
Garbage Collector Scheduling in Dynamic,
Multiprocessor Real-Time Systems

Hyeonjoong Cho, Member, IEEE, Binoy Ravindran, Senior Member, IEEE, and

Chewoo Na, Student Member, IEEE

Abstract—We consider garbage collection (GC) in dynamic, multiprocessor real-time systems. We consider the time-based,

concurrent GC approach and focus on real-time scheduling to obtain mutator timing assurances, despite memory allocation and

garbage collection. We present a scheduling algorithm called GCMUA. The algorithm considers mutator activities that are subject to

time/utility function time constraints, stochastic execution-time and memory demands, and overloads. We establish that GCMUA

probabilistically lower bounds each mutator activity’s accrued utility, lower bounds the system-wide total accrued utility, and upper

bounds the timing assurances’ sensitivity to variations in mutator execution-time and memory demand estimates. Our simulation

experiments validate our analytical results and confirm GCMUA’s effectiveness.

Index Terms—Real time, garbage collection, time/utility functions, scheduling, multiprocessors.

Ç

1 INTRODUCTION

MEMORY management in embedded real-time systems is
traditionally limited to static partitioning. This ap-

proach is desirable (and likely efficient) when application’s
memory requirements are small and can be statically
estimated, as is often the case for many hard real-time
systems. However, it is inflexible for applications whose
memory demands cannot be statically estimated, and
consequently, desire runtime memory allocation. Dynamic,
manual memory management is more flexible, but suffers
from software engineering and product life-cycle disadvan-
tages, e.g., programming becomes complex to avoid
memory leaks and dangling pointers, reducing code
robustness, and increasing maintenance costs. Dynamic,
automatic memory management or garbage collection (GC)
overcomes these problems, but introduces unpredictability
on GC-pause times, which is antagonistic to timeliness
optimization in real-time systems. This drawback has
motivated research on real-time GC (see [1] for a survey).

Contributions. In this paper, we consider garbage collection
in dynamic multiprocessor real-time systems. By dynamic
systems, we mean those that operate in environments, where
arrival and execution behaviors of mutator activities are
subject to runtime uncertainties, causing resource overloads.
Yet, such systems desire the strongest possible assurances on
mutator timing behaviors—both that of individual activities’
behavior and that of collective, system-wide behavior.

Statistical assurances (e.g., meeting all deadlines with
80 percent probability; meeting 95 percent of deadlines) are
appropriate for these systems.

Another distinguishing feature of these systems is that
their time constraints include those with nondeadline time-
liness semantics, e.g., “earlier the better, but before a certain
time.” Further, an activity’s urgency is sometimes orthogo-
nal to its relative importance. Yet another key distinguish-
ing feature of these systems is their relatively long activity
execution time magnitudes, compared to those of conven-
tional real-time systems, e.g., milliseconds to minutes.

Some examples of such systems that motivate our work
include [2], [3], [4]. For example, in [2], Clark et al. discuss
an AWACS tracker application which collects radar sensor
reports, identifies airborne objects (or “track objects”) in
them, and associates those objects to track states that are
maintained in a track database. Here, each instance of a
track association activity must complete as soon as possible,
but before a certain time. In [3], Clark et al. discuss the
Mission Data System (MDS) of the NASA/JPL Mars Science
Lab Rover robot application with similar timeliness seman-
tics. Additional key features of this application include
processor cycle overloads and activity time scales (e.g.,
frequency of constructing MDS schedules) that are of the
order of minutes (AWACS [2] also has these features). In [4],
Yuan and Nahrstedt discuss an MPEG video decoder which
decodes video frames of different types (e.g., decoding I, P,
and B frames of an MPEG video). Here, each instance of a
decoder activity has a deadline, and the application’s
collective timeliness objective is to meet a certain percentage
(e.g., 95 percent) of deadlines of each activity.

We consider a mutator model that encompasses these
application features. Key aspects of our model include 1) the
time/utility function (or TUF) timeliness model [5] that allows
the specification of a broad range of time constraints,
including deadlines and nondeadline time constraints, and
full decoupling of activity urgency from activity importance
and 2) a stochastic mutator model, where mutator execution

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009 845

. H. Cho is with the Department of Computer and Information Science,
Korea University, 339-700, Korea. E-mail: raycho@korea.ac.kr.

. B. Ravindran and C. Na are with the Bradley Depatment of Electrical
and Computer Engineering, Virginia Polytechnic Institute and State
University, 302 Whittemore Hall, Blacksburg, VA 24061.
E-mail: {binoy, cwrha}@vt.edu.

Manuscript received 11 June 2008; revised 23 Dec. 2008; accepted 6 Jan. 2009;
published online 23 Jan. 2009.
Recommended for acceptance by X. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDS-2008-06-0225.
Digital Object Identifier no. 10.1109/TPDS.2009.20.

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

time and memory demands are probabilistically expressed,
to account for uncertainties in the execution time and
memory allocation behaviors.

We consider garbage collection in this mutator model and
on asymmetric multiprocessor (SMP) systemwithN identical
processors. We consider the time-based GC approach [1],
where the collector executes as a separate thread and is
scheduled similar to a mutator thread (we explain our
rationale for this approach in Section 2). Similar to [6], we
fully decouple mutators and the garbage collector, allowing
for any incremental GC algorithm with fine granularity (e.g.,
[7]). Unlike [8], we only consider a single GC thread, as we
target embedded multiprocessor platforms which typically
have only a few processors (e.g., 4-16). For such a mutator and
system model, our objective is to 1) provide statistical
assurances on individual activity timeliness behavior; 2) pro-
vide system-level timeliness assurances; and 3) maximize the
total timeliness utility attained by all activities.

This problem has not been studied in the past and isNP-
hard. We present a polynomial-time, global multiprocessor
scheduling algorithm for the problem called the garbage
collector multiprocessor utility accrual scheduling algorithm (or
GCMUA). We prove several properties of GCMUA includ-
ing optimal total utility for downward step TUFs, probabil-
istically satisfied lower bounds on each activity’s accrued
utility, and a lower bound on the total activity attained
utility. We also show that GCMUA has bounded sensitivity
for its assurances to variations in execution-time and
memory demand estimates, in the sense that the assurances
hold as long as the variations satisfy a sufficient condition
that we present. Our simulation experiments validate our
analytical results and confirm GCMUA’s effectiveness.

Garbage collection on multiprocessors has a long history
[8], [9], [10], [11], [12], [13], [14], [15] that started with
Halstead’s modification [9] of Baker’s semispace copying
collector algorithm [16], which is one of the earliest real-
time GC works. Halstead partitions the shared memory into
distinct regions for each processor, and allocation and
garbage collection proceeds within each region through a
semispace copying scheme. As Cheng and Blelloch show in
[8], this approach can imbalance the GC work distribution
across processors. In [17], Endo balances the Halstead-
collector’s work through a mark-and-sweep, nonincremen-
tal collector. Flood et al. extend Endo’s work for a copying
collector [18]. Herlihy and Moss also improve the Halstead-
collector’s performance through lock-free synchronization
[11]. Doligez and Gonthier present a concurrent mark-and-
sweep collector in [12] with no read overheads. Bacon et al.
present a concurrent reference counting collector in [15].

These nonreal-time GC efforts became the basis for real-
time GC on multiprocessors, which started with Blelloch
and Cheng’s collector [14]. Unlike Halstead’s, their
memory model is similar to Baker’s in that the whole
shared memory is divided into two spaces (from and to)
and are shared among all processors. To avoid the
expensive cost of reads in Baker’s algorithm due to Baker’s
read-barrier, they use the replication scheme of Nettles and
O’Toole’s copying collector [13], which simultaneously
updates object copies in the from and to spaces. Though
this substantially increases the cost for writes, writes are

less frequent than reads. Fixed bounds on pause times and
memory usage are established in [14]. Cheng and Blelloch
parallelizes this collector in [8] by running multiple GC
threads in parallel, so that garbage collection can keep up
with the increased allocation rate when mutator threads
and processors increase.

None of the past real-time GC efforts, except [19], [20],
consider our mutator and system model, which includes
TUF time constraints, stochastic execution-time and mem-
ory demands, resource overloads, and SMPs. Both [19] and
[20] consider some aspects of our model (e.g., TUFs,
overloads), but are restricted to one processor. Moreover,
[19] does not provide any mutator timing assurances such
as lower bounds on individual and collective activity utility,
and [20] is restricted to deterministic memory demands. In
contrast, our work precisely provides such assurances, and
allows stochastic memory demands and SMPs.

Thus, the contribution of the paper is the GCMUA
scheduling algorithm that provides assurances on (indivi-
dual and collective) mutator timing behaviors in dynamic
multiprocessor real-time systems. To the best of our
knowledge, we are not aware of any other efforts that
solve the problem solved by GCMUA.

The rest of the paper is organized as follows: In Section 2,
we provide background on the real-time GC techniques that
form the basis of our work. Section 3 describes our models
and scheduling objective. In Section 4, we discuss the
rationale and design of GCMUA. We establish the algor-
ithm’s properties in Section 5 and report our simulation
studies in Section 6. The paper concludes in Section 7.

2 BACKGROUND AND RELATED WORK

Real-time GC works can be broadly classified into work-
based and time-based [1]. In the work-based approach, the GC
work is distributed over that of the application activities
(called “mutators”) by performing a bounded amount of
GC work at each mutator allocation request. Baker’s
algorithm [16] is the basis for most of the work-based
approaches. Baker’s algorithm (and its numerous deriva-
tives [8], [9], [10], [13], [21], [22]) is a variant of the semispace
copying collector approach [23]. In this GC paradigm,
memory is partitioned into two regions called from-space
and to-space, and allocation proceeds from the from-space
until it is exhausted, which triggers collection. The collector
copies all live objects from the from-space to the to-space,
compacts the objects in the to-space, and thus frees up the
from-space. The two regions then flip their roles, and
subsequent allocation proceeds from the new from-space,
and the process repeats in the reverse direction.

In Baker’s algorithm [16], the GC work is distributed over
the mutator operation to minimize individual pause times
due to GC. This is done by ensuring that the mutator is
exposed only to the to-space after a flip through a read-barrier:
When the mutator attempts to read an object, the barrier
checks whether the object is in the from-space, and if so, it is
copied to the to-space, and a forwarding pointer that points to
the object in the to-space from the from-space is returned
(consequently increasing the cost of the original read).

Baker’s approach was built upon by many others.
Brooks’s GC algorithm [22], a variant of Baker’s algorithm,

846 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

reduces the increased cost of Baker’s reads, which are
generally frequent, by doing the costly barrier operation on
writes, which are less frequent. Thus, object copying is done
only when mutator writes to objects. The cost of the write
barrier was further reduced in [7]. The Appel-Ellis-Li
collector [10] uses virtual memory protection instead of a
read-barrier, to ensure that mutator always reads from, and
writes to, the to-space region. Nettles and O’Toole’s
replicating copying collector [13] avoids a read-barrier by
simultaneously updating the object copies in the two
spaces. But this substantially increases the cost for writes.
Cheng and Blelloch present a parallel extension of this
collector in [8].

Although the work-based approach reduces individual
pause times, timing assurances are generally difficult to
obtain, because, worst-case time bounds on each of the GC
work attached to the mutator allocations must be estab-
lished. As Detlefs shows in [1], such bounds are likely to be
highly pessimistic. This is because rare but expensive GC
operations must be accounted for in each allocation, to
account for the worst-case GC cost. For example, in Baker’s
algorithm and in its derivatives, scanning thread stacks to
identify reachable objects and copying them from the from-
space to the to-space during a flip is expensive, though flips
are rare. Such pessimistic analysis will likely result in
infeasible real-time schedules.

In the time-based approach, the collector executes as a
separate thread and is scheduled by the scheduler just as
another mutator thread. The advantage of this approach is
that the GC work is no longer coupled with each allocation,
and is directly exposed to the scheduler. Thus, a mutator
thread’s execution time does not include GC time, since all
GC operations are encapsulated in the GC thread, and
consequently, tightens mutator execution times to that in a
system without GC. Further, the problem of obtaining
timing assurances in the presence of GC now becomes a
real-time scheduling problem: How to schedule the mutator
and the GC thread to satisfy mutator time constraints while
not exhausting memory?

The idea of running the collector as a separate,
concurrent thread has its roots in many work-based
approaches, e.g., the Appel-Ellis-Li [10], Nettles and
O’Toole’s [13], North and Reppy’s [24]. However, one of
the first efforts where this was done for real-time GC with
mutator timing assurances is Henriksson’s work [7]. In [7],
Henriksson reduces the increased cost of writes in Brook’s
algorithm by delaying the expensive object copying until
the collector runs. Furthermore, the collector is run in the
background, to avoid interfering with the hard real-time
threads, and performs an amount of work proportional to
the memory allocated by the hard real-time threads.

In [25], Kim et al. reduce the amount of memory reserved
in Henriksson’s work, which can potentially be large (since
the collector is scheduled in the background), by modeling
the collector as an aperiodic thread whose worst-case
sojourn time decides the worst-case memory requirement.

Robertz and Henriksson’s work [6] further decouples the
collector from the mutator by allowing any fine-grained,
incremental GC algorithm (e.g., [7]). However, the collec-
tor’s work which must be performed before memory is

exhausted must be bounded. Using worst-case mutator
allocation needs, they derive a deadline for the GC thread,
such that satisfying the collector’s deadline ensures that
there will always be enough memory for mutator allocation.

Our previous work [20] builds upon Robertz and
Henriksson’s work [6]. While [6] focuses on systems with
deterministic mutator execution-time behaviors and desire
hard real-time assurances (i.e., always satisfying all dead-
lines), [20] targets dynamic systems that are subject to
uncertainties in mutator execution-time behaviors and
desire statistical timing assurances. However, [20] is
restricted to single-processor systems and deterministic
memory demands. In this paper, we extend our prior work
in [20] for SMPs and stochastic memory demands.

The time-based approach is also considered by Bacon et
al. in [26] (for a single processor). Here, fixed time quanta
are assigned to the collector and the mutator, which are
then scheduled in an interleaved manner for their allocated
quanta. This ensures consistent CPU utilization for the
mutator, yielding timing assurances. This is in contrast to
our work and [6], [7], [20], [25], where such assurances are
obtained through real-time schedule construction.

3 MODELS AND OBJECTIVE

3.1 Mutator and GC Model

The application consists of a set of mutator tasks, denoted
M ¼ fM1;M2; . . . ;Mn}. Each mutator task Mi has a number
of instances, called jobs. Jobs may be released periodically
or sporadically with a known minimum interarrival time.
The jth job of mutator Mi is denoted as Ji;j. A mutator Mi’s
period or minimum interarrival time is denoted as Pi.

All mutator tasks are assumed to be independent, i.e.,
they do not have dependencies (e.g., due to synchroniza-
tion). Note that this is true in all our motivating applications
[2], [3], [4] and past works [6], [7], [26] on which our work
builds upon. Our basic scheduling entity is the job
abstraction. We use J to denote a mutator job without
being task specific.

Similar to [14], we consider a memory model where the
entire shared memory is divided into from- and to-spaces
and shared among all processors. Similar to [6], we consider
time-based GC, where the collector is run periodically,
allowing for any fine-grained incremental GC algorithm,
e.g., [7]. (In Section 4.3, we show how the collector’s period
is determined.)

3.2 Timeliness Model

We consider the TUF model [5] for specifying a mutator task’s
time constraint. A task’s TUF specifies the utility of complet-
ing it as a function of its completion time. The classical
deadline is a TUF’s special case—a binary-valued, downward
“step” shaped TUF; Fig. 1a shows an example. Note that a
task’s TUF decouples its importance and urgency, i.e.,
urgency is measured as a deadline on the x-axis, and
importance is denoted by utility on the y-axis.

As previously mentioned, our motivating applications
also have tasks with nondeadline time constraints, such as
those where the utility attained for task completion varies
(e.g., decreases, increases) with completion time. Figs. 1b
and 1c show example such time constraints from applica-
tions in the defense domain (see [2], [27] for application
details).

CHO ET AL.: GARBAGE COLLECTOR SCHEDULING IN DYNAMIC, MULTIPROCESSOR REAL-TIME SYSTEMS 847

Jobs of the same mutator task have the same TUF time
constraint. Mutator Mi’s TUF is denoted as Ui. Thus, job
Ji;j’s completion at time t will yield a utility Ui;jðtÞ. We
focus on nonincreasing unimodal TUFs (e.g., Figs. 1a and 1b;
two TUFs in Fig. 1c) as they include most of our motivating
time constraints.

Each TUF Ui;j has an initial time Ii;j and a termination
time Xi;j, which are the earliest and the latest times for
which the TUF is defined, respectively. Ii;j is the arrival
time of job Ji;j, and Xi;j � Ii;j is the period or minimum
interarrival time Pi of Mi.

If a job has not completed by its termination time, a time
constraint violation exception is raised, and the job is
immediately aborted by executing an (application-supplied)
exception handler. Before aborting the job, the handler is
assumed to perform compensations and recovery actions
for avoiding system inconsistencies and for ensuring the
safety and stability of the external state.

3.3 Execution Time and Memory Demands

We estimate the statistical properties (e.g., mean, variance) of
job execution-time and memory allocation demands rather
than the worst-case demands because our motivating
applications exhibit a large variation in their actual workload.
Thus, the statistical estimation of the demand is more stable,
and hence, more predictable than the actual workload.

Let Yi and Xi be the random variables of a mutator Mi’s
execution-time demand and memory allocation demand,
respectively. Estimating the execution-time and memory
demand distributions of the task involve 1) profiling its
execution-time and memory allocation usage and 2) deriving
the probability distribution of that usage. We assume that the
means and variances of Yi and Xi are finite and determined
through offline or online profiling (e.g., [4]).

We denote the expected execution-time and memory
allocation demands of a mutator Mi as EðYiÞ and EðXiÞ,
respectively, and the corresponding variance on the
demands as V arðYiÞ and V arðXiÞ.

3.4 Statistical Timeliness Requirement

Each mutator task has a statistical timeliness requirement.
For a task Mi, this requirement is specified as f�i; �ig, which
implies that Mi must accrue at least �i percentage of its
maximum utility with the probability �i. This is also the
requirement of each job of Mi. For example, if
f�i; �ig ¼ f0:7; 0:93g, then Mi must accrue at least 70 percent
of its maximum utility with a probability no less than
93 percent. For step TUFs, � can only be 0 or 1. Thus, the
objective of always meeting all task deadlines is the special
case: f�i; �ig ¼ f1:0; 1:0g.

This statistical timeliness requirement on the utility of a
mutator implies a corresponding requirement on the range
of mutator sojourn times. Since we focus on nonincreasing
unimodal TUFs, upper-bounding task sojourn times will
lower bound task utilities.

3.5 System and Scheduling Models

We consider a SMP with N number of processors and the
global multiprocessor scheduling approach. In that sche-
duling approach, a single shared scheduling queue is
maintained for all processors and a processor-wide sche-
duling decision is made by a global scheduling algorithm,
allowing arbitrary job migration across processors. This
paradigm has several advantages over other approaches
(e.g., partitioned scheduling) that are of interest to us,
including the potential for greater scheduling flexibility
during overloads and, thus, the potential for greater
accrued utility, and lower migration overheads on chips
with shared on-chip caches (such chips are anticipated in
future embedded multiprocessor platforms) [28].

3.6 Scheduling Objective

We consider a twofold scheduling criterion: 1) assure that

each mutator task Mi accrues �i percentage of its maximum

utility with at least the probability �i and 2) maximize the

total task attained utility. We also desire to obtain a lower

bound on the total task attained utility. Also, when it is not

possible to satisfy �i (e.g., due to CPU/memory overloads),

our objective is to maximize the total attained utility.
This problem is NP-hard because it subsumes the NP-

hard problem of scheduling step TUF-shaped tasks on one

processor [29].

4 THE GCMUA ALGORITHM

4.1 Bounding Accrued Utility

Let si;j be the sojourn time of the jth job of mutator task Mi.

Mi’s statistical timing requirement can be represented as

PrðUiðsi;jÞ � �i � Umax
i Þ � �i. Since TUFs are assumed to be

nonincreasing and all jobs of the same mutator task have the

same TUF, it is sufficient to havePrðsi;j � DiÞ � �i, whereDi

is the upper bound on Mi’s sojourn time. We call Di “critical

time,” and is calculated as Di ¼ U�1
i ð�i � Umax

i Þ, where

U�1
i ðxÞ denotes the inverse function of the TUF Ui. Thus, Mi

is (probabilistically) assured to accrue at least the utility

percentage �i ¼ UiðDiÞ=Umax
i , with the probability �i.

Note that the period or minimum interarrival time Pi and

the critical time Di of the mutator Mi have the following

relationships: 1) Pi ¼ Di for a binary-valued, downward step

TUF and 2) Pi > Di for other nonincreasing TUFs.

4.2 Estimating Execution and Memory Demands

Since execution time demands are statistically specified, we

need to estimate the execution time and memory demands

that must be allocated to each mutator, such that the desired

utility accrual probability �i is satisfied. Further, each

mutator’s demand must account for the uncertainty in both

execution time and memory demand specifications (i.e., the

variance factors).

848 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

Fig. 1. Example TUFs: (a) step TUFs; (b) TUF of an Airborne Warning

And Control System (AWACS) [2]; and (c) TUFs of a Coastal Air

Defense System [27].

Given the mean and variance of a mutator Mi’s execution
time demand Yi, by a one-tailed version of Chebyshev’s
inequality, when Ci � EðYiÞ, we have

Pr½Yi < Ci� �
ðCi � EðYiÞÞ2

V arðYiÞ þ ðCi � EðYiÞÞ2
: ð1Þ

From a probabilistic point of view, (1) is the direct result

of the cumulative distribution function of mutator Mi’s

execution time demands, i.e., FiðyÞ ¼ Pr½Yi � y�. Recall that

each job of mutator Mi must accrue �i percentage of its

maximum utility with a probability �i. To satisfy this

requirement, we let �i ¼ ðCi�EðYiÞÞ2

V arðYiÞþðCi�EðYiÞÞ2
and obtain the

minimum required execution time Ci ¼ EðYiÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�V arðYiÞ

1��i

q
.

Thus, GCMUA allocates Ci execution time units to each
job Ji;j of mutatorMi, so that the probability that Ji;j requires
no more than the allocated Ci time units is at least �i.

The memory demand can be similarly estimated. Given
the mean and the variance of a mutator Mi’s memory
allocation demand Xi, we have

Pr½Xi < Ai� �
ðAi � EðXiÞÞ2

V arðXiÞ þ ðAi �EðXiÞÞ2
: ð2Þ

To satisfy a mutator’s memory demand, we let �i ¼
ðAi�EðXiÞÞ2

V arðXiÞþðAi�EðXiÞÞ2
and obtain the upper bound of memory

demand Ai ¼ EðXiÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�V arðXiÞ

1��i

q
. Hence, the probability

that each Mi requires no more than the allocated Ai bytes is

at least �i.

Lemma 1. With probabilities �i and �i for execution-time and
memory demands, respectively, if

Q
i �i �

Q
i �i � maxif�ig,

then Mi accrues at least �i percentage of the utility with the
probability �i.

Proof. For a mutatorMi with a probability �i and a probability
�i, the least probability satisfying all execution time
demands is given by

Q
i �i, since each probability is

exclusive. Likewise, the least probability satisfying all
memory demands is given by

Q
i �i. Let

Q
i �i �

Q
i �i ¼ �i.

�i produces the least probability satisfying both execu-
tion-time and memory demands. Thus,Mi accrues at least
�i percentage of its utility with the probability �i, when �i

is greater than or equal to the maximum �i. tu

4.3 Bounding GC Cycle Time

In [6], Robertz and Henriksson develop an upper bound on
the GC cycle time that ensures that the application never
runs out of memory:

Lemma 2 (from [6]). For a mutator Mi with a period Pi (or
frequency fi ¼ 1=Pi) which allocates no more than ai bytes per
job and F bytes of available memory at the start of the GC
cycle, a GC cycle time upper bound that ensures that ai is
reclaimed is

TGC �
F �

P
aiP

fi � ai
:

Since it may not be possible to use allF bytes in the current
cycle due to floating garbage, Robertz and Henriksson bound
the memory that can be safely allocated during a cycle.

Lemma 3 (from [6]). With a heap size H and maximum live
memory Lmax, the maximum memory that can be safely

allocated during a GC cycle is given by amax ¼ H�Lmax
2 .

amax is then used to bound the GC cycle time.

Theorem 4 (from [6]). An upper bound on the GC cycle time

that ensures no memory exhaustion is

TGC �
H�Lmax

2 �
P
aiP

fi � ai
:

In [6], the TGC upper bound is used as the collector’s
deadline and period, since satisfying that deadline for the
collector ensures no memory exhaustion.

We compute TGC using Theorem 4, but use the
probabilistic demand Ai determined from (2) instead of
the worst-case demand ai assumed in [6], since we consider
statistical properties of memory demands instead of worst
case. By doing so, and satisfying the resulting TGC deadline
for the collector at runtime ensures that the actual mutator
memory demand is satisfied at runtime, as long as that
demand does not exceed Ai.

Equation (2) ensures that the probability that each Mi

requires no more than Ai bytes is at least �i. Thus, there is
ð1� �iÞ probability that Mi requires more than Ai bytes.
When the actual memory demand at runtime exceeds Ai,
causing “memory overloads,” an appropriate TGC would not
be found. Hence, in order to make the collector task satisfy its
deadlineTGC , we need to dynamically calculateTGC using the
actual runtime demand and check for the collector’s feasi-
bility. If infeasible, some mutator tasks will have to be aborted
(by executing its exception handler) to ensure the collector’s
feasibility. The process of selecting the mutator tasks for
abortion is described in the following section.

4.4 Algorithm Rationale and Design

To assure that each mutator Mi accrues �i percentage of its
utility with a probability �i, a schedule must be constructed
such that it will ensure the completion ofMi before its critical
timeDi, where the execution time and memory demands for
Mi are assumed to be no larger than Ci time units and Ai

bytes, respectively. Such a schedule will automatically satisfy
f�i; �ig; 8Mi (per Section 4.1 and Lemma 1).

A reasonable approach for constructing such a schedule is
to first approximate the global EDF schedule, where job
critical times correspond to global EDF’s deadline. By doing
so, global EDF’s schedulable utilization bound can be
exploited to meet job critical times, thereby satisfying
f�i; �ig; 8Mi.

However, it is possible that the total expected mutator
utilization demand

P
i Ci=Di, or the total actual mutator

utilization demand at runtime can exceed global EDF’s
schedulable bound.1 Further, the (expected or actual) total
utilization demand can even exceed the total capacity of all
processors. Moreover, memory overloads can occur, when
some mutators’ memory demand at runtime exceed their

CHO ET AL.: GARBAGE COLLECTOR SCHEDULING IN DYNAMIC, MULTIPROCESSOR REAL-TIME SYSTEMS 849

1. The total actual mutator utilization demand at runtime can exceed the
total expected demand because a mutator’s actual execution time demand
can exceed its allocated execution time. By (1), each Mi needs no more than
Ci time units with �i probability; thus Mi needs more than Ci time units
with ð1� �iÞ probability.

allocation, causing the collector to become infeasible, and
thereby the mutators become infeasible.

Recall that when it is not possible to satisfy �i for each
Mi, our objective is to maximize the total task accrued

utility. A reasonable heuristic towards doing so is a
“greedy” strategy such as favoring “high return” jobs—jobs
that can significantly contribute toward the total utility—
over low return ones, and completing as many such high

return jobs as possible before the job termination times.
This will increase the likelihood of maximizing the total
accrued utility.

The potential utility that can be accrued by executing a

job defines a measure of its “return on investment.”

GCMUA measures this using a metric called the Potential

Utility Density (or PUD). The PUD of a job measures the

amount of utility that can be accrued per unit time by

executing the job, and is computed as the ratio of the job’s

attained utility (obtained when the job is immediately

executed to completion) to the remaining job allocated

execution time, i.e., PUD of a job Jk is UkðtþJk:CðtÞÞ
Jk:CðtÞ .

Thus, GCMUA adopts the strategy of approximating

global EDF until a utilization demand overload or

memory overload occurs. To approximate global EDF,

the algorithm examines jobs in the earliest termination

time order, and assigns each job to a processor that yields

the shortest sum of allocated execution times of all jobs in

that processor’s local schedule. The rationale for this

choice is that the shortest summed execution time

processor results in the nearest scheduling event for

completing a job after assigning each job. This will

establish the same schedule as that of global EDF.

When an overload occurs, the algorithm discards low

PUD jobs until the overload is removed and a feasible

schedule is obtained. For each job that is discarded due to

memory overloads, the algorithm immediately aborts the

job by executing its exception handler (as otherwise the

collector will be unable to feasibly complete, potentially

causing a “domino” effect by jeopardizing the execution of

all mutator tasks). For jobs that are discarded due to

utilization demand overloads, GCMUA appends them onto

the feasible schedule, and reconsiders them for execution,

by seeking to exploit slack that may become available when

some mutator tasks need less than their allocated execution

times and complete early. Such jobs are aborted when they

still do not complete by their termination times.

4.5 Algorithm Description

GCMUA’s scheduling events include job arrival, job

completion, the expiration of a TUF termination time, and

memory allocation request.

To facilitate GCMUA’s description, we define a set of

variables. The set of mutator tasks is denoted by M ¼
fM1; ::;Mng. Let �r denote the current job set in the system

including running jobs and unscheduled jobs. Let �tmp and

�a denote temporary schedules. �i denotes the schedule for

processor i, where i � N and N is the number of processors

of the SMP system.
TGC denotes the GC cycle time upper bound.
Jk:X denotes job Jk’s termination time, and Jk:CðtÞ

denotes Jk’s remaining allocated execution time at time t.

For the collector, we assume that its worst-case execution

time, CGC , is known. CGC depends upon the particular GC

algorithm (see [25] for CGC calculation, for a variant of

Brook’s algorithm [22]). Note that TGC < CGC due to

memory overloads.

For convenience, we also define a set of auxiliary

functions. offlineComputing(M) is a procedure that is

invoked at time t ¼ 0 once. For each mutator Mi 2M, this

procedure computes Ci ¼ EðYiÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�V arðYiÞ

1��i

q
. The proce-

dure also computes TGC using Theorem 4 and using

probabilistic memory demand Ai determined from (2).
UpdateRAET(�r) updates the remaining allocated execu-

tion time of all jobs in set �r, and UpdateRAMD(�r) updates

the remaining allocated memory demand of all jobs in set �r.
ComputeTgc(�tmp) calculates TGC with estimated mem-

ory demand Ai and actual memory demand ai.
feasible(�i) returns a boolean value denoting sche-

dule �i’s feasibility, and feasible(Jk) denotes job Jk’s

feasibility. For a schedule �i (or job Jk) to be feasible, the

predicted completion time of each job in � (or Jk) must not

exceed its termination time.
findProcessor() returns the ID of that processor on

which the currently assigned mutator tasks have the

shortest sum of allocated execution times.
removeLeastPUDJob(�i) removes a job with the least

PUD from schedule �i. PUD of a job Jk is UkðtþJk:CðtÞÞ
Jk:CðtÞ . The

procedure returns the removed job. Note that when

TGC < CGC , the collector task is not removed. Instead, the

next least PUD job is removed.
append(Jr,�a) appends Jr at the rear of schedule �a.

headOf(�i) returns the set of jobs that are at the head of

schedule �i, 1 � i � N .
A description of GCMUA at a high level of abstraction is

shown in Algorithm 1. The procedure offlineComput-

ing() is included in line 4, although it is executed only

once at t ¼ 0. The procedure computes TGC with the

memory demand Ai.
When GCMUA is invoked, it updates the remaining

allocated execution-times and memory demands of each job

(lines 6 and 7). The remaining allocated execution times and

memory demands of running jobs are decreasing, while

those of unscheduled jobs remain constant. The algorithm

then computes the PUDs of all jobs. The jobs are then sorted

in the order of earliest termination time first (or EXF), in

line 10. In each step of the while-loop from line 12 to line 14,

TGC is computed and checked for memory overloads (i.e.,

TGC � 0). The algorithm removes the overload by removing

the least PUD job until TGC > 0.

850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

In each step of the for-loop from line 15 to line 18, the job
with the earliest termination time is selected to be assigned
to a processor. The processor that yields the shortest sum of
allocated execution times of all jobs in its local schedule is
selected for assignment (findProcessor()). As pre-
viously explained, this processor results in the nearest
scheduling event for completing a job after assigning each
job, establishing a global EDF schedule. Then, the job Jk
with the earliest termination time is inserted into the local
schedule �p of the selected processor p.

In the for-loop from line 19 to line 25, GCMUA attempts to
make each local schedule feasible by removing the lowest
PUD job. In line 21, if �i is not feasible, then GCMUA
removes the job with the least PUD from �i until �i becomes
feasible. All removed jobs are temporarily stored in a
schedule �a and then appended to each �i in EXF order.
Note that simply aborting the removed jobs may result in
decreased accrued utility. This is because the algorithm may
decide that a job is feasible which is estimated to have a
longer allocated execution time than its actual one, causing
the job to complete earlier than expected. To exploit such
slacks, GCMUA gives removed jobs another chance to
complete instead of aborting it, which eventually makes the
algorithm more robust.

Each job at the head of �i; 1 � i � N , is dispatched for
execution on the respective processor.

5 ALGORITHM PROPERTIES

5.1 Timeliness Assurances

We establish GCMUA’s timeliness assurances under the
conditions of: 1) independent tasks that arrive periodically/
sporadically and 2) task utilization demand satisfies any of

global EDF’s schedulable utilization bounds, i.e., GFB, BAK,
or BCL in [30].

Theorem 5. Suppose that only binary-valued step TUFs are

allowed under conditions 1) and 2). Then, a schedule produced

by global EDF is also produced by GCMUA, yielding equal

total utilities. This is a termination time-ordered schedule.

Proof. We prove this by examining Algorithm 1. In line 10, the
queue �tmp is sorted in a nondecreasing termination time
order. In line 17, findProcessor() returns the index of
the processor on which the summed execution time of
assigned tasks is the shortest among all processors.
Assume that there are n tasks in the current ready queue.
We consider two cases: 1) n � N and 2) n > N .

When n � N , the result is trivial. GCMUA’s schedule
of tasks on each processor is identical to EDF (every
processor has a single task or none assigned). When
n > N , task Mi (N < i � n) will be assigned to the
processor whose tasks have the shortest summed
execution time. This implies that this processor will
have the earliest completion for all assigned tasks up to
Mi�1, so that the event that will assign Mi will occur by
this completion. Note that tasks in �tmp are selected to be
assigned to processors according to EXF. This is precisely
the global EDF schedule, as a TUF termination time is
equivalent to EDF’s deadline. Under conditions 1) and 2),
EDF meets all deadlines. Thus, each processor always
has a feasible schedule, and the while-loop from line 21
to line 23 will never be executed. Thus, GCMUA
produces the same schedule as global EDF. tu

An important corollary about GCMUA’s timeliness
behavior can be deduced from EDF’s behavior.

Corollary 6. Under conditions 1) and 2), GCMUA always

completes the allocated execution time of all tasks before their

critical times.

Theorem 7 (Statistical Task-Level Assurance). Under

conditions 1) and 2), GCMUA meets the statistical timeliness

requirement f�i; �ig; 8Mi.

Proof. From Corollary 6, all allocated execution times of
tasks can be completed before their critical times.
Further, based on the results of (1), among the actual
processor time of mutator Mi’s jobs, at least �i of them
have lesser actual execution time than the allocated
execution time. Thus, GCMUA satisfies f�i; �ig; 8Mi at
least with a probability of �i ¼ maxf�ig, since all tasks
must have lesser actual execution time than the allocated.Q
�i ¼ maxf�ig � �i; 8Mi, i.e., GCMUA accrues �i utility

with at least �i probability. tu
Theorem 8 (System-Level Utility Assurance). Under condi-

tions 1) and 2), if a mutator Mi has the highest utility Umax
i ,

then the ratio of the total utility accrued by GCMUA to the

maximum possible total utility is at least

Pn

i¼1
�i�iU

max
iPn

i¼1
Umax
i

.

Proof. Let the number of jobs released by Mi be mi. Mi

can accrue at least �i percent of its maximum utility

with the probability maxf�ig � �i. Thus, the ratio of

CHO ET AL.: GARBAGE COLLECTOR SCHEDULING IN DYNAMIC, MULTIPROCESSOR REAL-TIME SYSTEMS 851

the total accrued utility to the maximum total utility is

maxf�ig�1U
max
1 l1þ���þmaxf�ig�nUmax

n ln
Umax

1
l1þ���þUmax

n ln
. This is greater than or

equal to
�1�1U

max
1 l1þ���þ�n�nUmax

n ln
Umax

1
l1þ���þUmax

n ln
. When li approaches 1,

the formula converges to

Pn

i¼1
�i�iU

max
iPn

i¼1
Umax
i

. tu

5.2 Dhall Effect

The Dhall effect [31] shows that there exists a task set that
requires a total utilization demand of nearly 1, but cannot
be scheduled to meet all deadlines under global EDF and
RM even with infinite number of processors. Previous work
has shown that this is caused by the poor performance of
global EDF and RM when the task set contains both high
utilization tasks and low utilization tasks. This phenomen-
on, in general, can also affect TUF schedulers. We discuss
this with an example inspired from [32] that considers tasks
with constant execution time demands, and GCMUA
accurately estimating those demands.

Example 1. Consider N+1 periodic tasks that are scheduled
on N processors under global EDF. Let task �i, where
1 � i � N , have Pi ¼ Di ¼ 1, Ci ¼ 2�, and task �Nþ1 have
PNþ1 ¼ DNþ1 ¼ 1þ �, CNþ1 ¼ 1. We assume that each
task �i has a step-shaped TUF with maximum utility Umax

i

and task �Nþ1 has a step-shaped TUF with maximum utility
Umax
Nþ1. When all tasks arrive at the same time, tasks �i will

execute immediately and complete their execution 2� time
units later. Task �Nþ1 then executes from time 2� to
time 1þ 2�. Since task �Nþ1’s critical time—we assume
here it is the same as its period—is 1þ �, it begins to miss its
critical time. By letting N !1, �! 0, Umax

i ! 0, and
Umax
Nþ1 !1, we have a task set whose total utilization

demand is near 1 and the maximum possible total attained
utility is infinite, but that finally accrues zero total utility
even with infinite number of processors. We call this
phenomenon as the Utility Accrual Dhall effect (or UA Dhall
effect). Conclusively, one of the reasons why global EDF is
inappropriate as a TUF scheduler is that it is prone to suffer
this effect. However, GCMUA overcomes this phenomena.

Example 2. Consider the same scenario as in Example 1, but
now, let the task set be scheduled by GCMUA. In
Algorithm 1, GCMUA first tries to schedule tasks like
global EDF, but it will fail to do so as we saw in Example 1.
When GCMUA finds that �Nþ1 will miss its critical time on
processorm (where 1 � m � N), the algorithm will select a
task with lower PUD on processor m for removal. On
processor m, there are two tasks, �m and �Nþ1. �m is one of
�i, where 1 � i � N . WhenUmax

i !1 andUmax
Nþ1 !1, the

PUD of task �m is almost zero and that of task �Nþ1 is
infinite. Therefore, GCMUA removes �m and eventually
accrues infinite utility as expected. Under the case when
Dhall effect occurs, we can establish UA Dhall effect by
assigning extremely high utility to the task that will be
selected (and will miss its deadline) by global EDF. It also
implies that the scheduling algorithm suffering from Dhall
effect will likely suffer from UA Dhall effect, when it
schedules tasks with TUF time constraints. The fact that
GCMUA is more robust against UA Dhall effect than
global EDF can be observed in our experiments.

5.3 Sensitivity of Timeliness Assurances

GCMUA is designed in the same probabilistic framework as
the algorithms in [20], [33]. Consequently, GCMUA inherits
the sensitivity property on timeliness assurances that these
prior algorithms provide. That is, GCMUA assumes that
fEðYiÞ; V arðYiÞg and fEðXiÞ; V arðXiÞg are correct. How-
ever, it is possible that these inputs may change over time
(e.g., due to changes in application’s execution context). To
understand GCMUA’s behavior when this happens, we
assume that EðYiÞ’s and V arðYiÞ’s are erroneous, and
present the sufficient condition under which the algorithm
satisfies f�i; �ig; 8Mi.

Our previous work [33] established sensitivity of the
timeliness assurances to variations in execution-time de-
mand estimates—GCMUA also inherits this feature. Here,
we develop an extension to that property to variations in
memory demand estimates.

Let a mutator Mi’s correct, expected memory demand be

EðXiÞ and its correct variance be V arðXiÞ, and let an

erroneous expected demand E00ðXiÞ and an erroneous

variance V ar00ðXiÞ be specified as the input to GCMUA.

Let Mi’s timeliness requirement be f�i; �ig. We show that if

GCMUA can satisfy f�i; �ig with EðXiÞ and V arðXiÞ, then

there exists a sufficient condition under which the algorithm

can still satisfy f�i; �ig even with E00ðXiÞ and V ar00ðXiÞ.
Theorem 9. Assume that GCMUA satisfies f�i; �ig; 8Mi, under

correct, expected memory demand estimates, EðXiÞ’s, and

their correct variances, V arðXiÞ’s. When incorrect expected

values, E00ðXiÞ’s, and variances, V ar00ðXiÞ’s, are given as

inputs instead of EðXiÞ’s and V arðXiÞ’s, GCMUA satisfies

f�i; �ig; 8Mi, if E00ðXiÞ þ ðAi� EðXiÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ar00ðXiÞ
V arðXiÞ

q
� Ai; 8Mi.

Proof. We assume that if GCMUA has correct EðXiÞ’s and

V arðXiÞ’s as inputs, then it satisfies f�i; �ig; 8Mi. This

implies that the Ai’s determined by (2) are feasibly

scheduled by GCMUA, satisfying all task critical times:

�0i ¼
ðAi � EðXiÞÞ2

V arðXiÞ þ ðAi � EðXiÞÞ2
: ð3Þ

However, GCMUA has incorrect inputs, E00ðXiÞ’s and
V ar00ðXiÞ, and based on these, it determines A00i s by (2) to
obtain the probability �0i; 8Mi:

�0i ¼
ðA00i � E00ðXiÞÞ2

V ar00ðXiÞ þ ðA00i � E00ðXiÞÞ2
: ð4Þ

Unfortunately, A00i that is calculated from the erro-
neous E00ðXiÞ and V ar00ðXiÞ leads GCMUA to another
probability �00i by (2). Thus, although we expect the utility
assurance with the probability �0i, we can only obtain
assurance with the probability �00i because of the error. �00

is given by

�00i ¼
ðA00i �EðXiÞÞ2

V arðXiÞ þ ðA00i � EðXiÞÞ2
: ð5Þ

Note that we also assume that tasks with A00i satisfy
global EDF’s schedulable utilization bound; otherwise,
GCMUA cannot provide the assurances. To satisfy

852 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

f�i; �ig; 8Mi, the actual probability �00i must be greater
than the desired probability �0i. Since �00i � �0i ð� �iÞ,

ðA00i �EðXiÞÞ2

V arðXiÞ þ ðA00i � EðXiÞÞ2
� ðAi � EðXiÞÞ2

V arðXiÞ þ ðAi � EðXiÞÞ2
:

Hence, C00 � Ci. From (3) and (4),

A00i ¼ E00ðXiÞ þ ðAi �EðXiÞÞ

ffi
V ar00ðXiÞ
V arðXiÞ

s
� Ai: ð6Þ

tu

6 EXPERIMENTAL RESULTS

We conducted simulation studies to validate our analytical
results and to compare GCMUA’s performance against
global EDF-based GC scheduling, considering four proces-
sors. We considered two cases: 1) the mutator demands are
constant and GCMUA exactly estimates the execution time
allocation and 2) the mutator demands statistically vary and
GCMUA probabilistically estimates the execution time
allocation for each mutator. We considered two TUF shape
patterns: 1) all mutators with step TUFs and 2) a hetero-
geneous TUF shape class, which included step, linear, and
parabolic TUF shapes.

6.1 Performance with Constant Demand

We considered a set of five mutator tasks with f�i; �ig ¼
f1:0; 1:0g; i ¼ f1; . . . ; 5g, and a GCMUA-scheduled GC task,

denoted TGCMUA. MutatorMi’s periodPi, expected execution

time demand EðYiÞ, and expected memory demand EðXiÞ
were randomly generated in the range of [10, 40], ½1; 	 � Pi�,
and [64, 1024], respectively, where 	 ¼ maxfCiPi ji ¼ 1; . . . ; 5g
¼ 0:4 and V arðYiÞ ¼ V arðXiÞ ¼ 0. We generated normally

and exponentially distributed execution time demands.

Mutator execution times were changed along with the total

utilization demand (or UD).
According to [34], EDF’s schedulable utilization bound

depends on 	 as well as the number of processors. Thus, no
matter how many processors the system has, there exists tasks
with UD close to 1.0, which cannot be feasibly scheduled
under EDF. The number of mutators depends on the given
UD. In our experiments, the UD ranged from 3.0 to 7.5,
including when it exceeded the number of processors.

Figs. 2 and 3 show the critical-time meet ratio (or CMR)
and the accrued utility ratio (or AUR) of each mutator
under increasing UD, for step TUFs, under normally and
exponentially distributed mutator execution times, respec-
tively. CMR is the ratio of the number of jobs satisfying their
critical times to the total number of job releases, and AUR is
the ratio of the total accrued utility to the maximum
possible total utility. For mutators with step TUFs, we show
CMR and AUR in the same plot since they are identical.
When all mutators have step TUFs and the UD satisfies
global EDF’s utilization bound (i.e., UD <� 2.5 here, by the
GFB bound [30]), GCMUA performs the same as EDF. This
validates Theorem 5.

Figs. 2a and 3a show that all mutators obtain 100 percent of
CMR and AUR when UD � 4:0 and TGCMUA maintains
100 percent of CMR and AUR under all UDs. Thus, GCMUA
ensures that memory is never exhausted during both under-
loads and overloads. When UD > 4:0, we observe that
GCMUA-scheduled mutators gracefully degrade their time-
liness as GCMUA schedules as many (feasible) high-PUD
mutators as possible, in contrast to EDF’s earliest-deadline
mutator ordering (irrespective of utility).

From Figs. 2b and 3b, we observe that the CMR/AUR of
EDF-scheduled mutators and the collector, denoted TEDF ,
sharply drops beyond UD ¼ 4:0, implying that the system

CHO ET AL.: GARBAGE COLLECTOR SCHEDULING IN DYNAMIC, MULTIPROCESSOR REAL-TIME SYSTEMS 853

Fig. 2. Performance under constant demand (normally distributed), step

TUFs. (a) GCMUA and (b) EDF.

Fig. 3. Performance under constant demand (exponentially distributed),

step TUFs. (a) GCMUA and (b) EDF.

cannot satisfy the mutator memory demands. This is due to
EDF’s domino effect that occurs when UD exceeds the
number of processors. Observe that EDF misses deadlines
much earlier than when UD ¼ 4:0, as indicated in [30].
Note that the trends in Figs. 2 and 3 are consistent,
demonstrating GCMUA’s robustness against different
execution time distributions.

Figs. 4 and 5 show the system-level CMR and AUR for
step TUFs, under normally and exponentially distributed
execution times, respectively. Unlike Figs. 2 and 3, the
system-level CMR and AUR are different, as satisfying the
critical times of different mutators can result in different
total accrued utility. In Figs. 4 and 5, we observe similar
trends (at the system-level) as in Figs. 2 and 3: GCMUA
gracefully degrades performance, while EDF suffers from
the domino effect. The trends are consistent across different
execution demand distributions.

6.2 Performance with Statistical Demand

We evaluated GCMUA’s statistical timeliness assurances for
heterogeneous TUF shapes. We assigned step TUF toM1 and
the collector, parabolic TUF to M2 and M5, and linearly
decreasing TUF to M3 and M4. Table 1 shows the mutator
settings. For each mutator Mi’s demand Yi, we generated
normally and exponentially distributed execution time
demands. Mutator execution times were varied with the UD.

Figs. 6 and 7 show the task-level AUR, task-level CMR,
and system-level AUR and CMR under increasing UD,
for heterogeneous TUFs, under normally and exponen-
tially distributed mutator execution times, respectively.
Figs. 6a and 7a show that all mutators under GCMUA
accrue 100 percent AUR within global EDF’s bound (i.e.,
UD <� 2.5 here), thus satisfying the desired f�i; �ig
described in Table 1. This validates Theorem 7.

We also observe that GCMUA achieves 100 percent AUR
and CMR for M1 under all UDs. This is because, M1 has a
step TUF with the highest maximum utility. Thus, GCMUA
favors M1 over others to obtain more utility when it cannot
meet all mutator critical times.

As defined in Theorem 8, the system-level AUR under
GCMUA can be calculated as ð0:98� 0:80� 92þ 0:95�
0:75� 63þ 0:94� 0:85� 75þ 0:97� 0:90� 69þ 0:96� 0:92
� 54Þ 	 353 ¼ 80:69 percent. In Figs. 6c and 7c, we observe
that the system-level AUR under GCMUA is more than
80.69 percent. This validates Theorem 8. We also observe
that GCMUA’s system-level AUR and CMR degrade
gracefully as the algorithm differentially favors mutators
according to their contribution to the total accrued utility.

Similar to the results under constant demand, we also
observe that the trends in Figs. 6 and 7 are consistent,
illustrating GCMUA’s robustness.

7 CONCLUSIONS, FUTURE WORK

We consider garbage collection in dynamic multiprocessor
real-time systems, and present a scheduling algorithm
called GCMUA. We show that GCMUA probabilistically
satisfies task utility lower bounds, and lower bounds

854 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

Fig. 4. System-level CMR/AUR under constant demand (normally

distributed), step TUFs. (a) GCMUA and (b) EDF.

Fig. 5. System-level CMR/AUR under constant demand (exponentially

distributed), step TUFs. (a) GCMUA and (b) EDF.

TABLE 1
Mutator Settings

system-wide total accrued utility. When task utility bounds
cannot be met due to overloads, GCMUA maximizes total
utility by completing a subset of tasks which yields high
total utility, and thereby, gracefully degrades timeliness.

Future directions include allowing collectors with non-
negligible atomic segments, allowing multiple GC threads
for greater scalability (like [8]), relaxing the task arrival
model (e.g., unimodal), and allowing mutators with
synchronization dependencies. Implementation of the algo-
rithm in an OS/virtual machine for obtaining further
experimental insights is also important.

ACKNOWLEDGMENTS

This work was sponsored by the US Office of Naval
Research (ONR) (Grant N00014-00-1-0549) and by The
MITRE Corporation (Grant 52917). Preliminary results
appeared in [29].

REFERENCES

[1] D. Detlefs, “A Hard Look at Hard Real-Time Garbage Collection,”
Proc. IEEE Int’l Symp. Object-Oriented Real-Time Distributed
Computing (ISORC ’04), pp. 23-32, May 2004.

[2] R. Clark, E.D. Jensen, A. Kanevsky, and J. Maurer, “An Adaptive,
Distributed Airborne Tracking System,” Proc. IEEE Int’l Workshop
Parallel and Distributed Real-Time Systems (WPDRTS ’99), pp. 353-
362, Apr. 1999.

[3] R.K. Clark, E.D. Jensen, and N.F. Rouquette, “Software Organiza-
tion to Facilitate Dynamic Processor Scheduling,” Proc. IEEE Int’l
Workshop Parallel and Distributed Real-Time Systems (WPDRTS ’04),
p. 122b, Apr. 2004.

[4] W. Yuan and K. Nahrstedt, “Energy-Efficient CPU Scheduling for
Multimedia Applications,” ACM Trans. Computer Systems, vol. 24,
no. 3, pp. 292-331, 2006.

[5] E.D. Jensen, C.D. Locke, and H. Tokuda, “A Time-Driven
Scheduling Model for Real-Time Systems,” Proc. IEEE Real-Time
Systems Symp. (RTSS ’85), pp. 112-122, Dec. 1985.

[6] S.G. Robertz and R. Henriksson, “Time-Triggered Garbage
Collection: Robust and Adaptive Real-Time GC Scheduling for
Embedded Systems,” Proc. ACM Conf. Language, Compiler, and Tool
for Embedded Systems (LCTES ’03), pp. 93-102, 2003.

[7] R. Henriksson, “Scheduling Garbage Collection in Embedded
Systems,” PhD dissertation, Lund Inst. of Technology, July
1998.

[8] P. Cheng and G.E. Blelloch, “A Parallel, Real-Time Garbage
Collector,” Proc. ACM Programming Language Design and Imple-
mentation (PLDI ’01), pp. 125-136, 2001.

[9] R.H. Halstead, Jr., “MULTILISP: A Language for Concurrent
Symbolic Computation,” ACM Trans. Programming Languages and
Systems, vol. 7, no. 4, pp. 501-538, 1985.

[10] A.W. Appel, J.R. Ellis, and K. Li, “Real-Time Concurrent
Collection on Stock Multiprocessors,” Proc. ACM Programming
Language Design and Implementation (PLDI ’88), pp. 11-20, 1988.

[11] M.P. Herlihy and J.E.B. Moss, “Lock-Free Garbage Collection for
Multiprocessors,” IEEE Trans. Parallel and Distributed Systems,
vol. 3, no. 3, pp. 304-311, May 1992.

[12] D. Doligez and G. Gonthier, “Portable, Unobtrusive Garbage
Collection for Multiprocessor Systems,” Proc. ACM Principles of
Programming Languages (POPL ’94), pp. 70-83, 1994.

[13] S. Nettles and J. O’Toole, “Real-Time Replication Garbage
Collection,” Proc. ACM Programming Language Design and
Implementation (PLDI ’93), pp. 217-226, 1993.

[14] G.E. Blelloch and P. Cheng, “On Bounding Time and Space
for Multiprocessor Garbage Collection,” Proc. ACM Program-
ming Language Design and Implementation (PLDI ’99), pp. 104-
117, 1999.

[15] D.F. Bacon, C.R. Attanasio, H.B. Lee, V.T. Rajan, and S. Smith,
“Java without the Coffee Breaks: A Nonintrusive Multiprocessor
Garbage Collector,” Proc. ACM Programming Language Design and
Implementation (PLDI ’01), pp. 92-103, 2001.

[16] H.G. Baker, “List Processing in Real Time on a Serial Computer,”
Comm. ACM, vol. 21, no. 4, pp. 280-294, 1978.

CHO ET AL.: GARBAGE COLLECTOR SCHEDULING IN DYNAMIC, MULTIPROCESSOR REAL-TIME SYSTEMS 855

Fig. 7. Performance under statistical demand (exponentially distributed), heterogeneous TUFs. (a) Task-level AUR, (b) task-level CMR, and

(c) system-level AUR and CMR.

Fig. 6. Performance under statistical demand (normally distributed), heterogeneous TUFs. (a) Task-level AUR, (b) task-level CMR, and (c) system-

level AUR and CMR.

[17] T. Endo, “A Scalable Mark-Sweep Garbage Collector on Large-
Scale Shared-Memory Machines,” Master’s thesis, Univ. of Tokyo,
Feb. 1998.

[18] C. Flood, D. Detlefs, N. Shavit, and C. Zhang, “Parallel Garbage
Collection for Shared Memory Multiprocessors,” Proc. USENIX
Java Virtual Machine Research and Technology Symp. (JVM), 2001.

[19] S. Feizabadi and G. Back, “Java Garbage Collection Scheduling in
Utility Accrual Scheduling Environments,” Proc. Java Technologies
for Real-time and Embedded Systems (JTRES ’05), Oct. 2005.

[20] H. Cho, C. Na, B. Ravindran, and E.D. Jensen, “On Scheduling
Garbage Collector in Dynamic Real-Time Systems with Statistical
Timing Assurances,” Proc. IEEE Int’l Symp. Object-Oriented Real-
Time Distributed Computing (ISORC ’06), pp. 215-223, Apr. 2006.

[21] H.G. Baker, “The Treadmill: Real-Time Garbage Collection with-
out Motion Sickness,” ACM SIGPLAN Notices, vol. 27, no. 3,
pp. 66-70, 1992.

[22] R.A. Brooks, “Trading Data Space for Reduced Time and Code
Space in Real-Time Garbage Collection on Stock Hardware,” Proc.
ACM Symp. LISP and Functional Programming (LFP ’84), pp. 256-
262, 1984.

[23] R.R. Fenichel and J.C. Yochelson, “A LISP Garbage-Collector for
Virtual-Memory Computer Systems,” Comm. ACM, vol. 12, no. 11,
pp. 611-612, 1969.

[24] S.C. North and J.H. Reppy, “Concurrent Garbage Collection on
Stock Hardware,” Proc. Conf. Functional Programming Languages
and Computer Architecture, pp. 113-133, 1987.

[25] T. Kim, N. Chang, N. Kim, and H. Shin, “Scheduling Garbage
Collector for Embedded Real-Time Systems,” Proc. ACM Conf.
Language, Compiler, and Tool for Embedded Systems (LCTES ’99),
pp. 55-64, 1999.

[26] D.F. Bacon, P. Cheng, and V.T. Rajan, “A Real-Time Garbage
Collector with Low Overhead and Consistent Utilization,” Proc.
ACM Principles of Programming Languages (POPL ’03), pp. 285-298,
2003.

[27] D.P. Maynard et al. “An Example Real-Time Command, Control,
and Battle Management Application for Alpha,” CMU CS Dept.,
Technical Report 88121 (Archons Project), Dec. 1988.

[28] B. Brandenburg, J. Calandrino, and J. Anderson, “On the
Scalability of Real-Time Scheduling Algorithms on Multicore
Platforms: A Case Study,” Proc. IEEE Real-Time Systems Symp.
(RTSS), 2008.

[29] C. Na, H. Cho, B. Ravindran, and E.D. Jensen, “Garbage Collector
Scheduling in Dynamic, Multiprocessor Real-Time Systems,” Proc.
IEEE Int’l Conf. Embedded and Real-Time Computing Systems and
Applications (RTCSA ’06), pp. 101-105, 2006.

[30] M. Bertogna, M. Cirinei, and G. Lipari, “Improved Schedulability
Analysis of EDF on Multiprocessor Platforms,” Proc. IEEE
Euromicro Conf. Real-Time Systems (ECRTS ’05), pp. 209-218, July
2005.

[31] S.K. Dhall and C.L. Liu, “On a Real-Time Scheduling Problem,”
Operations Research, vol. 26, no. 1, pp. 127-140, 1978.

[32] O.U.P. Zapata and P.M. Alvarez, “EDF and RM Multiprocessor
Scheduling Algorithms: Survey and Performance Evaluation,”
http://delta.cs.cinvestav.mx/~pmejia/multitechreport.pdf, Oct.
2005.

[33] H. Cho, H. Wu, B. Ravindran, and E.D. Jensen, “On Multi-
processor Utility Accrual Real-Time Scheduling with Statistical
Timing Assurances,” Proc. IFIP Int’l Conf. Embedded and Ubiquitous
Computing (IFIP EUC ’06), pp. 274-286, Aug. 2006.

[34] J. Goossens, S. Funk, and S. Baruah, “Priority-Driven Scheduling
of Periodic Tasks Systems on Multiprocessors,” Real-Time Systems,
vol. 25, nos. 2-3, pp. 187-205, 2003.

Hyeonjoong Cho received the BS degree in
electronic engineering from Kyungpook National
University in 1996, the MS degree in electronic
and electrical engineering from the Pohang
University of Science and Technology in 1998,
and the PhD degree in computer engineering
from Virginia Polytechnic Institute and State
University in 2006. He is an assistant professor
in the Department of Computer and Information
Science at Korea University (KU). His research

focuses on real-time software on various platforms including single/
multiprocessors, sensor networks, real-time operating systems, em-
bedded systems, and industrial field bus. Before he joined KU in 2009, he
worked as a senior researcher at the Electronics and Telecommunica-
tions Research Institute, South Korea. He is a member of the IEEE.

Binoy Ravindran is an associate professor in
the Electrical and Computer Engineering Depart-
ment at Virginia Polytechnic Institute and State
University. The central theme of his research is
adaptive, real-time embedded software, i.e., real-
time embedded software that can dynamically
adapt to uncertainties in their operating environ-
ments, and satisfy time constraints acceptably
well with acceptable predictability. This theme is
reflected in different aspects of real-time em-

bedded systems research that he conducts, which include real-time
scheduling and resource management (single processors, multiproces-
sors, distributed systems), real-time operating systems, real-time
networking, and real-time middleware. He and his PhD students have
recently developed several new results in this area, some of which have
also been transitioned to US Department of Defense (DoD) programs. He
currently serves as an IEEE distinguished visitor, ACM distinguished
speaker, and as an associate editor of ACM Transactions on Embedded
Computing Systems. He is a senior member of the IEEE and the IEEE
Computer Society.

Chewoo Na received the BS and MS degrees in
computer science and engineering from Inha
University, South Korea, in 1996 and 1998,
respectively. He has been working toward the
PhD degree in the Electrical and Computer
Engineering Department at Virginia Tech since
2005. In 1998, he joined Interlink Systems Co.,
South Korea, and was a research engineer. In
2000, he was a senior researcher for Teleware
Network Systems Co., South Korea. In 2002, he

joined LG Industrial Systems Co., South Korea, as a senior research
engineer. His current research interests include wireless sensor networks
and wireless network optimization and resource allocation. He is a
student member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

