Utility Accrual Real-Time Scheduling Under

Variable Cost Functions

Abstract

We present a utility accrual real-time scheduling algorithm called CIC-VCUA, for tasks whose execution times
are functions of their starting times (and potentially other factors). We model such variable execution times using
variable cost functiongor VCFs). The algorithm considers application activities that are subject to time/utility
function time constraints, execution times described using VCFs, and mutual exclusion constraints on concurrent
sharing of non-CPU resources. We consider the two-fold scheduling objective of (1) assure that the maximum
interval between any two consecutive, successful completions of job instam@es activity must not exceed
the activity period (an application-specific objective), and (2) maximizing the system’s total accrued utility, while
satisfying mutual exclusion resource constraints. Since the scheduling problem is intractable, CIC-VCUA is a
polynomial-time heuristic algorithm. The algorithm statically computes worst-case task sojourn times, dynamically
selects tasks for execution based on their potential utility density, and completes tasks at specific times. We establish
that CIC-VCUA achieves optimal timeliness during under-loads, and tightly upper bounds inter- and intra-task

completion times. Our simulation experiments confirm the algorithm’s effectiveness and superiority.
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I. INTRODUCTION

Embedded real-time systems that are emerging in many domains such as robotic systems in the sy
domain (e.g., NASA/JPL's Mars Rover [1]) and control systems in the defense domain (e.g., airborr
trackers [2]) are fundamentally distinguished by the fact that they operate in environments with dynamical
uncertain properties. These uncertainties include transient and sustained resource overloads due to cor
dependent activity execution times and arbitrary activity arrival patterns. Nevertheless, such systems
for the strongest possible assurances on activity timeliness behavior. Another important distinguishi
feature of these systems is their relatively long execution time magnitudes compared to traditional re.

time systems—e.g., in the order of milliseconds to seconds, or seconds to minutes.



When resource overloads occur, meeting time constraints (for example, deadlines) of all applicati
activities is impossible as the demand exceeds the supply. The urgency of an activity is typically orthogor
to the relative importance of the activity—e.g., the most urgent activity can be the least important; tt
most urgent can be the most important, and vice versa. Hence when overloads occur, completing the n
important activities irrespective of activity urgency is often desirable. Thus, a clear distinction has to k
made between the urgency and the importance of activities, during overloads. During under-loads, st
a distinction need not be made, because deadline-based scheduling algorithms such as EDF are opt
for those situations [3]—i.e., they can satisfy all deadlines.

Deadlines by themselves cannot express both urgency and importance. Thus, we employ the abstrac
of time/utility functions (or TUFs) [4] that express the utility of completing an application activity as a
function of that activity’s completion time. We specify a deadline as a binary-valued, downward “step
shaped TUF; Figurd(a) shows examples; a classical deadline has unit utility valued. Note that
a TUF decouples importance and urgency—i.e., urgency is measured as a deadline on the X-axis, .

importance is denoted by utility on the Y-axis.
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Fig. 1: Example TUF Time Constraints

Many real-time systems also have activities that are subjenbtedeadlinetime constraints, such as
those where the utility attained for activity completiearies(e.g., decreases, increases) with completion
time. This is in contrast to general deadlines, where a positive utility is attained for completing th:
activity anytime before the deadline, after which zero, or negative utility is attained. Fid(io§4 (c)
show examples of such time constraints from two actual experimental applications in the defense dome
(1) an Airborne Warning And Control System (AWACS) built by The MITRE Corporation and The Open
Group (TOG) [2] and (2) a battle management (BM)/command and control (C2) application built by
General Dynamics (GD) and Carnegie Mellon University (CMU) [5]. Details of these applications can b
found in [2] and [5], respectively; for brevity, they are omitted here.

When activity time constraints are specified using TUFs, which subsume deadlines, the scheduli



criterion is based on accrued utility, such as maximizing sum of the activities’ attained utilities. W
call such criteriautility accrual (or UA) criteria, and call scheduling algorithms that optimize them UA
scheduling algorithms.

UA algorithms that maximize summed utility under downward step TUFs (or deadlines) [6]—[8] defaul
to EDF during under-loads, since EDF can satisfy all deadlines during those situations. Consequently, tt
obtain the maximum possible accrued utility during under-loads. When overloads occur, UA algorithrr
favor activities that are more important (since more utility can be attained from them), irrespective of the
urgency. Thus, UA algorithms’ timeliness behavior subsumes the optimal timeliness behavior of deadli
scheduling.

In this paper, we focus omariable costscheduling. In the context of this paper, “cost” means the
duration of an activity, a term that comes from one of the interesting and important applications for suc
scheduling. The model presented requires scheduling activities consisting of sequences of jobs wh
durations (e.g., execution times) vary depending on when they begin, or on how long the parent activ
has been running, or on other factors. For the algorithms presented, the varying cost is specified by a «
function, which specifies the job’s duration as a function of its start time. Thus, even if there were n
new activity arrivals, the load to be scheduled changes while the activities are being performed.

Previous efforts on deadline-based and UA scheduling do not consider variable cost scheduling. F
example, previous UA scheduling algorithms [6]-[8] do not allow task execution times to vary while
tasks are being performed. Timaprecise computatiof®] and IRIS (Increasing Reward with Increasing
Service)[10] models include optional parts in addition to the mandatory parts of task execution times
However, these models are different from UA and variable cost scheduling, because in these models,
longer the optional part executes, the higher the reward becomes. On the other hand, in UA scheduling,
utility (reward) can only be accrued by an activity when it is completed, and the utility value is decide
by the completion time. Further, there are no optional parts in variable cost scheduling—task executi
times only contain the mandatory parts and they may vary while the tasks are being performed.

The task model of the TAFT scheduler [11] allows variable task execution times. In TAFT, a task i
allowed to have a main part and an exception part (which is executed when the main part misses its ti
constraint). The execution time of the main part is described as an “expected-case execution time” (i
execution time of the exception part is described as a worst-case execution time). The authors describe

expected-case execution time of a task as a “measure for the time that a certain percentage of instance



the task needs for a successful completion.” This model is fundamentally different from our cost functic
model, where the task execution time depends upon when the task starts its execution (or other factc
The execution time represented on our cost function is a deterministic estimate, which is a function
time. In contrast, TAFT’s expected-case execution timene-independent

Thus, no previous efforts have studied the problem space that intersects UA scheduling and variable ¢
scheduling. In this paper, we precisely focus on this unexplored problem space. We consider repeate
occurring application activities whose time constraints are specified using TUFs. The execution times
activities are described by cost functions, which may vary as the activities are being performed. Activitie
may concurrently, but mutually exclusively, share non-CPU resources. For such a model, we consic
a two-fold scheduling criterion: (1) assure that the maximum interval between any two consecutiv
successful completions of job instandesan activity must not exceed the activity period (an application-
specific criterion); and (2) maximize the system’s summed utility.

This problem isNP-hard. We present a polynomial-time heuristic algorithm for the problem, called
Completion_hterval Gonstrained Variable Cost Wility Accrual Algorithm (or CIC-VCUA). We prove
several timeliness properties of the algorithm including optimal timeliness during under-loads, and tig|
upper bounds on completion times between tasks (i.e., activities), and between jobs of one task. Furtl
we establish that the algorithm is deadlock-free and safe. Finally, our experimental simulation studi
confirm CIC-VCUA's effectiveness and superiority.

Thus, the paper’s contribution is the CIC-VCUA algorithm. To the best of our knowledge, we are no
aware of any other efforts that solve the problem solved by CIC-VCUA.

The rest of the paper is organized as follows: In Secligrwe describe a motivating application
for variable cost scheduling; in Sectidh, we outline our activity and timeliness models, and state the
scheduling criterion. We present CIC-VCUA in Sectitn and establish the algorithm’s properties in
SectionV. The experimental measurements are reported in Se®tiofinally, we conclude the paper

and identify future work in SectioiWIl.

[I. MOTIVATING APPLICATION

One application context of interest to us for variable cost scheduling is an air-to-air radar trackin
problem for which no scheduling algorithms and performance assurances have been publicly availak
To motivate the work in this paper, we simplify and omit some characteristics of the tracking problen

to expedite the creation of an initial plausible scheduling approach that can be generalized in subsequ



work. This problem is representative of a large class of related variable-cost scheduling problems whi
arise in sensor systems with both sensor collection and data processing times which are strongly depen:
on the physical geometry of the sensor and target observation area.

This type of tracking problem employs an Active, Electronically Steerable Array (AESA) radar to
provide an end-to-end tracking service supporting the evolution of a track through the phases descril
below. Examples of such systems include the radar systems installed in certain United States and Eurof
tactical aircraft and Naval surface craft [12]. An AESA radar uses an array of antennas to form a sing
virtual “beam,” by varying the power, transmission frequencies, and sampling rates across the individc
antenna elements. Consequently, the time required to deliver or measure a given amount of power i
particular direction (the pulse width) is a function of the relative geometry of the antenna, the desire
beam shape and signal to noise ratio, and the relative geometry of the antenna and target.

Generally, a single task executed by such a radar consists of a coherent ensemble of “dwells”, whi
are pulses of energy. Each such task is strongly a function of geometry and desired quality of the rett
signal to be collected. For instance, the number of individual dwells transmitted in an air tracking tas
dictates the amount of ambiguity in the resulting range and range-rate measurements. This ambiguity
also a function of the actual range and range-rate of the target, and thus the time required to achiev
consistently accurate collection varies as the relative geometry of the radar and the target varies.

Some common civilian applications of AESA radars such as the collection of synthetic aperture rad
(SAR) imagery [13] for agricultural and forestry use and scientific research exploit a train of these task
scheduled coherently, over macroscopic timescalés-{0? seconds). The total end-to-end time required
for such an extended task is again a function of the system geometry, and thus varies in sojourn &
execution time.

The problem notionally consists of three component tasiy searching a segment of the airspace to
find any airborne moving object&réck initiation); (2) maintaining a track for each of those objects until
some deadline time; and (3) identifying the object using characteristics of the return pulses. An examj
of identification is thddentification Friend or Foe (IFFpystem, but many more complicated mechanisms
exist.

Those three tasks for a given object nominally occur in that order, but identification can occur almo
any time while tracking. For each of the three tasks, the radar must make one or more measurements

"Hereafter, we use the terntask and activity interchangeably.



illuminating the object with dwells, then await any return echoes. For convenience, we denote the ent
sequence of transmit-wait-receive adwell. Tasks for any object may be interleaved with any other task
by interleaving dwells.

For the tracking tasks, the dwells occur at a revisit rate that is defined by the interval between tw
successive dwells—regular, but not necessarily periodic. The revisit rate for any particular object mu
be maintained for a long enough time to obtain acceptable values for cepiaiinaion-level gality of
service (AQOS) metrics.

One such critical AQoS metric is track quality [14], which is a measure of the error in our estimate
of the given object’s location and motion. Achieving any particular track quality value imposes a lowe
bound on the revisit rate of the object being tracked, since the estimate error increases quickly in tir
after each measurement. Optimal and minimum revisit rates are defined by the probability of detecting t
object with the next dwell—failure to meet a minimum revisit rate implies increased chance of missin
the object on the next dwell [15].

In this application, we associate with each task a cost function which specifies the required durati
for a dwell as a function of execution time. This activity cost varies with many factors, including the
type of dwell and the geometry of the sensor and target object. For instance, the number and duratior
dwells required to search a segment of airspace depends on the relative positions of the radar platfo
the scanned airspace, and the objects in that space. Depending on the relative motion of the radar platf
and the object, it may be better either to procrastinate dwells (intentionally insert idle time in the rad:
schedule) or perform dwells early.

The cost function for each task varies with each object’s range and look angle (azimuth off the senso
nominal boresight)—i.e., having the forfi{r, §). The cost function is derived from the particular tracking
problem and an equation known as the radar equation [16]. The radar equation relates the measured en
received to the geometry of the object, the sensor, and the emitted energy.

Two examples of cost functions are shown in FigRr&igure2(a) shows the cost function—the amount
of time required on the radar front-end to collect sufficient quantity and quality data—for a target objec
flying at a higher altitude and faster velocity than the radar platform; Fig(mshows the cost function
for a target object circling the radar platform at a constant range. In these cases, the cost achieve
minimum when the target object is along the sensor’s boresight. Additionally, the cost increases as

polynomial function of the range (absolute distance) to the object. The specific cost functions can |
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Fig. 2: Example Cost Functions

derived in part from the physical properties of the transceiver and antennae.

Note that radar dwell scheduling has been extensively studied by real-time researchers in the pas
e.g., [17]-[21]. However, our work fundamentally differs from these works in the variable execution time
model of the dwell jobs. These referenced works on dwell scheduling assume that the execution time
a radar dwell job is @onstantandtime-independenenforcing this by forcing all dwells to take a fixed
time. In contrast, our work (based on the applications of interest to us) assumes that the execution ti
of the dwell job depends on the time at which the job starts its execution, and the distance between 1

radar and the target (besides other factors), and consequwanids with time (see Sectiofll-D).

[11. M ODELS AND OBJECTIVE

A. System and Task Model

We consider a preemptive system which consists of a set of periodic (dwell) tasks, dendfed as
{11, T,,---,T,}. Each taskl; contains a collection of instances. The period of a tAsks denoted as
P;. Each task has a begin time and an end time between which execution of all jobs of the task must
completed.

An instance of a task is called jab, and we refer to thg'" job of task T;, which is also the;j™*
invocation of7;, asJ; ;. The basic scheduling entity that we consider is the job abstraction. Thus, we us
J to denote a job without being task specific, as seen by the scheduler at any scheduling/,ecant;

be used to represent a job in the scheduling queue.



B. Resource Model

Jobs can access non-CPU resources, which in general, are serially reusable. Examples include phy:
resources such as disks and logical resources such as locks. Similar to resource access models for fi
priority scheduling [22] and that for UA scheduling [7], [23], we consider a single-unit resource model
Thus, only a single instance is present for each resource in the system and a job must explicitly spec
the resource that it needs.

Resources can be shared and can be subject to mutual exclusion constraints. A job may request muli
shared resources during its lifetime. The requested time intervals for holding resources may be nest
overlapped, or disjoint. We assume that a job explicitly releases all granted resources before the enc
its execution.

Jobs of different tasks can have precedence constraints. For example,/a ¢aim become eligible
for execution only after a joly; has completed, becausg may requireJ;’s results. As in [7], [23], we

program such precedences as resource dependencies.

C. Timeliness Model

A job’s time constraint is specified using a TUF. Jobs of a task have the same TUF. W& (usé0
denote taskl;'s TUF, and usdJ; ; (-) to denote the TUF of;’s jth job. Without being task specific/,.U
means the TUF of a job; thus completion of/, at a timet will yield an utility J,.U ().

TUFs can be classified into unimodal and multimodal functions. Unimodal TUFs are those for whicl
any decrease in utility cannot be followed by an increase. Examples are shown in /EiJWé&s which
are not unimodal are multimodal. In this paper, we focusnom-increasingunimodal TUFs, as they
encompass the majority of the time constraints in our motivating applications. Figaesnd1(b), and
two TUFs in Figurel(c) show examples.

Each TUFU, ;,i € {1,--- ,n} has an initial time/, ; and a termination time, ;. Initial and termination
times are the earliest and the latest times for which the TUF is defined, respectively. We assuime that
is equal to the arrival time of; ;. Further, the period®;, and the relative termination tim&; of the task
T;, are both equal to\, ; — I, ;.
If a job’s termination time is reached and its execution has not been completed, an exception is rais

and the job is immediately aborted. Our abortion model follows that of [7], [23], and is based on th

observation that if time constraints are not satisfied, it is desirable to place the affected portions



the system and the physical process being controlled into acceptable operating states. Aborting activi
provides an opportunity to perform the necessary transformations. Although our algorithm does not requ
that all activities be aborted (when their time constraints are not met), it is advantageous to exploit tl

fact that some can be.

D. Task Execution Time Model

As motivated in Sectioill, after a job is released, its execution time may vary with time. Thus, we
define avariable st function(or VCF) for each job, which describes the job execution time as a function
of its starting time. Jobs of a task have the same VCFs, so a VCF is also defined for a task. &/ use
to denote task;'s VCF, and use; ; (-) to denoteT;’s jth job’s VCF.

For a job J; ;, the x-axis of its VCF is the absolute time relative to the job’s arrival time; ykexis
represents its execution tindg ;(¢), and the origin shows the execution timepf when it is just released.

Cost functions of AESA applications can be increasing, decreasing, or strictly convex shaped. In th
paper, we only considasnimodal VCFs. Figure3 shows examples of VCFs. For jobs whose execution
times do not vary with time after their arrivals, we define a constant VCF. Fg{#&eshows a constant
VCF. Figure3(b) and Figure3(c) show an increasing VCF and a decreasing VCF, respectively. From
Figures3(b) and3(c), we can observe that the joh ;'s VCF starts from a non-zero valug,. We also
assume that’; ;(¢) is bounded by another non-zero valtg, which implies that aftet,, , C;;(t >

tona) = Ch.

Time tond Time tbnd Time

(@) Constant VCF (b) Increasing VCF (c) Decreasing VCF

Fig. 3: Example Variable Cost Functions for a Jdh;

Without being task specific/,.VCF or J,.C means the VCF of a joly;; the execution time of/
at a timet,,, will be J;.C(t.y,) = Jp.VCF (t..,). Hereafter, in the discussion of TUFs and VCFs, we

interchangeably use the terrtask andjob if no confusion is raised.
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E. Scheduling Objective

A successful completion of a job means that the job has met its termination time. With this definitior
we consider a two-fold scheduling criterion: (1) assure that the maximum interval between any tw
consecutive, successful completions of jahsa taskmust not exceed the task period; and (2) maximize
the system’s summed utility. Furthermore, mutual exclusion constraints on all shared resources must
respected.

Note that with VCFs, it is difficult to statically calculate the system load, since it dynamically varies with
time. For example, a constant load at a task arrival—one that is an under-load—can gradually increa
and can eventually become an overload even without new task arrivals, due to increasing VCFs. Thus
the dynamic system load is so high such that scheduling objective (1) cannot be satisfied for each ta
some tasks may be dropped and consequently aborted. In such cases, tasks that are not dropped art

subject to the two scheduling objectives and mutual exclusion constraints on all shared resources.

IV. THE CIC-VCUA ALGORITHM

This section describes the CIC-VCUA algorithm. In SectidhA, we first discuss the scheduling
metric used by CIC-VCUA, thdotential Uility Density (or PUD). CIC-VCUA consists of two steps:
static calculation (SectiofVv-B! to IV-C), and the dynamic step (Sectidv-D! to 1V-G).

In the static steps of CIC-VCUA, we first find the maximum possible execution time for each task base
on its VCF. Then we label each task as eitbelectedor skipped based on their PUDs and contribution
to the system load. For theelectedtasks, the algorithm determines the worst case sojourn time of each
task, and attempts to complete all jobs of the task at the same time relative to their arrivals.

After the static step, at each scheduling event, CIC-VCUA builds the dependency chain for each job
the ready queue, and calculates its PUD. The algorithm then sorts them based on their PUDs, in a n
increasing order. Next, the algorithm inserts the jobs into a tentative schedule in the order of their critic
times (earliest critical time first), while respecting their resource dependencies and timeliness feasibiliti¢
Finally, CIC-VCUA determines the job to execute, as well as the amount of time for which it will be
executed, so as to make sure all jobs of a task have identical sojourn times.

Finally in SectionlV-H,, we analyze the asymptotic time complexity of the algorithm.
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A. Algorithm Rationale

The potential utility that can be accrued by executing a job defines a measure of its “return o
investment.” Because of the unpredictability of future events (e.g., during overloads), scheduling ever
that may happen later such as job completions and new job arrivals cannot be considered at the time w
the scheduler is invoked. Thus, a reasonable heuristic is to favor “high return” jobs over “low return” job
in the schedule. This will increase the likelihood of maximizing the summed utility.

The metric used by CIC-VCUA to determine the return on investment for a job is called the PUD
which was originally developed in [7]. The PUD of a job measures the amount of utility that can be
accrued per unit time by executing the job itself and other job(s) that it depends upon (due to mutu
exclusion constraints on resources held by the other jobs).

To compute jobJ,’s PUD at current time,.,,., CIC-VCUA considers/,'s expected completion time,
which is denoted agy,. F'inT, and the expected utility by executing and its dependent jobs. For each job
Jy thatis inJ,'s dependency chain and needs to be completed before exedutifis expected completion

time is denoted ag;. F'inT. PUD of .J is then computed as: .

+ JZEJ]ICS dependency chain
Ji. FinT—tcur

B. Static Job Selection

We assume that if a job cannot complete before its termination time even though it is schedule
immediately, it is infeasible and can be safely aborted. The process of testing the feasibility of a job wi
be described in SecticlV-D.

To test for feasibility, we have to find the maximum possible task execution times. Depending on th
VCF shapes, the maximud; ; for each task can be calculated. For jobs with increasing VCFs, by solving
the inequalityC; ;(t) +t < X, ;, we can derive the latest possible starting titf)Jeof job J; ;, such that
Ci(th,) + 12, = X;;. Ci;(th;) corresponds to the maximum possible execution timé;of and C;(t?)
describes this parameter at the task level. For jobs with non-increasing VCFs, .A jslmaximum
execution time isC; ;(t?).

Therefore, although a job’s execution time changes with its starting time, it is possible for us to deriv
a system load bountbad,, which will never be exceeded by the system’s dynamic load. For increasing

VCFs, we deriveload, = ), C'L'}(f?); for non-increasing VCFs, we definead, = ., %to) If a

constant VCF is defined for each task, then a task’s execution time is constalaudntiere is the same

as the system utilization definition in [24].
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Since the system dynamic load may gradually increase even without new task arrivals, the task instan
to be executed must be carefully selected in order to accrue more utility. Such selection process
guided by the PUD metric. Toward this, we use a job selection flag, which labels each giipped
or selected The selection process considers the parameters of the task set such as VCFs and TUFs.
associate with each jol; ; a label SE'L; ;, where SEL; ; = skipped indicates that the job is skipped
andSEL; ; = selected indicates that it is selected for execution. At run-time, only jobs whose labels are
set toselectedare dispatched. Thus, the problem becomes choosing the job labels toward optimizing o
scheduling objective.

We label jobs in a static and dynamic fashion, based on the workload information used by the schedul
In the off-line (static) part of CIC-VCUA, we select task instances before the application starts. Initially
all tasks inT are labeled askipped i.e., SEL, ; = skipped, Vi € 1,--+ ,n,Vj. At tn, = t9, assuming

that tasks are independent of each other, we calculate the PUD of each task, which in value is a

U; 1 (Ci,l(t?))
Cll(tzo)

execution time of each task’((¢?) for increasing VCFs and’;(t?) for non-increasing VCFs), and then

the PUD of each task’s first job, i.eBUD, = . We also calculate the maximum possible

choose the sub task s&t. T’ consists ofn’ tasks with the largest PUDs, such that for increasing VCFs,

load), = Z;‘;l, Cigf) < 1; and for non-increasing VCFé&ad, = ZL, C}(,f?) < 1, andn’ is the maximum
possible number of tasks to be selected. Note théddifl, < 1, thenn’ = n. Thus, we favor tasks with

larger PUDs, and label the tasks inT’ asselected.e., SEL, ; = selected, Vi € 1',--- ,n/,Vj.

C. Worst-Case Task Sojourn Times

CIC-VCUAs first objective is to assure that the maximum interval between any two consecutive
successful completions of jobs of a téEkdoes not exceed its peridd. In order to satisfy this scheduling
objective, the algorithm determines the worst case sojourn time of each task, and attempts to compl
all jobs of a task at the same time relative to their arrivals. Doing so ensures that all;job$ a task
T; have identical sojourn times, satisfying the algorithm’s first objective.

As we know X; = P;, for tasks with step TUFs, the notion of termination time is the same as that of
deadline. Thus, th&arliest Deadline First(or EDF) algorithm is also denoted &arliest Termination
First (abbreviated as EXF) in this paper. In the process of sojourn time calculation, we only conside
selected tasks, i.e.T".

For the selected task s& with [oad; < 1, the on-line scheduling process of CIC-VCUA is essentially

EXF (we describe this in Sectid¥-D). Thus, we defind".wcST to denote the worst-case sojourn time
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of each taskl’, when the task s€f” is scheduled by EXF. For a job of task7’, we denote its worst-case
sojourn time as/.F'inT. This is also the latest possible time for jobsTofto complete without causing
any load increase or abortions of other jobs.

Figureld shows the time line of the job; ;, wheret) and J; ;. X indicate the release and termination

times of J; ;, respectively, and/; ;. FinT is less than/; ;. X.

"= b !

J, -FinT T

’j’

Fig. 4: A Job Example

For task sefl” with load; < 1.0, our algorithm defaults to EXF. Hence, in order to find sojourn times
under CIC-VCUA, we use the paradigm for finding sojourn times under EXF. Sojourn times under EXI
can be determined using the notionddadline busy periadA deadlined busy period is a busy period
during which only jobs with absolute deadlines that are smaller than or eqdadtecute [25], [26]. This
is needed because, it allows us to determine how long it takes for each task to complete in the prese
of other tasks.

First, it is necessary to calculate the synchronous busy period before calculating the individual deadli
busy periods of tasks. The synchronous busy period, dergtéegithe interval of time, during which the
processor is not idle. Further, if all the first job instances of tasks were to be released synchronously (
worst-case scenario), it would talketime units for all jobs to complete. Thus, the busy period bounds
the individual completion times or deadline busy periods of tasks. The busy period is given by [27]:

L°=0, L™ =W (L™), whereW (t) = Z [iw C;.

=1
The busy period is found when the iteration endd.4t= L™*!. After L is calculated, the individual
deadline busy periodd,; can be calculated. We need to determine which tasks will be executed befor
our target task. For a task which arrives at times, it is intuitive that beforel;'s absolute termination
time a + X;, only tasks with termination times shorter than or equakte X; can be executed. The

deadline busy period of a tagk with an arrival timea is given by [26]:

R =0 1@ =W+ (1+ |5 |) o o)
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where:

Wi(a,t)= > min ([Xiw 1+ {#J) C,

§#4,T;. X <a+X; J J
In calculating the deadline busy peridd in Equationl, the first termWW;(a,t) calculates the higher
priority workloads arriving in time windowa, t| that have to be satisfied before executing téskand
the second term accounts foy's instances that have to be executed. The iterative computation will stop

when L' (a) = L7 (a). Algorithm 1 shows the calculation of the maximum deadline busy period.

input: 7; output: (L1, La,...Ly) ;
Initialization : L,41 := L;
for + = n down to 1do
let k be such that er < Liv1 —Ci + Xi < egya;
a:=er — X;;
while L;(a) < a do
let k be such that exr < Li(a) — Ci + Xi < epy1;
L a:=er — X,

© NPT RARODNER

L; = Li(a);

Algorithm 1: maxDeadBusyP()

Algorithm 1 uses the task list, which is ordered by non-decreasing termination times. The algorithm
examines the list, starting from the task with the maximim which has the lengtli.. Tasks that have
absolute termination times shorter than thafpare inserted into proper termination time positions. Such
positions are defined by = |J!_,(mX; + X; : m > 0) = (el,e2...). After L; is calculated, the bound
for this task becomes;; it also becomes a bound for the next task-irThe algorithm then moves down
the list and calculates the maximum for the next task, until all tasks are considered.

After determiningL;, the worst case sojourn time of a tagkbecomesl;.weST = max(T;. weST (a))
for a > 0, whereT;.wcST(a) = max(C;, L;(a) — a). CIC-VCUA ensures that each job completes at its
worst-case sojourn time after it is released, so that jobs can meet the bound constraint on consecu
completions.

For a taskT;, the finish time of the first job of the task i ;.FinT = T;,.wcST. We can determine
the finish times of the subsequent jobs of a taskigsFinT = J; ;_1.FinT + P,.

During schedule construction, CIC-VCUA “pushes back” the completion times of jobs further towarc
their termination times, as system load changes with variable execution times. In order to satisfy the bou
constraint across the range lt:d, < 1.0, the algorithm uses the worst-case sojourn times as predicted

finish times. Forload, > 1.0, CIC-VCUA pushes job finish times such that they occur slightly before the
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job termination times. Pushing finish times closer to termination times for higher loads is necessary f
two reasons: First, the worst case sojourn time calculation becomes more unpredictable for different V(
shapes (since the calculation ugg$t?)). Second, task sojourn times are already close to their termination

times because of the load.

D. Dynamic UA Scheduling

After the initial static steps, CIC-VCUA selects the largest sub task set consisting of the highest PU
tasks, whose dynamic load will not cause a system overload. The algorithm then adopts the preempit
earliest termination time first (or EXF) scheduling policy which is optimal from the feasibility point of
view [24].

At each arrival of a jobJ; ;, its finish timeJ; ;. FinT' is calculated from the task sojourn tirfiewcST,
the periodP;, and its predecessor’s finish time. After we hake.FinT = J; ;_,.FinT + P;, the job is
executed until only a very small amount of execution time of the job, denates left to be executed. At
this time, if the absolute time is far fromi ;. FinT’, then job.J; ; is preempted. Later, it will be selected
again atJ.FinT to be completed.

A is a small quantity of time selected.C' > A) so that the interference caused by the executioA of
time units (to finish the job) to other jobs is negligible.is used to delay the completion of jobs, so that
at their finish timesJ.FinT, they only need to rur\ units of time to finish. If two or more jobs have
identical finish times, ther\ is also used to break the tie. When a jéls remaining execution time is
only A, and it is preempted and will be resumed/at’inT, we say that the joly is ready to complete

Since tasks are preemptive, CIC-VCUA's scheduling events include: (1) a job’s arrival; (2) the expiratio
of a time constraint such as the arrival of a TUF’s termination time, when the CPU is idle; (3) a job’*
completion; (4) a resource request; and (5) a resource release.

To describe the algorithm, we define the following variables and auxiliary functions:

o J.={Ji,Jo, -+, Jn} is the current unscheduled job setjs the ordered output schedulé, € 7, is
a job. J,.X is its termination time;J,.. FinT is its finish time, and/,.SEL is the job selection flag.
e selectJob( o) returns a job to execute with the amount of time it will execute.
e headOf( o) returns the first job inv.
e sortByPUD( o) returnso ordered by non-increasing PUD. If two or more jobs have the same PUD,

then the job(s) with the largest execution time will appear before any others with the same PUDs.
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e owner( R) denotes the set of jobs that are currently holding resoliceeqgRes( J) returns the
resource requested by joh

e insert( J, o, I) inserts jobJ in the ordered list at the position indicated by indek if there are
already entries ir at the index/, J is inserted before them. After insertion, the indexJoin o is I.

e remove( J, o, I) removes jobJ from ordered listo at the position indicated by indek if J is not
present at the positioh in o, the function takes no action.

e lookup( J, o) returns the index value associated with the first occurrence of jobthe ordered list
o.

e feasible( o) returns a boolean value indicating schedule feasibility. Foro to be feasible, the

predicted completion time of each job inmust never exceed its termination time.

input T =A{T\,--- T}, Tr ={J1, - ,Im}
output : selected jobJcze
Initialization: ¢ := teyr, o 1= 0;
for VJ, € J do
if feasible(  Ji) =false then
| abort( Jk);
else
L Ji.Dep := buildDep(  Jx) ;

©oOoNaR®ONR

Jix.PUD := calculatePUD  (J&);

10: o¢mp :=SOrBYyPUD( J.);
11: for VJi € owunp from head to taildo

12: if Jo.PUD >0 and J,.SEL = selected then
13: | o :=insertByEXF( o, Ji);
14 | else break

15: Jege:=Selectdob( o);
16: return Jege

Algorithm 2: CIC-VCUA: Dynamic Part Description

A high-level description of CIC-VCUA is shown in Algorithi®. At the beginning of each scheduling
event, when CIC-VCUA is invoked at time,,,., the algorithm first checks the feasibility of all the jobs
in the current ready queue. If a job is infeasible, then it can be safely abortedg)lir@@herwise, the
algorithm constructs the job’s dependency list (IB)e and then calculates its PUD (lir8).

At line 10, jobs are sorted by their PUDs, in a non-increasing order. In each step dbrthdoop
from line [11 to line 14, the job with the largest PUD and its dependencies are insertedoirtiy
insertByEXF() . Thus,o becomes a feasible schedule that is ordered by job termination times, ir
a non-decreasing order. Then, thelectJob () function finds a job ino and returns it for execution.

For each jobJ, CIC-VCUA will compareA with J.FinT — t.,. when the job has onlyA remaining
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execution time units. 1A < J.FinT — t.,., then jobJ is preempted, and another job may be selected
for execution. Later, whed.FinT —t.,,. = A, job J will preempt the current running task, so that it can
finish at J. FlinT.

Such monitoring, preemption, and resumption are realized by the procedleetJob() . This
procedure selects a job with the earliest finish time fronif this job is notready to completethen it
ensures that the job executég’ — A time units. OtherwiseselectJob() runs that job to completion.

After finishing such jobs, the algorithm seeks another job to execute.

E. Resource and Deadlock Handling

Before CIC-VCUA can compute job partial schedules, the dependency chain of each job must I

determined. This is described in Algorith&

input: Job Ji; output: Jy.Dep ;
Initialization : Jx.Dep := J;\;/Prev = Jg;
while reqRes( Prev) #( owner(reqRes( Prev)) # @ do
Ji.Dep :=owner( reqRes( Prev)) -Jx.Dep;
L Prev := owner( reqRes( Prev));

Algorithm 3 buildDep()

Algorithm 3 follows the chain of resource request and ownership. For convenience, the inpltipb
also included in its own dependency list. Each jplother than/, in the dependency list has a successor
job that needs a resource which is currently held/byAlgorithm 3 stops either because a predecessor job
does not need any resource or the requested resource is free. Noté theidtes an append operation.
Thus, the dependency list starts wifly's farthest predecessor and ends with

To handle deadlocks, we consider a deadlock detection and resolution strategy, instead of a deadl
prevention or avoidance strategy. Our rationale for this is that deadlock prevention or avoidance strateg
normally pose extra requirements—for example, resources must always be requested in ascending o
of their identifiers.

Further, restricted resource access operations that can prevent or avoid deadlocks, as done in
priority-based resource access protocols, are not appropriate for the class of application systems
we focus here. For example, the Priority Ceiling protocol [22] assumes that the highest priority of job
accessing a resource is known. Likewise, the Stack Resource policy [28] assumes preemptive “leve

of threadsa priori. Such assumptions are too restrictive for our application systems—the resources th
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will be needed, the length of time for which they will be needed, and the order of accessing them are
statically unknown.

Recall that we are assuming a single-unit resource request model. For such a model, the presence
cycle in the resource graph is the necessaryg sufficient condition for a deadlock to occur. Thus, the

complexity of detecting a deadlock can be mitigated by a straightforward cycle-detection algorithm.

input: Requesting jobJx, tcur;
/ » deadlock detection */;
Deadlock := false;
J; = owner( reqRes( Jx));
while J; # 0 do
JiLoPUD := 2LUG00d),
if J, = J then
Deadlock := true;
break;
else
| Ji:= owner( reqRes( Ji));

eN ORrWONE

=
2o

/ * deadlock resolution if any *[;
. if Deadlock = true then
14: L abort( The jobJ,, with the minimalLoPU D in the cycl¢;

e
w N

Algorithm 4: Deadlock Detection and Resolution

The deadlock detection and resolution algorithm (Algorit)ris invoked by the scheduler whenever
a job requests a resource. Initially, there is no deadlock in the system. By induction, it can be shown tt
a deadlock can occur if and only if the edge that arises in the resource graph due to the new resou
request lies on a cycle. Thus, it is sufficient to check if the new edge resulting from the job’s resourc
request produces a cycle in the resource graph.

To resolve the deadlock, some job needs to be aborted. If & jolere to be aborted, then its timeliness
utility is lost. To minimize such loss, we compute the Local PUD (or LoPUD) of each joh,atA job’s
LoPUD is defined as the utility that the job can potentially accrue by itself at the current time, if it were
to continue its execution. The algorithm aborts the job with the minimal LoPUD in the cycle to resolve :
deadlock. Before aborting the job, the resources held by the job is released and returned to a consis

State.

F. Manipulating Partial Schedules

The calculatePUD() algorithm (Algorithm5) accepts a jok/;, and its dependency list, and deter-
mines.J,’'s PUD. It assumes that jobs ifi.. Dep finish at their predicted finish timeg FinT from the

current position in the schedule, while following the dependencies.
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input: Jg; output: Ji.PUD;
Initialization: ¢. := 0, U :=0;
for VJ; € Jx.Dep, from head to taildo
te :=1tc + JlC(tCUT‘)y
L U:=U+ J.U(Ji.FinT);

Ji.PUD ::g;
return Ji.PUD;

Algorithm 5: calculatePUD()

To computeJ,’s PUD, CIC-VCUA considers each jolg; that is in J,'s dependency chaid.Dep,
which needs to be completed before executihg since they hold resources thdt needs. (Note that
buildDep()  includesJ,’s dependents and, in J;.Dep.) First, the algorithm calculates the total utility
U that can be accrued by executinfy and its dependents and completing them at their respective
finish timesJ.FinT. The total execution times of, and its dependents is aggregated in the variable
t.. calculatePUD () determines/,’s PUD asU/t. (line 6).

The details ofnsertByEXF() in line/13 of Algorithm2 are shown in Algorithn®. insertByEXF()
updates the tentative scheduteby attempting to insert each job along with all of its dependents.in
The updatedr is an ordered list of jobs, where each job is placed according to the termination time that |
should meet. Note that the time constraint that a job should meet is not necessarily the job’s terminati

time. In fact, the index value of each job inis the actual time constraint that the job must meet.

input . Jr and an ordered job list;
output : the updated list;
if J. ¢ o then

COpY 0 INtO Otent: Ttent =0;

insert(  Jk, otent, J&.X) ;

CuXT = Ji.X;

for VJ; € {Jx.Dep — J} from tail to headdo
if Ji € Otent then

9: L XT=lookup( Ji, otent) ;

N R®ONR

if XT < CuXT then continug
elseremove( Ji, otent, XT);

12: CuXT:=min( CuXT,J;.X);
13: insert(  Ji, otent, CuXT);
14: if feasible(  otent) then

15: L O = Otent,

16: return o,

Algorithm 6: insertByEXF()

A job may need to meet an earlier termination time in order to enable another job to meet its tim
constraint. Whenever a job is considered for insertion in, it is scheduled to meet its own termination
time. However,J’s dependents must execute beforean execute, and therefore, must precede it in the

schedule. The index values of the dependencies can be changedsiti() in line 13 of Algorithm®.
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The variableCuXT is used to keep track of this information. Initially, it is set to be the termination
time of job J;, which is tentatively added to the schedule (line 6, AlgoritBm Thereafter, any job in
Jr.Dep with a later time constraint thafiu X 7" is required to meet'u X T. If, however, a job has a tighter
termination time tharC'uXT, then it is scheduled to meet the tighter termination time, @adX'7T" is
advanced to that time since all jobs left ii. Dep must complete by then (lines 12-13, Algorithsh
Finally, if this insertion produces a feasible schedule, then the jobs are included in the schedule; otherwi
the schedule is not changed (lines 14-15).

It is worth noting that the real time constraint that a job has to meet is its finish lifig.7". The
procedureinsertByEXF() resolves resource dependencies and, accordingly, may change the order

task execution.

G. Selecting a Job for Execution

The procedureselectJob() (Algorithm [7) determines the job that will be executed, as well as the

amount of time for which it needs to be executed.

.~ Task arrival h/Delm T h I
" -

T - i T - -
| S FinTy I V,,.FinTj Time
I 1 I I i
I Ll J .FinT I | 1
I W I ] i
H AT L1
T
2 I : : ||_|| 1 I 1
Pl Jo, FinTy | S FinT| Time
Pl 1o I |
Pl 1o I |
Pl o I 1
T RN 1o I 1
" [ [ | H |
Jg}l.Fl'l’lT J}vz.FinT Time

Fig. 5: Example of a Task Set

At the beginning of the algorithm, the job with the earliest finish timesindenotedFarliest, is
found.selectJob() starts by checking whether the currently running ol Running holds resources
(line 3). If so, the algorithm ensures that this job is executed so that the held resources are freed. Th
Earliest is selected to be the running task, if its finish time has arrived @jnend the algorithm returns
with J,,. = Earliest.

If line 6 cannot determine the jol... that needs to complete, then the algorithm checks if a previous

job, Prev, exists (linel0). If Prev exists, then it means thd®rev is currently holding resources, and
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1. input: o, Cur Running, Prev, teur; OUtPUL: Jege ;
2: Initialization : FEarliest := minFinT( o) ; J; = NULL;
3. if CurRunning.HeldRes # () then

4: L Prev := Cur Running;

5. /* a job’s about to finish */;
6: if Farliest. FinT = t.., then

7 Jewe := Farliest;

8: setExeTimer(  A);

9: return Jege

10: if Prev # NULL then

11: Jeze := Prev;

12: setExeTimer(  Jege.C(teur) — A);
13: return Jege

14: for VJy € o from head to taildo

15: if Ji.C(teur) > A then

16: Ji == Jg;

17: L break;

18: / * is there a job to run? */;
19: if J; = 0 then

20: Jewe := NULL;

21: setExeTimer(  FEarliest.FinT) ;
22: else

23: Jeze : = Ji;

24: setExeTimer(  Jege.C(teur) — A);
25: return Jege

Algorithm 7: selectJob()

has to be executed to release those resources. However, at the same time, jobsrélaalyae complete
must be finished without delay. Therefore, jobs holding resources can only be preempted by ready jc
and Prev’s execution has to follow that of the ready jobs. So, lid€s13 ensure thatPrev is favored

for execution after a job completes.

If line & cannot return/.,. and noPrev exists, then the algorithm seeks to select a job that can be
executed inr (lines14-17). The first job withJ.C(t.,.) > A in ¢ is selected to execute until its remaining
execution time is onlyA (line 24). With task arrivals and completions, the contents and the order of
change, in terms of both resource dependencies and finish times. However, the algorithm ensures that ¢
job J is selected to complete at its finish timefinT. If no tasks can be found to execute at /b,
then the algorithm idles the processor until either the earliest finish time or the arrival of a new job.

An example of how CIC-VCUA executes jobs is shown in FigbréJpward arrows indicate both job
arrivals and termination times, and black boxes denotén this example, jobs/, ; and J;; arrive at the
same time. However, sincg ;’s finish time is earlier, CIC-VCUA select$, ; for execution and creates a
preemption point at time; ;.C(t...) —A. As J; 1 is preempted]; arrives with an earlier finish time than
that of J;; and runs untilly;.C(t..-) — A. After J,;’s preemption,J; ; is executed, but it gets preempted

because/, ;s finish time J; 1. FinT arrives and/; ; executes to completion. Ther; ; resumes, however
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it is again preempted to lef,; finish. After this, J;; resumes and completes at its finish time.

H. Asymptotic Time Complexity

To analyze the complexity of CIC-VCUA (Algorithi), we consider a ready queue ofjobs and a
maximum ofr resources. In the worst-cadeyildDep() will build a dependency list with a length

n; so thefor -loop from line'4 to 9 will be repeated) (n?) times in the worst-casesortByPUD() s
complexity isO(nlogn).

Complexity of thefor -loop body starting from lin€ll is dominated byinsertByEXF() (Algo-
rithm6). Its complexity is dominated by thfer -loop (line[7-13, Algorithm6), which requiresD(n logn)
time since the loop will be executed no more thatimes, and each execution requi@§log n) time for
insert() , remove() andlookup() operations on the tentative schedule. Therefore, CIC-VCUA's
worst-case complexity i8 x O(n?) + O(nlogn) +n x O(nlogn) = O(n*logn).

CIC-VCUA's asymptotic cost is similar to that of many past UA scheduling algorithms such as [6]-[8].
Our prior implementation experience with UA scheduling at the middleware-level have shown that th
overheads are in the magnitude of sub-milliseconds [29] (sub-microsecond overheads may be possibl
the kernel-level). We anticipate a similar overhead magnitude for CIC-VCUA (on a similar platform).

As mentioned before, systems such as AESA that we consider in this paper are distinguished by th
relatively long execution time magnitudes—e.g., milliseconds to seconds, or seconds to minutes. Th
although CIC-VCUA has a higher overhead than traditional real-time scheduling algorithms, this hig

cost is justified for applications with longer execution time magnitudes such as those that we focus he

(of course, this high cost cannot be justified for every applicafion).

V. ALGORITHM PROPERTIES
A. Non-Timeliness Properties

We now discuss CIC-VCUAs non-timeliness properties, i.e., deadlock-freedom, correctness, and mutt
exclusion. CIC-VCUA respects resource dependencies by ensuring that the job selected for execution
execute immediately. Thus, no job is ever selected for normal execution if it is resource-dependent
some other job.

2When UA scheduling is desired with low overhead, solutions and tradeoffs exist. These include linear-time stochastic UA scheduling [3
UA scheduling with non-blocking synchronization for concurrent, mutually exclusive resource sharing [31], and using special-purpos

hardware accelerators for UA scheduling (analogous to floating-point co-processors) [32].
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Theorem 1:CIC-VCUA ensures deadlock-freedom.

Proof: A cycle in the resource graph is the sufficiemtd necessary condition for a deadlock in the
single-unit resource request model. CIC-VCUA does not allow such a cycle by deadlock detection al
resolution; so it is deadlock free. [ |

Lemma 2:In insertByEXF()  ’s output, all the dependents of a job must execute before the job can
execute, and therefore, must precede it in the schedule.

Proof: insertByEXF() maintains an output queue that is ordered by job termination times, while
respecting resource dependencies. ConsiderJjoland its dependent,. If J,.X is earlier thanJ,.X,
then J; will be inserted before/,, in the schedule. 1f/,.X is later thanJ,.X, thenJ;.X is advanced to
be J..X by the operation withCuXT. According to the definition ofnsert() , after advancing the
termination time,J; will be inserted before/,. [ |

Theorem 3:When a jobJ, that requests a resourde is selected for execution by CIC-VCUA;'s
requested resourck will be free. We call this, CIC-VCUA's correctness property.

Proof: From Lemme2, the output schedule is correct. Thus, CIC-VCUA is correct. [ |
Thus, if a resource is not available for a jolp’s request, jobs holding the resource will becomés
predecessors. We present CIC-VCUAs mutual exclusion property by a corollary.

Corollary 4: CIC-VCUA satisfies mutual exclusion constraints in resource operations.

B. Timeliness Properties

We now consider CIC-VCUASs timeliness properties, and compare the algorithm with other algorithms
Specifically, we consider the following two conditions: (1) a set of independent periodic tasks subject 1
step TUFs; and (2) sufficient processor cycles exist for meeting all task termination times—i.e., there
no overload, andoad, < 1.

Theorem 5:Under conditions (1) and (2), a schedule produced by EDF [3] is also produced by CIC
VCUA, yielding equal total utilities. Not coincidentally, this is simply a termination time-ordered schedule.
Proof: We prove this by examining Algorithi2. For periodic tasks, during non-overload situations,

from Algorithm 2 is termination time-ordered, due to the properties of the procedseztByEXF()
The termination time that we consider is analogous to a deadline in [3]. As proved in [3], [24], a deadline
ordered schedule is optimal (with respect to meeting all deadlines) for preemptive task sets when th

are no overloads. Thus, yields the same total utility as preemptive EDF. [ |



24

Some important corollaries about CIC-VCUAs timeliness behavior during non-overload situations ca
be deduced from EDF’s optimality [33].

Corollary 6: Under conditions (1) and (2), CIC-VCUA always meet all task termination times.

With the previous theorems and corollaries, we derive algorithm properties in terms of CIC-VCUA*
scheduling objective.

Theorem 7:CIC-VCUA assures that the maximum time interval between any two consecutive, suc
cessful completions of jobs of a task does not exceed the task period.

Proof. Let J;;.ST and J; ;;1.ST be the sojourn times of two consecutive, successfully completed
jobs J;; and J; ;.; of task T}, respectively. Also, letl;.wcST be the worst-case sojourn time of task
T; (and of all its jobs). Under CIC-VCUA, the maximum time interval between completiong pand
Jij+1 Will be equal toP; + J; j11.5T — J;;.ST, i.e., J; j1.FinT — J; ;. FinT. So, in order to have a
maximum interval bound of;, we should haveJ; ;.57 = J; ;.5T.

We know that the first job ofl; has J;;.FinT = J;;.5T = T,.wcST. Under CIC-VCUA, the
consecutive completions of the following jobs will kegp,,.5T = J;;.ST = T;.wcST, i.e., sojourn
times of all jobs are equal to the task’s worst-case sojourn time. Therefqug, F'inT — Ji, j. FinT = P,.

So for any task, the time interval between two consecutive, successful completions of its jobs does 1
exceed the length of the task period. [ |

Following theoreni7, during under-loads, every job of ta§k completes within their completion time
boundT;.wcST after its arrival. Other jobs of other tasks abide by the same rule. During system overload
whenload, > 1, CIC-VCUA dynamically selects tasks with the highest PUDs among the task set, unti
total load; < 1. Therefore, the bound on consecutive job completions still holds for the selected sub tas

set.

VI. EXPERIMENTAL RESULTS

We experimentally evaluated CIC-VCUA through a detailed simulation study. We first describe ou

experimental settings, and then report our results.

A. Experimental Settings

We selected task sets wiflt tasks in three applications, denotdd, A,, and A;. Task parameters are
summarized in Tablé. Within each range, the perioR is uniformly distributed. The synthesized task

sets simulate the varied mix of short and long periods.
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TABLE I: Task Settings

Applications || t Tasks| Period ume® (k,Co) (VCF =k x t+ C,)
Ay 4 22 ~ 28 | [50,70) (0-0.1, E(C,))
As 18 50 ~ 70 | [300,400] (0-0.1, E(C,))
Az 8 24~96 | [1,10] (0-0.1, E(C,))

The U™**s of the TUFs inA;, Ay, and A3 are uniformly generated within each range. We define
a linearly increasingCF = k x t + C,, a linearly decreasiny CF = —k x t + C, , and a constant
VCF = C, for each task. The parametgris uniformly generated within the range, 0.1]. We change
the mean value of’,, and generate normally-distributed values to adjust the systemidodg. In all
of our experiments, thé\ value is set to b& x 10~%. Finish times of tasks/. FinT are pushed to their

termination times wheioad, > 0.9, in order to avoid the unpredictability of sojourn time calculations.

B. Performance on Completion Interval

We assign to each task a step TUF, and first consider CIC-VCUA's performance on scheduling objecti
(1). For thel6 tasks, we varyload, from less than).1 to larger thanl.8, and evaluate the maximum
interval between any two consecutive, successful completions of jobs of each task, and of the whole t:
set (containing all tasks). We define the former as the maxinmira-task completion interval, and the
latter as the maximunmter-taskcompletion interval.

We consider two classes of VCFs for the task sbtsnogeneousand heterogeneousA task set that
consists of tasks with only one type of VCF shapes is referred tchasnmgeneous sedn the other hand,
in a heterogeneous settasks of the set can have any VCF shapes specified in Tabiethe following
experiments, we consider step TUFs.

1) Homogeneous VCF3dn the experiments of this section, we use constant VCFs for all tasks. Fagure
shows the maximum intra- and inter-task completion intervaldpa$, varies. In Figure6(a) we only

show6 tasks as examples selected from the task set to study their maximum intra-task completion interv

TABLE Il: Tasks and Their Periods for Homogeneous Set
Task ID 0 1 3 7 11| 13

Period || 49 | 49 | 43 | 44 | 46 | 48

To validate Theoren¥, we show periods of the selected tasks from Fig6ifa) in Tablelll. From

Figure6(a)and Tablell, we observe that in albad, regions, the maximum intra-task completion interval
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of each task is less than or equal to the length of its period. During overloads, the selected tasks are labe

as selectedsince they have high PUDs. So they can always satisfy their bound constraints. Therefor

plots in Figure6(a) validate TheorenY.
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Fig. 6: Maximum Intra- and Inter-Task Completion Interval for Homogeneous Set, Constant VCFs, Step TUFs

As a comparison, we also study the maximum inter-task completion interval of the whole task set |

Figure6(b). The minimum period of the task setdsFrom the figure, we observe that during under-loads,

the maximum inter-task completion interval is less tB&nand during overloads, the maximum inter-task

completion interval may exceetd) in order to satisfy intra-task completion bounds.

Experiments for homogeneous sets with monotonically increasing and decreasing VCFs under varic

TUF shapes yield results similar to those shown in Fighiréhese are omitted here for brevity, however

they can be found in [34].

2) Heterogeous VCFsFor the experiments in this section, we generate random VCFs for each task

The shapes we use for VCFs are described in Sedtled. Figure7 shows the maximum intra- and

inter-task completion intervals, &sad, varies. In Figuré/(a), we selected tasks to study their maximum

intra-task completion interval. The periods of these tasks are shown inTeble

TABLE Ill: Tasks and Their Periods for Heterogeneous Set

Task ID

5

8

9

12

14

Period

46

43

48

45

42

From Figure7(a), we again observe that the maximum intra-task completion interval of each task is les

than or equal to the length of its period, in &alkd, regions. During overloads, similar to the homogeneous

set scenarioskippedtasks with low PUDs never get a chance to execute. Hence, plots in H¢piralso

validate Theoreny.
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Fig. 7: Maximum Intra- and Inter-Task Completion Interval for Heterogenous Set

Figure|7(b) shows the maximum inter-task completion interval of the whole task set. The minimum
period of the task set i8. We observe results similar to that of the homogeneous set scenario. Resul
for heterogeneous VCFs under various TUF shapes show consistent results. These are again omitted

for brevity, but can be found in [34].

C. Performance on Utility Accrual

We now evaluate CIC-VCUAs performance on the scheduling objective (2). In these experiments, w
consider constant VCFs. For such VCFs, CIC-VCUA can be compared with other UA algorithms (the
cannot deal with non-constant VCFs and varying execution times).

We consider step and decreasing TUFs. Our first experiments compare CIC-VCUA with RUA [8]
DASA [7], LBESA [6], VCUA [35], and EDF without abortion (or EDF-NABT) [3] to evaluate perfor-
mance under step TUFs (all these algorithms allow step TUFs). We then compare CIC-VCUA with RUZ
DASA, VCUA and LBESA, under decreasing TUFs (these algorithms allow decreasing TUFs).

Figures/8 and9 show the accrued utility ratio (or AUR) and termination time meet rate (or XMR)
of the algorithms asoad, increases. AUR is the ratio of the total accrued utility to the total maximum
utility, and XMR is the ratio of the number of jobs meeting their termination times to the total numbel
of job releases.

Figure8 shows the AUR and XMR of the algorithms under step TUFs. From Fig(apwe observe that
CIC-VCUA has almost the same AUR as that of DASA, RUA, and LBESA. However, from Figin):
we observe that CIC-VCUA suffers higher termination time misses than other algorithms during hig
loads. This is because, CIC-VCUA statically labels some taskskgsped, so that it can satisfy the

completion interval bounds.
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Fig. 8: AUR and XMR of CIC-VCUA and other UA Algorithms, Constant VCFs, Step TUFs

The AUR and XMR of the algorithms under decreasing TUFs is shown in Fifeeand9(b), respec-
tively. We observe that CIC-VCUA yields less AUR and less XMR than other algorithms for decreasing
TUFs, and much less so than under step TUFs. This is clearly due to the algorithm’s procrastination
jobs to satisfy the completion time interval bound—CIC-VCUA's primary scheduling objective. None of
the other algorithms are designed to satisfy the completion time interval bound (see S4eDofor
results that illustrate this). Maximizing AUR is only CIC-VCUAs secondary objective.

Thus, job procrastination results in reduced AUR and XMR for CIC-VCUA with respect to other
algorithms. Further, this reduction is more significant under decreasing TUFs than under step TUF
clearly because earlier completion results in greater AUR under decreasing TUFs but not under st

TUFs.
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Fig. 9: AUR and XMR of CIC-VCUA and other UA Algorithms, Constant VCFs, Decreasing TUFs

Figures8 and9 show that, wheroad, > 0.9, CIC-VCUA starts to miss termination times and its XMR

drops, but its AUR drops much more slowly, since tasks with higher PUDs are statically selected. Furth



AURs and XMRs in Figure8 validate Theorenb and Corollary6.

Our experiments with monotonically increasing and decreasing VCFs yield similar results to thos

shown in Figure$ and9. Those are again omitted here, but can be found in [34].

D. Results under Resource Dependency

To construct dependent task sets, we consider task sets where jobs may randomly request and rel
resources from an available set of resources during their life spans. The resource request and release t
are uniformly distributed within a job’s life cycle before the jobresady to completeThat is, resource
request and release are serviced before the job’s remaining execution time ig\olfe conducted

experiments on task sets and five shared resources. Ndésplays6 tasks that we selected to study

their maximum inter- and intra-task completion intervals.

For these experiments, we compare CIC-VCUA with DASA, since DASA is a UA scheduling algorithm
that allows resource dependencies, and exhibits good performance. E@ysinews the results. With our
experimental settings, we have only limited performance loss in our simulation, but we expect moi

performance drop with larger task sets and more resources.
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ued Utility Ratio

Accrt
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Figure|10(a) shows both AURs (on the left Y-axis), and the intra-task completion intervals (on the

right Y-axis) of a randomly selected task, for CIC-VCUA and DASA,lagd, varies. In terms of AUR,

TABLE IV: Tasks and Their Periods for Resource Dependency Experiments

Task ID

7

11

13

4 |12

2

Period

44

46
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Fig. 10: CIC-VCUA vs DASA under Resource Dependency, Constant VCFs, Step TUFs
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CIC-VCUA performs as well as DASA. Also, we observe from Figli¢a)that the intra-task completion
interval of DASA increases as load increases, and it exceeds the bound of one period. However, CI
VCUA maintains the intra-task completion interval as a constant, equal to the task’s period, under differe
system loads. Additionally, FiguE)(b)shows the XMR comparison of both algorithms. During overloads,
in terms of XMR, DASA and CIC-VCUA exhibit different behaviors because of their different schedule
construction process.

Figurell shows the performance of CIC-VCUA under decreasing VCFs and step TUFs. As Eigaje
shows, CIC-VCUA exhibits good AUR even for task sets with resource dependencies. The XMR decrea
is due to the static selection which favors high PUD tasks. Figlite) shows the maximum intra-task and
inter-task completion intervals of thelected tasks. Clearly, CIC-VCUA bounds the intra-task completion

interval to be one period.
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Fig. 11: CIC-VCUA Performance under Resource Dependency, Decreasing VCFs, Step TUFs

Figure'12 shows CIC-VCUAs performance under increasing VCFs and step TUFs. As Fidi{e)
shows, the algorithm AUR and XMR are similar to the case of non-increasing VCFs. Hig(lseshows
the inter- and intra-task completion intervalssetected tasks. Again, we observe that CIC-VCUA bounds
the intra-task completion interval to one period.

From Figurel2, we observe that the algorithm performance under resource dependencies is similar
that under no resource dependencies. However, there is a small performance loss due to mutual exclu
requirements. The higher the number of shared resources, the greater is this performance loss. Thi
because, CIC-VCUA respects resource dependencies in scheduling, which in the worst case may ce
jobs to be executed in the reverse order of PUDs or termination times. With such dependent task st

the algorithm suffers performance losses, especially during high loads.
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Fig. 12: CIC-VCUA Performance under Resource Dependency, Increasing VCFs, Step TUFs

Our experiments with monotonically increasing and decreasing VCFs under various other TUF shag

yield similar results to those shown in Figuig¥ and12 [34].

VII. CONCLUSIONS FUTURE WORK

In this paper, we present a real-time scheduling algorithm called CIC-VCUA that focuses on the proble
space intersecting UA scheduling and variable cost scheduling. The algorithm considers tasks which
subject to TUF time constraints and mutual exclusion constraints on shared non-CPU resources, :
whose execution times are functions of their starting times. CIC-VCUA considers a two-fold objective: (1
bound the maximum interval between any two consecutive, successful completion of jobs of a task to t
task’s period, and (2) maximize the system’s total utility, while satisfying all resource dependencies. Th
problem can be shown to be NP-hard. CIC-VCUA heuristically solves the problem in polynomial-time
We establish that CIC-VCUA achieves optimal total utility during under-loads, and tight upper bound
on inter- and intra-task completion times. Our experimental studies confirm the algorithm’s effectivene:
and superiority.

This paper only scratched the surface of the VCF scheduling problem; so many problems are op
for further research. Immediate research directions include relaxing some of our task model assumptio
For example, our work assumed that dwell jobs are arbitrarily preemptible. This is not generally true
AESA systems, as preempting a dwell is sometimes expensive. (Our preliminary work [35] that led t
this work considered a fully non-preemptive task model, which is also restrictive.) Thus, CIC-VCUA cat
be extended for a task model, which includes non-preemption and preemption with non-negligible cos

Further, timescales associated with VCFs and TUFs can vary widely in AESA systems. For exampl
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the TUFs associated with each dwell may have termination times in the range of tens to hundreds

milliseconds; the VCFs may only change significantly over the course of tens or hundreds of secon

This facet of the model can be exploited in future work.

Our periodic task arrival model can also be relaxed—e.g., to the unimodal arbitrary arrival model (c

UAM) [31]. UAM embodies a “stronger” adversary than most arrival models.
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