of interest but for realtime programs faster
average performance or throughput is not necessarily as important as latency.

Bibliography

Intel Architecture Instruction Set Fxtensions Programming Reference, Intel Co., Santa
Clara, CA, October 2014, Available: https://software.intel.com/sites/default/
files/managed/0d/53/319433-022.pdf

Intel 64 and [A-32 Architectures Optimization Reference Manual, Intel Co., Santa Clara,
CA, September 2014, Available: http://www.intel.com/content/dam/www/public/
us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

Intel 64 and IA-32 Architectures Software Developer’s — Manual, In-
tel Co., Santa Clara, CA, June 2015, Available: http://www.
intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf

M. Herlihy; J. Eliot; B. Moss, “Transactional Memory: Architectural Support For
Lock-free Data Structures,” Proceedings of the 20th Annual International Symposium
on Computer Architecture, pp.289-300, May, 1993. doi: 10.1109/ISCA.1993.698569
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=698569&
isnumber=7905

D. Dice; et al.,, “Applications of the Adaptive Transactional Memory Test Plat-
form,” TRANSACT, Salt Lake City, UT., 2008, Available: http://wwwa.unine.ch/
transact08/papers/Dice-Applications.pdf

A. Kleen. (2014, March 26). TSX anti patterns in lock elision code
[Online]. Available: https://software.intel.com/en-us/articles/
tsx—-anti-patterns-in-lock-elision-code

The Open Group Base Specifications Issue 7, IEEE Std 1003.1, 2013. Available:
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_
lock.html, http://pubs.opengroup.org/onlinepubs/9699919799/functions/
pthread_spin_destroy.html

C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. Dissertation, Comp. Sci.,
Princeton Univ., Elizabeth, NJ, 2011. Available: http://parsec.cs.princeton.edu/
publications/bieniallbenchmarking.pdf

47

https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=698569&isnumber=7905
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=698569&isnumber=7905
http://wwwa.unine.ch/transact08/papers/Dice-Applications.pdf
http://wwwa.unine.ch/transact08/papers/Dice-Applications.pdf
https://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code
https://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_lock.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_lock.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_spin_destroy.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_spin_destroy.html
http://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf
http://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf

Sean R. Moore Chapter 6. Conclusion and Future Work 48

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

PARSEC Group, “A Memo on Exploration of SPLASH-2 Input Sets,” Prince-
ton Univ., Elizabeth, NJ, 2011. Available: http://parsec.cs.princeton.edu/doc/
memo-splash2x-input.pdf

Draft Specification of Transactional Language Constructs for C++, version 1.1, 2012
February 3. Available: https://sites.google.com/site/tmforcplusplus

T. Riegel. (2012, Feb. 6). Transactional Memory in GCC' [Online|. Available: https://
gcc.gnu.org/wiki/TransactionalMemory

W. Ruan; T. Vyas; Y. Liu; M. Spear, “Transactionalizing Legacy Code: an Experience
Report Using GCC and Memcached,” Proc. of the 19th Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems, p399-412, March, 2014. doi:
10.1145/2541940.2541960 Available: http://dl.acm.org/citation.cfm?id=2541960

C. Wang; Y. Liu; M. Spear, “Transaction-Friendly Condition Variables,” Proc. of the
21st Intl. Conf. on Parallel Architectures and Compilation Techniques p198-p207, June,
2014. doi: 10.1145/2612669.2612681 Available: http://dl.acm.org/citation.cfm?
1d=2612681

GNU Project. (2015, February 6). The GNU C Library (glibc) [Online]. Available:
https://www.gnu.org/software/libc

GNU Project. (2015, August 16). GNU C Library master sources [Online|. Available:
https://sourceware.org/git/?p=glibc.git;a=summary

Using commit 262365511{6fafade15090fel16a295c¢03c6{6¢5He

GNU Project. (2013, July 2). Add the low level infrastructure for pthreads lock eli-
sion with TSX [Online]. Available: https://sourceware.org/git/?p=glibc.git;
a=commit;h=1cdbeb579482c07e9f4bb3baad864da2d3e7eb837

E. Mikulic. (2014, March 16). Benchmarking [Online]. Available: https://unix4lyfe.
org/benchmarking

L. Brown. (2015, May 31). Linuz Kernel Mailing List [Online]. Avail-
able e-mail: (len.brown@intel.com) Message: ([PATCH 1/1] x86 TSC: set
X86_FEATURE TSC RELIABLE, per CPUID) Available: https://lkml.org/
1kml1/2015/5/31/14

D. Magenheimer. (2010, May 15). Linuxz Kernel Mailing List [Online]. Available e-
mail: (dan.magenheimer@oracle.com) Message: (RE: [PATCH] x86: Export tsc related
information in sysfs) Available: https://lkml.org/1kml/2010/5/15/145

Dormando. memcached - a distributed memory object caching system [Online|. Available:
http://www.memcached.org

http://parsec.cs.princeton.edu/doc/memo-splash2x-input.pdf
http://parsec.cs.princeton.edu/doc/memo-splash2x-input.pdf
https://sites.google.com/site/tmforcplusplus
https://gcc.gnu.org/wiki/TransactionalMemory
https://gcc.gnu.org/wiki/TransactionalMemory
http://dl.acm.org/citation.cfm?id=2541960
http://dl.acm.org/citation.cfm?id=2612681
http://dl.acm.org/citation.cfm?id=2612681
https://www.gnu.org/software/libc
https://sourceware.org/git/?p=glibc.git;a=summary
https://sourceware.org/git/?p=glibc.git;a=commit;h=1cdbe579482c07e9f4bb3baa4864da2d3e7eb837
https://sourceware.org/git/?p=glibc.git;a=commit;h=1cdbe579482c07e9f4bb3baa4864da2d3e7eb837
https://unix4lyfe.org/benchmarking
https://unix4lyfe.org/benchmarking
https://lkml.org/lkml/2015/5/31/14
https://lkml.org/lkml/2015/5/31/14
https://lkml.org/lkml/2010/5/15/145
http://www.memcached.org

Sean R. Moore Chapter 6. Conclusion and Future Work 49

[21]

[22]

[26]

[27]

[28]

[29]

H. Sutter. (2009, August). The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software [Online|. Available: http://www.gotw.ca/publications/
concurrency-ddj.htm

7

G. Moore, “Cramming more components onto integrated circuits,” FElectronics, vol.
38, no. 8, April, 1965. Available: www.computerhistory.org/semiconductor/assets/
media/classic-papers-pdfs/Moore_1965_Article.pdf

H. Boehm; S. V. Adve, “Foundations of the C++ Concurrency Memory Model,” in Pro-
gramming Language Design and Implementation, Tuscon, AZ, 2008, pp. 68-78. Avail-
able: http://rsim.cs.illinois.edu/Pubs/08PLDI.pdf

J. Manson; B. Goetz, (2004, February). JSR 133 (Java Memory Model) FAQ) [Online].
Available: http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html

H. Boehm, “Transactional Memory Should Be an Implementation Technique, Not a
Programming Interface,” in Hot Topics in Parallelism, Berkeley, CA, 2009, pp. 1-6.
Available: https://www.usenix.org/legacy/event/hotpar09/tech/full_papers/
boehm/boehm. pdf

M. Scott, “Transactional Memory Today,” ACM SIGACT News, vol. 46, no. 2, pp.
96-104, June, 2015. Available: http://dl.acm.org/citation.cfm?id=2789166

N. Shavit; D. Touitou, “Software Transactional Memory,” in Principles of Dis-
tributed Computing, Ottowa., ON, 1995, pp. 2014-213. Available: http://dl.acm.
org/citation.cfm?id=224987

R. M. Yoo; C. J. Hughes; K. Lai; R. Rajwar, “Performance Evaluation of In-
tel Transactional Synchronization Extensions for High-Performance Computing,” in
High Performance Computing, Networking, Storage and Analysis, Denver, CO,
2013, pp. 1-11. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=6877452

[. Calciu; T. Shpeisman; G. Pokam; M. Herlihy, “Improved Single Global Lock Fall-
back for Best-effort Hardware Transactional Memory,” in ACM SIGPLAN Workshop
on Transactional Computing, Salt Lake City, UT, 2014

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
www.computerhistory.org/semiconductor/assets/media/classic-papers-pdfs/Moore_1965_Article.pdf
www.computerhistory.org/semiconductor/assets/media/classic-papers-pdfs/Moore_1965_Article.pdf
http://rsim.cs.illinois.edu/Pubs/08PLDI.pdf
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html
https://www.usenix.org/legacy/event/hotpar09/tech/full_papers/boehm/boehm.pdf
https://www.usenix.org/legacy/event/hotpar09/tech/full_papers/boehm/boehm.pdf
http://dl.acm.org/citation.cfm?id=2789166
http://dl.acm.org/citation.cfm?id=224987
http://dl.acm.org/citation.cfm?id=224987
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6877452
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6877452

Appendix A

Data

Figure A.1: memcached: Region-of-Interest Duration

Region-of-Interest Run Time (s)

Region of Interest Duration

futex-fine m— htm-fine-nta = htm-global-nta m—
futex-global htm-fine-ta htm-global-ta

7 < v 3

Thread count per program

20

Sean R. Moore Chapter 7. Data

Figure A.2:

ol

memcached: Region-of-Interest Duration Normalized — same as Figure A.1
normalized for fine-grain futex for each number of threads.

Region of Interest Speedup Over FUTEX with the Same Number of Threads

futex-global htm-fine-ta htm-global-ta
htm-fine-nta m— htm-global-nta m—

Region-of-Interest Speedup (over FUTEX)

< 7
Thread count per program

Figure A.3: memcached: Ratio Transaction Commits — Starts

Ratio of Transaction Commits to Transaction Starts

htm-fine-nta = htm-fine-ta htm-global-nta = htm-global-ta

I S T L L L LT -
12}
c
k=)

L 08 SEE SEEEEEEEEEE = EERT T Rt —
x
?
o
£
L

3 06f-e SN | | e .
12}
©
c
Q
x
k7]
o

E 04f-------- B . —
Q
=1
o
2
&

02 e B . —

0

7 < b4 [

Thread count per program

Sean R. Moore Chapter 7. Data

Figure A.4: memcached: Ratio Ticks Aborted — Region-of-Interest

Ratio of RDTSC Ticks for Aborted Transactions and Regions-of-Interest
htm-fine-nta m— htm-fine-ta htm-global-nta m— htm-global-ta

LI R R LR R PR R PR —

I L R L L R PR R PR —
o -
12}
f=
X
flal
B 0B e -
o
Qo
<<
g
O 0.8 e R B
2
©
14

[R EEEEEEEEEEEEEEEEE —

[R EEEEEEEEEEEEEEEEE —

0 | — —
7 < k4 @
Thread count per program

Figure A.5: memcached: Ratio Tick Transaction — Region-of-Interest

Ratio of RDTSC Ticks for All Transactions and Regions-of-Interest
htm-fine-nta m— htm-fine-ta htm-global-nta = htm-global-ta

1 | -

12 e -
_ T T -
(]
x
1%}
c
B 0B e SEF EEREETTEERFE B
g
°©
=
F o B P ERECTTPPETTPEPETTPPRETTPPRETTTERCTTSRRETES || | EEEEEERRS B
©
4

04 f- o -

0.2 [rerrrr e B | TEEEERRR B

0 7 < k4 [
Thread count per program

Sean R. Moore Chapter 7. Data 53

Figure A.6: PARSEC and SPLASH-2x: Region-of-Interest Duration

Region of Interest Duration

futex-fine m— htm-fine-ta m—
futex-global m— htm-global-ta m—
O 450
i)
g 400
= 350
S
Z 300
‘g 250
£ 200
)
~9— 150
& 100
g 50
14
e Ty e P ;e v & P N ;e % ¢
Thread count per program
parsec.blackscholes parsec.bodytrack parsec.canneal parsec.dedup parsec.facesim parsec.ferret

Region-of-Interest Run Time (s)

Thread count per program

parsec.fluidanimate parsec.streamcluster splash2x.barnes splash2x.cholesky splash2x.fft splash2x.fmm

BB | - - -
0 - - e e s B
£
5 BB0 o e
é T s E .
g 250 [- -t -
Q
= 200 [- - r e -
S 150
5
5, 100
Q
14 50108 Ty - Ty B B | I

0 7 9 ¥ @ 7 v &
Thread count per program
splash2x.lu_cb splash2x.lu_ncb splash2x.ocean_cp splash2x.ocean_ncp splash2x.radiosity splash2x.radix

T R -
1 T P PP -
g
TV R -
n%(B00 [-
g 250 -
£ 200
- 1 e CLLEEE T TP PP EEETPPPPRPERTTPPPRPRCRTPPPPRRRCTTPPPRRRERTTPPRRNEEIY [R r e e E e P T PP PP PP PP
s
SRV SEEE — [ERECEECERCEECEEEEEEEEECEEEEEEEEEREECEEEEREE A E B F T EAEEE = iRtEREEEEEEE R
Q
x TR $ S B B B T e

0

< E4 3 7 < 3 <
Thread count per program
splash2x.raytrace splash2x.volrend splash2x.water_nsquared splash2x.water_spatial

Sean R. Moore Chapter 7. Data 54

Figure A.7: PARSEC and SPLASH-2x: Region-of-Interest Duration Normalized

Region-of-Interest Speedup (over FUTEX)

Region-of-Interest Speedup (over FUTEX) Region-of-Interest Speedup (over FUTEX)

Region-of-Interest Speedup (over FUTEX)

14
1.2

0.8
0.6
0.4
0.2

14
1.2

0.8
0.6
04
0.2

14
12

0.8
0.6
0.4
0.2

14
1.2

0.8
0.6
0.4
0.2

Region of Interest Speedup Over FUTEX with the Same Number of Threads

futex-global m— htm-global-ta m—
htm-fine-ta m——m

7 e ¥ @ 7 L v @& 7 9 v @ 7 L v @& 7 2 v @ 7 L v @&
Thread count per program
parsec.blackscholes parsec.bodytrack parsec.canneal parsec.dedup parsec.facesim parsec.ferret

7 9 ¥ @ 7 v & 7 9 ¥ @ 7 9 v & 7 v & 7 9 v &
Thread count per program

parsec.fluidanimate parsec.streamcluster splash2x.barnes splash2x.cholesky splash2x.fft splash2x.fmm

7 < k4 4 7 < k4 <@ 7 <° k4 4 7 < k4 <@ 7 k4 3 7 < k4 <@
Thread count per program

splash2x.lu_cb splash2x.lu_ncb splash2x.ocean_cp splash2x.ocean_ncp splash2x.radiosity splash2x.radix

7 < b4 £d 7 < k4 3 7 < k4 [7 < < 4
Thread count per program
splash2x.raytrace splash2x.volrend splash2x.water_nsquared splash2x.water_spatial

Sean R. Moore Chapter 7. Data

Figure A.8: PARSEC and SPLASH-2x: Ratio Transaction Commits — Starts

Ratio of Transaction Commits to Transaction Starts

htm-fine-ta m—— htm-global-ta m—

7 v & < v &
Thread count per program

Ratio outermost xends/outermost xbegins

parsec.blackscholes parsec.bodytrack parsec.canneal parsec.dedup parsec.facesim parsec.ferret

A 7 0 v &
Thread count per program

Ratio outermost xends/outermost xbegins

parsec.fluidanimate parsec.streamcluster splash2x.barnes splash2x.cholesky splash2x.fft splash2x.fmm

7 Q 7z & 7 v &
Thread count per program

Ratio outermost xends/outermost xbegins

splash2x.lu_cb splash2x.lu_ncb splash2x.ocean_cp splash2x.ocean_ncp splash2x.radiosity splash2x.radix

< g 3 7 < 3 <
Thread count per program
splash2x.raytrace splash2x.volrend splash2x.water_nsquared splash2x.water_spatial

Ratio outermost xends/outermost xbegins

3

Sean R. Moore

Chapter 7. Data

Figure A.9: PARSEC and SPLASH-2x: Ratio Ticks Aborted — Region-of-Interest

Ratio ticks Aborted Txns/ROI

Ratio ticks Aborted Txns/ROI Ratio ticks Aborted Txns/ROI

Ratio ticks Aborted Txns/ROI

0.8
0.6
0.4
0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Ratio of RDTSC Ticks for Aborted Transactions and Regions-of-Interest

htm-fine-ta m—
htm-global-ta m—

Il Ié Iv I<9 II 'e Iv Ic? I;' Ie Iv Ic9 7 L v @& 7 2 v @ 7 L v @
Thread count per program
parsec.blackscholes parsec.bodytrack parsec.canneal parsec.dedup parsec.facesim parsec.ferret
1 1 | 1 1 1 1 1 1 [1 1 [1 1 1 1 1 1 1 1
A 7 v & A 7 0 v & A G
Thread count per program
parsec.fluidanimate parsec.streamcluster splash2x.barnes splash2x.cholesky splash2x.fft splash2x.fmm
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [R 1 1 1 1
7 ¥ @ 7 v & 7 0 v @ 7 L v @& 7 L v @& 7 L v @
Thread count per program
splash2x.lu_cb splash2x.lu_ncb splash2x.ocean_cp splash2x.ocean_ncp splash2x.radiosity splash2x.radix
1 1 1 1 1 1 1 e 1 1 1 1 1 1 1 1
7 < b4 £d 7 < k4 3 7 < k4 [7 < b4 &
Thread count per program
splash2x.raytrace splash2x.volrend splash2x.water_nsquared splash2x.water_spatial

Sean R. Moore

Chapter 7. Data

Figure A.10: PARSEC and SPLASH-2x: Ratio Tick Transaction — Region-of-Interest

Ratio Ticks Txns/ROI

Ratio Ticks Txns/ROI Ratio Ticks Txns/ROI

Ratio Ticks Txns/ROI

0.8
0.6
0.4
0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Ratio of RDTSC Ticks for All Transactions and Regions-of-Interest

htm-fine-ta m—
htm-global-ta m—

1 .
7 e ¥ @ 7 L v @& 7 9 v @ 7 L v @& 7 2 v @ 7 L v @
Thread count per program
parsec.blackscholes parsec.bodytrack parsec.canneal parsec.dedup parsec.facesim parsec.ferret

1 1 1 1 B 1 1 1 1 [
7 @ v & A 7 v & A G
Thread count per program
parsec.fluidanimate parsec.streamcluster splash2x.barnes splash2x.cholesky splash2x.fft splash2x.fmm
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . -_-_' 1 1 1 1
7 ¥ @ 7 v & 7 0 v @ 7 L v @& 7 L v @& 7 L v @
Thread count per program
splash2x.lu_cb splash2x.lu_ncb splash2x.ocean_cp splash2x.ocean_ncp splash2x.radiosity splash2x.radix
N I e eenm Wl 1 1 1 1 1 1 1 1
7 < b4 £d 7 < k4 3 7 < k4 [7 < b4 &
Thread count per program
splash2x.raytrace splash2x.volrend splash2x.water_nsquared splash2x.water_spatial

57

Appendix B

Source Examples

Table B.1:

Elision Locking:

was not present in the original source code.

0 3 O Ui W N

DO = b b e
O © 00 ~JO UL W~ OO

it

_ 1l lock_elision (int *futex, short *adapt_count, EXTRAARG int private)

{

if (*adapt_count <= 0)

{

unsigned status;
int try_xbegin;

for (try_xbegin = aconf.retry_try_xbegin;
try_xbegin > 0;
try_xbegin--)

{

/* Code to protect against the lemming effect. */
while(*((volatile int*)(futex)) != 0)

{
}

if ((status = xbegin()) == XBEGIN_STARTED)
{

_asm__ ("pause;");

o8

statistics gathering code is removed from this excerpt.
aconf.skip_lock internal abort is a global configuration value set to 3 which causes
the thread to acquire 3 (or more) locks normally before trying elision again if requested.
aconf.retry_try xbegin is similar, indicating that the thread may attempt to take the
outermost lock (up to) 3 times before falling back. aconf is a global configuration structure
variable. Note that the lemming effect code (lines 14-17), which only appears for locking,

Sean R. Moore Chapter 8. Source Examples 59

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
o1
52

}

if (*futex == 0)
return 0;

/* Lock was busy. Fall back to normal locking.
Could also _xend here but xabort with 0xff code
is more visible in the profiler. */

xabort (LABORT_LOCK_BUSY);

}

if (!(status & XABORT_RETRY))
{
/* Internal abort. There is no chance for retry.
Use the normal locking and next time use lock.
Be careful to avoid writing to the lock. */
/*else*/ if (*adapt_count != aconf.skip_lock_internal_abort)
*adapt_count = aconf.skip_lock_internal_abort;

break;
¥

else

/* Use a normal lock until the threshold counter runs out.
Lost updates possible. */
(*adapt_count)--;

}

/* Use a normal lock here. */
return LLL_LOCK ((*futex), private);

Table B.2: Elision Trylocking: the same notes as Table B.1 apply here.

int
_l_trylock_elision (int *futex, short *adapt_count)

{

int abort_time_set = 0;

U= W N =

Sean R. Moore

Chapter 8. Source Examples 60

#ifndef NOTRYABORT

/* Implement POSIX semantics by forbiding nesting
trylock. Sorry. After the abort the code is re-executed
non transactional and if the lock was already locked
return an error. */

xabort (LABORT_NESTED_TRYLOCK);

#endif

/* Only try a transaction if it’s worth it. */
if (*adapt_count <= 0)

{

unsigned status;

if ((status = xbegin()) == XBEGIN_STARTED)
{
if (*futex == 0)
return 0;

/* Lock was busy. Fall back to normal locking.
Could also xend here but xabort with Oxff code
is more visible in the profiler. */

xabort (LABORT_LOCK_BUSY);

}

if (I(status & XABORT_RETRY))
{
/* Internal abort. No chance for retry. For future
locks don’t try speculation for some time. */
if (*adapt_count != aconf.skip_trylock_internal_abort)
*adapt_count = aconf.skip_trylock_internal_abort;
}

/* Could do some retries here. */

}

else

{

/* Lost updates are possible, but harmless. */
(*adapt_count)--;

}

return lll_trylock (*futex);

Sean R. Moore

Chapter 8. Source Examples 61

Table B.3: Elision Unlock: the same notes as Table B.1 apply here.

0 3 O U= Wi

=
Uk W N~ OO

int
_ Il unlock _elision(int *lock, int private)
{
/* When the lock was free we're in a transaction.
When you crash here you unlocked a free lock. */
if (*lock == 0)

{
xend();

l_unlock ((*lock), private);

}

return 0;

}

Table B.4: Max Nest Depth Detection: probabilistically detect the maximum allowed RTM
nesting depth. This program assumes the same nesting depth for all cores but the process
may be pinned to a core if there is reason to suspect it may vary.

O 3 O O i W N

g S g S S g S
SR W N = O O

include <stdio.h>
include "hle.h" // defines xbegin, xend and xtest

static const int NEST_RUN = 1000000;
static const int NEST_TRY = 10;

int main(){

int nest_hist NEST_TRY];

for(int i=0; i<NEST_TRY; ++i){
nest_hist[i] = 0;
}

for(int k=0; k< NEST_RUN; ++k){
for(int i=1; i<=NEST_TRY; ++i){
// enter transactions

Sean R. Moore

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
ol
52
53
o4
95
o6
o7
o8

Chapter 8. Source Examples 62

bool success = true;
for(int j=0; j<i; ++j){
if(_xbegin() '= XBEGIN_STARTED){

success = false;

break;
}
}
if(success){
// exit transactions
for(int j=0; j<i; ++j){
xend();
}
}
else{
break;
}

// mark the nest depth
++nest_hist[i-1];

}

// find the maximum nest

// assume at least 1 txn succeeds

int max = 0;

for(int i=0; i<NEST_TRY; ++i){
if(nest_hist|[i]){

max = i;
¥

}

// print max depth
if((max+1)<NEST_TRY){

fprintf(stderr,
"Max depth is %d (%.41t%%)\n",
max+1,
double(100*nest_hist[max]) /double(NEST_RUN)
);
}
else{

fprintf(stderr,

Sean R. Moore

59
60
61
62
63
64
65

66 | }

}

return 0;

Chapter 8. Source Examples

"Max depth is >=%d (%.41f%%)\n",
NEST TRY,
double(100*nest_hist[max])/double(NEST_RUN)

63

	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	Mutex Locks
	Difficulty with Fine-grained Locking Designs
	Deadlocks
	Livelocks

	Transactional Memory
	Fallback Locks

	Related Work
	Draft C++ TM
	Transactionalized memcached

	GNU C Library Mutex Locks

	GNU C Library and Hardware Transactional Memory
	Modifying the Library
	Fine-grained Versus Global Fallback and Futex Versus HTM
	Semantic Differences
	High-level Performance Differences

	Experiments
	Experimental Setup
	Hardware
	Software

	Data Reporting
	memcached
	Notable Synchronization Methods
	Lock Cascade Failure
	Results

	PARSEC and SPLASH-2x
	Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Data
	Source Examples

