
Mobile Netw Appl (2011) 16:460–474
DOI 10.1007/s11036-011-0326-2

An Automatic Presence Service for Low Duty-Cycled
Mobile Sensor Networks

Shouwen Lai · Binoy Ravindran

Published online: 18 June 2011
© Springer Science+Business Media, LLC 2011

Abstract We consider providing presence service for
duty-cycled wireless sensor networks through a multi-
hop approach. The presence service is to ensure auto-
matic network monitoring by which each node would
know whether the sink node is reachable or not. To-
wards providing such presence service, we tackle three
problems: 1) efficient neighbor discovery due to not-
always-awake nature of duty-cycling and the mobile
environment, 2) light presence message passing from
the sink node to all reachable nodes given broadcasting
is expensive and difficult in an embedded duty-cycling
network, and 3) automatic network monitoring if there
is node failure and network partition. In our protocol,
in order to save power consumption, an online node
which is reachable from the sink node only book-keeps
the broadcast schedule of its parent in a breadth-first-
search spanning tree in order to trace the online sta-
tus all along. The offline node which is not reachable
from the sink node stays awake periodically based
on quorum-based wakeup scheduling, and probes the
beacons which may come from online nodes. The pres-
ence protocol can automatically detect link failure or
network partition, and it can also automatically recover
online status for each sensor node if there is a path
to the sink node, which is significant for applications
that are sensitive to end-to-end latency constraints. The

S. Lai (B)
Qualcomm Inc, 5775 Morehouse Dr, San Diego,
CA 92121, USA
e-mail: shouwenl@qualcomm.com

B. Ravindran
ECE Department, Virginia Tech, Blacksburg,
VA 24061, USA
e-mail: binoy@vt.edu

presence protocol proposed is implemented through
a layered approach so that it is independent from
any specific MAC and routing protocols. We make
extensive simulations in order to validate the energy
efficiency and reliability of our design.

Keywords wireless sensor networks ·
network mobility management · automatic network
monitoring · duty cycling · quorum systems

1 Introduction

The design and deployment of a mobile wireless sen-
sor network (WSN) is driven by the requirements of
specific applications, including target tracking, health-
care monitoring, environmental monitoring, habitat
monitoring, etc, which vary both in terms of area size,
deployment locations, and mobility of the nodes. As the
number of applications grow, automatic network man-
agement services [1–4] are necessary to meet different
application requirements in mobile WSNs.

In contrast to infra-structured networks such as the
Internet, a network management system designed for
mobile WSNs should provide controlling or monitoring
service through an energy-efficient, reliable and local-
ized approach. The network management services in
mobile WSNs are wide-ranging, including fault detec-
tion [2], time synchronization [5], power management
[4], security provision [6], administrations [1] etc. The
services can be proactive, reactive, or passive depend-
ing on specific designs. Usually, developing a general
purpose network management protocol is a big chal-
lenge and most network management protocols target
specific services.

Mobile Netw Appl (2011) 16:460–474 461

In this paper, we consider providing presence ser-
vice in low duty-cycled mobile WSNs. The presence
service [7] in the Internet is a service which accepts,
stores and distributes information that conveys ability
and willingness of a potential communication partner to
communicate. Using a presence service, a sender knows
the availability of its partner and the connection status
of the network. Similarly, presence service in mobile
WSNs can be used by a sensor node to decide whether
the sink node is reachable, or whether an actuator in a
mobile sensor and actuator network is available.

An energy-efficient presence service is significant for
applications with real-time transmission [8] and power
saving requirements. The service can reduce energy
waste for data delivery. For example, by the presence
service, if the sink node is not reachable due to link
failure or network partition, the source sensor node
can hold the transmission until the path is recovered,
hence reducing unnecessary retransmission and routing
discovery. In addition, the presence service can reduce
latency of data delivery in case of link failures or net-
work partitions via automatical recovery in advance.

In contrast to the Internet, there is no infrastructure
such as proxy server or registration server in mobile
WSNs. Thus, the presence service we propose for mo-
bile WSNs is not implemented in the same way as in the
Internet, but using an ad-hoc approach. The difficulties
of providing such presence service in low duty-cycled
mobile WSNs is due to the following reasons:

1. Neighbor discovery is not always guaranteed since
nodes are not always awake; and

2. Presence message passing is expensive since broad-
cast is not available as nodes are not always awake
and the resource is limited in embedded sensor
nodes; and

3. There are radio collisions for broadcasting due to
wireless nature, especially in a dense network; and

4. Node mobility and transient link failures may cause
network partition.

In this paper, we design a presence protocol over low
duty-cycled mobile WSNs, named as PPL. PPL pro-
vides following functionalities to tackle the problems
mentioned above:

1. Efficient neighbor discovery; and
2. Light presence message passing from the sink to

other nodes; and
3. Automatic detection of reachability to sink nodes;

and
4. Automatic recovery from link failure and network

partition.

In our design, each node that is reachable to the
sink node is called online node. Online nodes will
periodically broadcast beacon messages which carry
online status with low frequency. The node which is not
reachable to the sink node is referred as offline node.
Offline nodes asynchronously stay awake and attempt
to detect the broadcast messages. We utilize our pre-
vious work (cqs-pair [9]) for node wakeup scheduling
and beacon broadcasting arrangement to reduce energy
consumption as much as possible. We also propose
an algorithm to avoid beacon collision. The algorithm
builds collision-free schedules. Since each online node
is broadcasting online status through beacons, in or-
der to control the beacon flooding, we use a breadth-
first-search (BFS) tree for message passing. A node
determines its online status by checking whether it
has received beacon messages from its parent in the
BFS tree.

PPL is a service protocol and it is not designed for
general data transmission. It can work with most MAC
protocols developed for WSNs, like S-MAC [10] or
B-MAC [11]. Basically, it can reside between MAC
layer and network layer. The routing layer can utilize
the information from PPL to check whether the sink
node is reachable from a node. If not, the routing layer
can make further decision, i.e., discovering a new route
or waiting for the route recovery, which is based on
routing protocol designs.

Our contributions are as follows:

1. We design energy-efficient and asynchronous
neighbor discovery mechanism for mobile sensor
nodes; the mechanism can reduce the number of
beacon messages and the ratio of awake time to
whole operation time for offline nodes; and

2. We propose light presence message passing mech-
anism through a multihop approach; and

3. We design automatic network management by con-
structing a BFS spanning tree over which an online
node only book-keeps the status of its parent, in
order to control flooding; and

4. We present a collision minimized beacon broad-
casting algorithm for all online nodes.

To the best of our knowledge, PPL is the first work
on providing multihop presence service in low duty-
cycled mobile WSNs. Our simulation-based measure-
ments validate the effectiveness and efficiency of our
design.

The rest of paper is organized as follows: We discuss
past and related works in Section 2. In Section 3, we
state the assumptions and preliminary knowledge for
our design. In Section 4, we present the principle of
efficient neighbor discovery. In Section 5, we explain

462 Mobile Netw Appl (2011) 16:460–474

how the automatic network management is working.
We discuss some implementation issues in Section 6.
Simulation results are discussed in Section 7. We con-
clude in Section 8.

2 Related work

The problem of providing presence service has not
been well studied for mobile WSNs. We summarize
related works including those on network management
service, presence service, asynchronous neighbor dis-
covery, and collision free transmission schedules.

Network management service in WSNs This pro-
vides a set of management functions that integrate
configuration, operation, administration, security, and
maintenance in a sensor network. Basically, it can be
categorized as centralized and distributed.

In centralized systems, such as BOSS [1] and
SNMS [3], the base station collects information from
all nodes and controls the entire network. It is usually
assumed that the base station has unlimited resources
to perform complex management tasks and that the
base station has the global knowledge of the entire
network. The centralized approach has the scalabil-
ity problem when applying to large-scale networks.
Distributed management systems [4] employ multiple
management entities which acts as a local manager.
Each manager controls a subnetwork and may commu-
nicate with other manager stations distributively to per-
form management. Distributed management has lower
communication costs comparing to centralized one,
and provides better reliability. However, it may suffer
from high system complexity for synchronization and
collaboration.

Presence service This was first defined by IETF [7].
The applications include 3G IP Multimedia Subsystem
(IMS)and instant messengers. A presence service sys-
tem allows users to subscribe to each other and be
notified of changes in states (i.e., online or offline).
The presence protocol usually has an internal structure
involving multiple servers and proxies. There may be
complex patterns of redirection [7] and proxying, or
direct communication among clients.

However, due to data-centric nature in WSNs, there
is usually no communication between two arbitrary
nodes. Shaila et al. [12] introduced a presence service
for security key management, which is close to our
work. However, they assumed a powerful mobile sink
node which can move around the network to convey the
presence, which is an one-hop presence service. In our
work, we focus on providing presence service in a multi-

hop way given the many-to-one communication nature
of WSNs. And we implement the presence service with
a multihop approach.

Asynchronous neighbor discovery This means that
two low duty-cycled nodes do not need to synchronize
their time clock before communication. This mecha-
nism is based on the non-empty intersection properties
of quorum system. It was first introduced in [13] where
the protocol divides time into a sequence of beacon
intervals which are grouped into sets of m2 contiguous
intervals arranged as a two-dimensional m × m array.
A node arbitrarily selects one column and one row of
entries, also defined as a grid quorum, to transmit and
receive, respectively. This work was later extended by
Zheng et al. [14] and Lai et al. [9].

Asynchronous neighbor discovery mechanism
(i.e., [15]) have also been developed using the Chinese
Remainder Theorem [16]. For example, if one node
wakes up once every 3 time slots and another node
wakes up once every five time slots, they will definitely
wakeup simultaneously in every 3 × 5 time slots. The
main limitations for such mechanism includes that the
discovery latency is usually too long to satisfy real-time
requirements. Also, it is often difficult to find out the
relatively prime numbers for all adjacent nodes.

Collision-free transmission scheduling This is usually
used for TDMA [17] mechanisms in wireless networks
to ensure no collision between two neighbor nodes
for data sending and receiving. It can be solved by
graph coloring algorithms. In general, the colors could
represent time slots or frequencies assigned to the
nodes. Minimizing the maximum number of colors is
very desirable in most cases, but is known to be NP-
hard [18]. The distributed solution for the problem
includes heuristic algorithms and randomized algo-
rithms [19]. In our work, we do not address the exact
same collision-free coloring problem, but the problem
of minimizing the collisions, given a color palette.

3 Assumptions and objectives

3.1 Network model and assumptions

We model a mobile WSN as a directed graph G =
(V, E), with |V| nodes and |E| links. We assume that
all nodes operate with duty cycle when there is no
data for transmission or receiving, which means that
a node is not always awake. We also use nodes and
vertices interchangeably in the context of graph theory
and WSNs.

Mobile Netw Appl (2011) 16:460–474 463

We assume each node has the same fixed transmis-
sion range and an edge (u, v) ∈ E exists if u and v

are within the fixed transmission range of each other.
Time is discrete and arranged as time slots. Since the
medium of transmission is wireless, whenever a node
transmits a message, all its neighbors which are awake
hear the message. If two or more neighbors of a node ni

transmit at the same time, ni will be unable to receive
any of those messages. In this case we also say that ni

experiences collision. In any time slot, a node can either
receive a message, experience collision, or transmit a
message but cannot do more than one of these.

We assume that two nodes are reachable to each
other when there is at least one path between the
two nodes. Here we use the term “reachable” loosely,
meaning that a topologically connected path in our
context may not be connected at any time; instead, all
nodes in the path are reachable from another node in
the path within a finite amount of time.

We assume there is only one sink node in the net-
work for our presentation. But our protocol can be
easily extended to the scenario of multiple sink nodes.
We also assume that a message arrives correctly within
finite time from a sender to a receiver, which can be
achieved by any MAC-layer transmission mechanism,
like B-MAC [11] or S-MAC [10].

The time is not necessarily assumed to be synchro-
nized. We further assume that all nodes have the same
time frequency, or their clocks drift at relatively slow
speeds(i.e., 100 us per second for oscillators with 1
MHZ frequency [20]).

3.2 Preliminaries and definitions

We use the following definitions for quorum systems
which are used for wakeup scheduling. Given an integer
n, let U = {0, · · · , n − 1} be an universal set.

Definition 1 A quorum system Q under U is a superset
of non-empty subsets of U , each called a quorum,
which satisfies the intersection property: ∀G, H ∈ Q :
G ∩ H �= ∅.

Definition 2 A quorum system Q under U is said to
have the rotation closure property if ∀G, H ∈ Q, i ∈
{0, 1, ...n − 1}: G ∩ (H + i) �= ∅, where H + i = {(x +
i) mod n : x ∈ H}.

There are two widely used quorum systems, cyclic
quorum system (cqs) and grid quorum system (gqs)
[9, 21], that satisfy the rotation closure property. We
mainly focus on cqs which usually can be defined as

C(A, Zn) which represents all rotations of quorum A
over Zn.

An example of cqs is {{1, 2, 4}, {2, 3, 5} · · · , {7, 1, 3}}
where each subset (i.e., {1, 2, 4}) is a quorum and it
will intersect with its rotation. By applying cqs into
wakeup scheduling, if two nodes wakeup on same
quorum schedule from a cqs, like in the 1st, 2nd and
4th time slots in every seven consecutive slots, their
wakeup period will overlap regardless of clock drift.
The overlap can be utilized for neighbor discovery if
a node sends out beacons in the beginning of a wakeup
time slot.

Definition 3 (cyclic quorum system pair (cqs-pair))
Given two cyclic quorum X = C(A, ZN) and Y =
C(B, ZM), suppose N ≤ M. We call (X ,Y) a cqs-pair if:
∀(A + i)p ⊆ X p and (B + j) ⊆ Y , (A + i)p ∩ (B + j) �=
∅ [9].

An example for cqs-pair is shown in Fig. 1: Let A =
{1, 2, 4} and X = C(A, Z7); B = {7, 9, 14, 15, 18} and
Y = C(B, Z21). The pair (X ,Y) is a cqs-pair. Also, both
(X ,X) and (Y,Y) are cqs-pairs. Cqs-pair can be used
for heterogenous power saving for different nodes and
meanwhile guarantees the neighbor discovery within
bounded time.

Graph coloring is widely used for collision-free
broadcast scheduling. The problem can be defined as
follows,

Definition 4 (Distance-2 Vertex Coloring) Distance-2
Vertex Coloring (d2-coloring) is an assignment of col-
ors to the vertices of the graph such that every vertex
has a color and two vertices which are d2-neighbors of
each other are not assigned the same color [22].

Vertices which are assigned the same color belong
to the same color class, and nodes belonging to the
same color class can broadcast messages simultaneously
without any collisions.

A

B

B

(P=3)

cycle length =7

cycle length =21

the intersected slot

Fig. 1 Heterogenous rotation closure property between two
cyclic quorum systems: A with cycle length of 7 and B with cycle
length of 21. A quorum from A’s p-extension Ap will overlap
with a quorum from B

464 Mobile Netw Appl (2011) 16:460–474

3.3 Objectives and problems

The primary objective by designing PPL in this paper
is to detect the availability of a path to the sink node.
Specifically, the PPL provides functionalities:

1. power-efficient neighbor discovery; and
2. automatic detection of reachability to sink nodes;

and
3. automatic recovery from link failure and network

partition.

Since we target to low duty-cycled mobile WSNs, the
problems we need to solve in our design include:

1. asynchronous neighbor discovery between offline
nodes and online nodes; and

2. efficient fault discovery and recovery with low mes-
sage overhead or flooding control; and

3. minimizing collision for online beacons broadcast-
ing in the network.

4 Neighbor discovery and energy efficiency

Since sensor nodes are operated in low duty-cycle fash-
ion, in order to guarantee neighbor discovery within
bounded time, quorum-based wakeup scheduling [14]
or cqs-pair [9] is a good candidate for this. However,
for online nodes, the energy efficiency is still not high
using pure quorum-based wakeup schedules (i.e., ratio
of awake time slots to time slots in a cycle is ≥ 3/7 for
a cyclic quorum system with cycle length of seven). To
optimize the energy consumption for online nodes, we
adopt sliding windows for book-keeping the incoming
online broadcast beacons. Outside sliding windows, an
online node may go to sleep in order to conserve energy
consumption.

4.1 Wakeup modes

In PPL, there are two possible status for a node: of f line
and online, which are similar to that of the presence
protocol for the Internet. Offline status means a node
is not reachable to the sink node. Online status is in
contrary. Accordingly, we design three wakeup modes:
offline mode, transition mode, and online mode.

In online mode, a node only sends out beacon mes-
sage at the beginning of time slots selected by a wakeup
scheduling. In of f line mode, a node will stay awake on
time slots simply according to quorum-based schedule.
Transition mode is a mode between online mode and
offline mode. In such a mode, a node will wakeup based
on quorum scheduling. The difference form offline

mode is that there is one beacon message that is sent
in the beginning of all wakeup time slots.

Consider a cqs-pair [9] (C(A, ZN), C(B, ZM)(N ≤
M), where A = {a1, a2, · · · , ap} and B = {b 1, b 2, · · · ,

b q}, the wakeup scheduling and beacon broadcasting
arrangement in PPL for the three modes are as follows.

Wakeup scheduling for of f line mode a node stays
wakeup in the ath

1 , ath
2 , · · · , ath

p time slots for every N
consecutive time slots (a frame).

Wakeup scheduling for transition mode a node stays
wakeup in the ath

1 , ath
2 , · · · , ath

p time slots for every N
consecutive time slots (a frame). Meanwhile, a node
sends out beacon messages in the beginning of all
wakeup time slots.

Beacon broadcasting arrangement for online mode A
node only broadcasts beacon messages in the beginning
of the b th

1 , b th
2 , · · · , b th

q time slots in every L(L ≥ M)

consecutive time slots. In the remaining part of the
selected slots, a node will return to sleep. Besides,
an online node maintains sliding windows in order to
trace the incoming beacon messages which carrying the
presence status. We will introduce the sliding window
in Section 4.2.

We call N or M as quorum frame. We refer L as to
super frame since it is bigger than M. We choose L ≥ M
for the purpose of energy conservation. We also refer
to the beacon message in online mode as a presence
message.

An example is shown in Fig. 2, where the quorum
frame for offline and transition mode is 7 and the super
frame for the online mode is 14.

Now we show the energy efficiency for all modes. We
roughly use the ratio of awake time to whole operation
time as energy consumption ratio (defined as the ratio
of awake time to total running time) which is denoted
as α thereafter. For offline mode and transition mode,
we have

α = p
N

(1)

=m*l +
cycle = 7 slots

quorum frame (4 slots)

super frame (14 slots)

beacon
(a) (b)

(c)

wakeup slots

Fig. 2 Quorum-based wakeup modes: a offline mode; b transi-
tion mode; c online mode

Mobile Netw Appl (2011) 16:460–474 465

For a cyclic quorum system (cqs) with cycle length of
7, α = 3/7 = 42.8%, and for a (cqs) with cycle length of
13, α = 4/13 = 30.7%.

For the online mode, suppose the ratio of duration
for a beacon message and sliding window to one dura-
tion of one time slot is β (if the duration of a beacon
message is 5 ms, the length of one sliding window is
10 ms and the slot length is 100 ms, β = 15%), we have

α = q
L

∗ β (2)

For the online mode shown in the Fig. 2, α = 3
14 ∗

15% = 3.21%. If sliding window is not existing in the
b th

1 , b th
2 , · · · , b th

q -th time slot, α is even lower.
Based on our design for PPL, the energy efficiency

for online nodes is significant higher than offline nodes.
This is because offline nodes should stay awake for
more time to scan beacons message from any possible
online node in neighborhood. Since we consider mobile
networks, it is not possible to introduce time synchro-
nization for offline nodes. As a result, it is difficult to
improve the energy consumption ratio for offline nodes
if we want to realize easy neighbor discovery.

In the following section, we will show the neighbor
discovery property for the proposed wakeup modes.

4.2 Neighbor discovery between online nodes

PPL uses sliding windows for online nodes to book-
keep the online status from neighbor online nodes.
Suppose the length of sliding window is Tslide, then
during the Tslide, online nodes listen to the broadcast
beacon message from their parents in the BFS spanning
tree (described in Section 5.1) in order to trace the
online status continually.

The starting position of sliding window is dynami-
cally changing due to clock drift. For WSNs, the clock
drift is usually slow such that the updating period
for starting position can be quite long. Sommer and
Wattenhofer [20] point out that the maximum drift is
100 us per second for oscillators with 1 MHZ frequency.
Hence the maximum clock drift is 1 ms every 10 s. In
PPL, the starting position of the sliding window will
be updated by a node every time the beacon messages
are received from the parent in the BFS spanning
tree (Section 5.1) in order to compensate for clock
drift.

Although a long sliding window can tolerate fairly
large clock drifts, it may not be energy efficient. In
our implementation, the size of the sliding window is
decided by combination of the rate of clock drift and
the duration of a beacon message: Tslide = 2 ∗ Tbeacon +

2 ∗ Tdrift. Here, Tbeacon is the time duration for one
beacon message. The typical value of Tbeacon can be
5 ms. The value of Tdrift is decided by the speed of clock
drift and the duration of one super frame in the online
mode. For example, if the maximum drift is 0.5 ms per
second and the length of the super frame is 10 s, we
have Tdrift = 10 ∗ 0.5 = 5 ms, and hence Tslide = 20 ms.

Suppose, initially an online node receives the beacon
message at T0 (when the node is still in transition
mode), the initial starting position for this sliding win-
dow will be set to: Tbegin = T0 − 1

2 ∗ Tbeacon − Tdrift, in
order to make sure that the beacon message is in the
middle of the sliding window. After initial step, the
starting position is dynamically changed due to clock
drift in order to keep the beacon message always in the
middle of sliding window after adjustment.

With sliding window, an online node can always
detect the online status conveyed by its parent in the
BFS tree and is able to judge whether it is reachable by
the sink node.

4.3 Neighbor discovery between offline nodes
and online nodes

In PPL, we adopt cqs-pair [9] (C(A, ZN), C(B, ZM)

(N ≤ M) for wakeup schedules and beacon arrange-
ment. Online nodes use C(B, ZM and offline nodes use
C(A, ZN . Based on non-empty intersection property of
cqs-pair, we have,

Theorem 1 A node in of f line mode can hear at least one
beacon message from the node in online mode within L
time slots, regardless of clock drift and assuming they are
neighbors to each other.

Proof Suppose the quorum for the schedule of online
mode is G (G can be a rotation of B) for node n1, and
the quorum adopted for the schedule of offline mode
or transition mode is H (H can be a rotation of A)for
node n2. Also, suppose the duration of one time slot is
I and the clock drift is � between n1 and n2, as shown
in Fig. 2.

If the clock drift is � = m ∗ I, where m is a non-
negative integer, then based on the non-empty inter-
section property of cqs-pair [9], node n2 will hear the
beacon message from the node n1 in a time slot within
M (M ≤ L) slots. If M < L, n2 can detect beacon
message from n1 within L time slots.

Otherwise, suppose the clock drift is � = m ∗ I + δ,
where 0 < δ < I, and suppose the intersection slot is
the ath

k time slot for the case of � = m ∗ I. Then node
n1 will hear the beacon message from node n2 in the ath

k
time slot. ��

466 Mobile Netw Appl (2011) 16:460–474

Lemma 1 A node with of f line mode will hear at least
one beacon message from the node with transition mode,
regardless of clock drift and supposing they are neigh-
bors to each other.

The proof for Lemma 1 is similar to that of
Theorem 1 and we therefore omit it. Now, we introduce
the reason why we design transition mode and the
principle for neighbor discovery between nodes with
transition mode and nodes with other modes.

4.4 Neighbor discovery by nodes with transition mode

We introduce transition mode in PPL because there is a
time span for an offline node becoming an online node.
When an offline node detects online beacon message
from its neighbor, it does not necessarily mean that
the offline node is able to reach the sink node. Due to
mobility, the neighbor nodes are probably temporarily
“reachable” to the sink. This means that the offline
nodes should still stay in offline mode even if the
receive beacon message sometimes.

In the implementation for PPL, there is a
“time_stamp” field in the beacon message, and
the “time_stamp” is set by sink node and its value is
increased sequentially. If the received beacon messages
have same “time_stamp” value, the node in transition
mode should go back to offline mode. This can avoid
a local loop from being formed by offline nodes. The
state machine between transition mode and other
modes is described in Section 6.2.

Lemma 2 Nodes with transition mode will discover each
other within N time slots if they are neighbors to each
other.

The proof for Lemma 1 is rooted from non-empty in-
tersection property of cqs systems [9]. By this property,
two quorums G, H ∈ C(A, ZN) will have G ∩ H �= ∅.
Thus, a node with wakeup schedule of G and another
node with wakeup schedule of H have overlapped
awake times. With the help of beacon message at the
beginning of wakeup slots, two nodes in transition
mode can discover each other within N time slots.

Lemma 3 A node with transition mode will hear at least
one beacon message from the node in online mode
within L time slots, regardless of clock drift and suppos-
ing they are neighbors to each other.

The proof for Lemma 3 is similar to that of
Theorem 1 and we skip it.

5 Automatic network monitoring

5.1 BFS tree for schedules book-keeping

A node in online mode has to periodically check its
online status by receiving presence messages from its
neighbors. A straightforward way to do this is to book-
keep the schedules of all its neighbors. However, a node
has to wakeup more frequently to receive presence
messages from its neighbor by doing so.

In our design, in order to reduce the listening fre-
quency of an online node, we organize all online nodes
with a tree structure. In the tree, an online node se-
lects its parent from which presence messages will be
received. In order to quickly maintain the tree and re-
duce the average response latency for all online nodes,
we adopt a breadth-first-tree (BFS) spanning tree for
book-keeping broadcast schedules.

We use self-stabilizing algorithm inspired by the
work in [23], for the BFS spanning tree construction.
When a node ni receives a message from its neighbor
n j, ni will set n j as its parent if the following condition
is satisfied:

leveli < level j + 1 && n j is online

The proof for the correctness of our algorithm is
very similar to the self-stabilizing BFS tree algorithm
in [23]. The extension in our work is the consideration
of presence status. The time complexity is O(Dmax ∗
|V|), where Dmax is the diameter of all online nodes.
This is because, a node will take at most Dmax rounds to
determine its layer information and parent, and in each
round, there are at most |V| messages sent to a node.
Since the layer information is contained in the beacon
messages which are sent out continuously by neighbors
in the online mode or the transition mode, we do not
estimate the message complexity.

There is a possibility of looping paths when passing
presence messages. Consider the following example.
Suppose there are node na and its child nb , and node
nc who is nb ’s child. If node na does not get presence
messages from its original parents, it will switch to
the transition mode to receive broadcast beacons. If
na receives messages from nc, which is broadcasting
beacons, indicating its online status, na will set nc as its
parent. Now, na, nb , and nc will follow a loop. However,
the BFS spanning tree constructed by our algorithm will
avoid such a possibility.

Lemma 4 Loop-free: There will be no loops formed for
presence message passing over BFS spanning trees.

Mobile Netw Appl (2011) 16:460–474 467

Lemma 4 is true since no node will select a node with
lower level as its parent so that the loop is avoided.
The loop free property is significant for maintaining the
stability of PPL given the node mobility or link failure
which results in a node updating its parent frequently.

5.2 Determination of presence status

Theorem 2 A node which is reachable to the sink node
will become online within bounded time.

Proof We prove this by induction. Suppose the node
is nv . If nv is in the first layer in the BFS tree, then its
parent is the sink node. If nv is offline initially, it can
hear beacons from the sink node based on Theorem 1.
If it is in transition mode, nv will hear beacons from
the sink node within L time slots based on Lemma 3.
Assume the claim is true for nv in the ith layer.

Consider the case of nv in the (i + 1)th layer. There
exists one node, say nu, in the ith layer and reachable
to nv , which is online based on the induction step. Irre-
spective of whether nv is in offline or transition mode,
it will receive beacon message from nu and become
online. The claim holds. ��

Theorem 3 An node which is not reachable to the sink
node will not become online.

Proof If the node nv is not reachable to the sink node,
its neighbor is either offline (case 1) or in transition
mode (case 2). For case 1, nv will stay offline since it
cannot detect beacon messages.

For case 2, nv can receive beacon message. However,
the time_stamp field in the beacon message is kept
unchanged. Thus nv will stay in offline mode. ��

Theorem 4 Nodes in transition mode will leave the
mode within bounded time.

Based on Theorems 2 and 3, a node will eventually
become either online or offline. The node cannot stay
in transition mode for a long time. We introduce tran-
sition mode in PPL just in order to prevent local loop
formed by offline nodes.

5.3 Online status recovery from link failures

There are many reasons which cause link failures, like
node mobility, power off, out of battery or node failure.
When there is link failure, an online node, denoted as
nv , can not receive beacon messages from its parent on

the BFS tree anymore. In such case, the online node nv

will switch to transition mode and try to detect beacon
messages again.

If there is another online node in the neighborhood,
the node nv can detect the online node within L time
slots based on Lemma 3 and hence the online status of
nv can be recovered.

If there is no online node in the neighborhood, it
means that there is network partition, nv will go to
offline mode based on Theorem 3. However, once an
neighborhood node of nv becomes online, nv will switch
to online node from Theorem 2.

Meanwhile, the recovery procedure couples with
BFS tree adjustment automatically. The procedure of
adjusting BFS tree is self-stabilizing, which is described
in Section 5.1.

5.4 Collision minimization for beacon messages

A node in online mode will periodically broadcast
beacon messages (or presence messages) in its super
frame. The broadcast schedules of all online nodes in
a hop-2 neighborhood may collide with each other if
the broadcast happens in the same sliding window at
the receiver side, as illustrated in Fig. 3. When collision
occurs, it is possible that a node cannot get presence
messages from other nodes and hence will misjudge its
online status.

In Fig. 3, there is collision on only one sliding window
and the receiver can still receive one or two beacon
messages correctly. However, if node nv1 and node nv2

conflict with each other on all beacons, for example
both of them start broadcasting in the first time slot
of a super frame and there is no clock shift between
their timing, then node nu will lose the online status
forever.

Our purpose for collision minimization is to ensure
that any two nodes inside a 2-hop neighborhood have
different beacon broadcast schedules. Therefore, none
of them will send out all beacon messages in same

Online Node

Online Node

collision

(Parent of nu)

Super Frame Super Frame

shift=3 shift=5 shift=6

Sliding Window

nv1 Online Node nv2

nu

Fig. 3 Illustration to collision of beacon message

468 Mobile Netw Appl (2011) 16:460–474

moment of time. To guarantee this, our algorithm in
PPL contains two steps:

1. step 1, all online nodes within a 2-hop neighbor-
hood distributively choose a different shift for their
beacon broadcast schedules; and

2. step 2, all online nodes relatively synchronize with
the sink node, and send out the beacon message
based on the shift chosen in the first step by each
online node;

The two steps can be coupled together in run-time
execution.

We assume the time slot in which the sink node sends
out the first beacons as TS0. We now build up the
connection between coloring and time slot shift.

Definition 5 (Color) A color is the time slot shift in
term of integer slots. We assign the color 0 to the
schedule in which the first beacon message is sent out
in the first slot of every super frame, and color i to the
the schedule in which the first beacon message is sent
out in the i-th time slot in every super frame.

For a schedule with a super frame equal to L time
slots, there are L colors. In Fig. 3, node nv1 has color
0, and node nv2 has the color 3 since its first beacon is
shifted by 3 time slots.

The first step for collision minimization is to ensure
each online node within a 2-hop neighborhood has
different shift. It is done by Algorithm 1, which we will
explain later.

Now, we show how to use the different colors we
obtained in the first step to minimize collision. In the
second step, we first do slot synchronization which
makes all online nodes have TS0 at relative same time
moments. Each beacon message contains time slots
shifting information related to TS0. When nodes in the
fist layer of the BFS tree receive the beacon from the
sink node, they are automatically synchronized based
on the shift information in the beacon message (we
omit the propagation latency since we are not doing
accurate time synchronization). Specifically, when node
nu receives beacon message which contains the time slot
shift value TSreceived (the distance to TS0), node nu is
able to derive the position of TS0: suppose the time slot
when the beacon is received is TScurr, the relative TS0

position in a super frame is at the (TScurr − TSreceived)

mod L-th slot. By doing this, all online nodes can
be relatively synchronized after receiving beacon
messages.

Therefore, if node nu obtains a color TSu (the time
slot shift) from step 1, it should send out the first beacon
message after

TSδ = (TSu − TSreceived) mod L (3)

time slots from the time of receiving the beacon mes-
sage (TScurr). If in step1, all online node can perfectly
get different colors, then we can achieve collision-free
beacon broadcast schedules.

Although the collision-free scheduling can be done
by a d2-coloring algorithm which is defined in
Definition 4, it may not be practical for us to achieve
this. The first reason is that a mobile WSN usually
does not have a global knowledge of maximum node
degree (i.e., due to mobility), which will affect the max-
imum color number adopted. Secondly, the maximum
number of colors is mapped to the length of the super
frame in online mode. We cannot use an arbitrarily long
super frame because it may result in a large latency in
neighbor discovery.

In our design, we try to minimize the collision given
a color palette (or the length of a super frame L). Let
the duration of a time slot be Ts—i.e., Ts = 100 ms. For
a cqs design via (7, 3, 1)-difference set, let the length
of a super frame be L ∗ Ts, where L ≥ 7. Now, our
algorithm for minimizing the color collision works as
follows: A node nu in the transition mode chooses
a number TSu from {0, · · · , L − 1} such that there
is minimum collision among the distance-2 neighbor-
hood. Then node nu will broadcast beacons in the
TSu-th time slot in a super frame once it is relatively
synchronized.

The algorithm, described in Algorithm 1, is based
on a randomized approach. In our algorithm, we de-
note the hop-2 neighbors of node v as N2(v), and the
priority as Pv for node v. Each node v contains three
parameters:

• layer: layer(v);
• random value: rnd(v);
• palette of forbidden colors which were used by its

hop-2 neighbors: usedcolor(v) (initially empty).

Each node also has an order based on its priority. Let
v1, v2 ∈ V. We say that v1 has a higher priority than v2

(i.e., Pv1 > Pv2) if:

layer(v1) < layer(v2) or
layer(v1) = layer(v2)&&(rnd(v1) > rnd(v2))

Mobile Netw Appl (2011) 16:460–474 469

In each round, every uncolored node v executes the
following steps. An uncolored node nv chooses the
parameter rnd(v) ∈ [0..1], and sends the following para-
meters to all its neighbors: layer(v), rnd(v), and the first
legal color (which is not in the list of forbidden colors).
Node nv then compares its own parameters with that
received from the hop-2 neighbors and checks which
node has the highest priority. If node v has the highest
priority, it will keep the proposed color and will stop.
Otherwise, the node nv updates the list usedcolor(v).
When the available palette is empty, then there is a
collision for coloring. To minimize the collision, a node
will randomly select a color from the color palette
{0, · · · , L − 1} in our algorithm.

Theorem 5 The execution of Algorithm 1 results in a
interference-minimized beacon transmission schedule.

Proof

Case 1 The number of colors (length of a super cycle)
is bigger than the number of nodes in a 2-

hop neighborhood. No node can get a color
unless there is a node with highest priority in
its hop-2 neighborhood. In this case, at least
two nodes with the lowest layer have equal
priority. It is possible to neglect the probability
of this situation by increasing the precision of
tossing the parameter random value. Hence, in
each round, in the whole graph, at most one
new color can be assigned. After finite number
of rounds, all nodes will be colored with an
unique color, which is collision-free coloring.

Case 2 The number of colors (length of a super cycle)
is less than the number of nodes in a 2-hop
neighborhood. In each round, in the whole
graph, at most one new color can be assigned
if there is still available color. When there is
not enough color, based on Line 10 in the
Algorithm, a random color from [1..L] will be
selected for coloring a node with the highest
priority. After finite rounds, all nodes will be
colored and the collision is minimized. ��

The number of rounds will be our measure of
efficiency. The worst case of time complexity in
Algorithm 1 is O(n) based on Theorem 5 since in each
round there is at least one node which is colored. The
best case complexity of the algorithm is O(Dmax) where
Dmax is the the depth of the BFS tree.

6 Implementation

6.1 Protocol stacks

PPL can be implemented with a layered approach. The
protocol provides presence service for applications and
routing protocols in order to determine the path avail-
ability to the sink. It is independent of the underlying
MAC protocols. The stack model which illustrates the
relationship between the presence protocol and other
layers is shown in Fig. 4.

Application Layer

Presence Protocol (PPL)

MAC (S-MAC, B-MAC, etc)

Routing Layer

Fig. 4 Stacks model

470 Mobile Netw Appl (2011) 16:460–474

PPL does not depend on accurate time synchroniza-
tion [5] for all online nodes. But it is necessary for a
node to book-keep the schedules of beacon broadcasts
of its parent in the BFS spanning tree for collision
minimization of beacon messages.

Since all beacons are sent out by broadcast, PPL
does not rely on any specific routing protocol. The
beacon message conveys the online status and layer
information. Due to the hop-by-hop nature, PPL is in-
dependent of any specific MAC protocol. For one hop
notification and passing color messages among nodes in
the two-hop neighborhood, any MAC protocol, like S-
MAC [10] or B-MAC [11] can provide a mechanism for
data transmission.

Some MAC protocols [10] or time synchronization
mechanisms [20] broadcast beacons periodically, which
causes interfere with the beacons in PPL. However,
such interference can be neglected if the super frame
in online mode is large enough, e.g., 8 − 10 s.

6.2 State machine

Now, we introduce the state machine for mode transi-
tions in PPL as described in Fig. 5.

Initially, all nodes do not have presence information
from the sink node and are in offline status. They op-
erate in offline mode by asynchronous quorum-based
wakeup scheduling. When a node detects presence
information by receiving beacon broadcasts from its
neighbor, it will first transfer to the transition mode in
which the node will send out beacons in each wakeup
time slot. In the transition mode, the node will syn-
chronize with other presence nodes and will decide
its color in order to determine which frame it should
broadcast beacons by the coloring algorithm described
in Section 5.4. The node will also decide its parent
for book-keeping the beacon schedules, which been
described in Section 5.1.

Once the coloring and the parent are set, a node will
switch to the online mode and broadcast its presence
status within beacon messages in every super frame.

Fig. 5 State machine for wakeup mode transitions

Since a node should book-keep the broadcast schedule
of its parents, if the node can continuously receive
beacon messages from its parent at every super frame,
the node will keep staying in the online mode.

If a node does not receive a presence message from
its parent after timeout, the node will switch from the
online mode to the transition mode.

In the transition mode, if a node still does not receive
any presence message from its neighbor after a time
out, the node will switch to the offline mode, which
indicates the total offline status. The configuration of
timeout is application-dependent and can be set to
several super frame durations.

One additional message in the state machine is for
notification. When a mobile node moves to a network
and detects presence messages, the node will select a
node as its parent after coloring, and will then send
notification to its neighbors about its online status in
order to update their parents in the BFS spanning tree
for schedule keeping. After receiving the notification, a
node will change from the online mode to the transition
mode in order to reselect its parent and colors.

6.3 Beacon formats

In our implementation, the beacon message is send out
via broadcast by each online node. Also, a node in the
transition mode also sends out beacon messages. The
beacon broadcast is significant for each nodes to trace
its current presence status, i.e., online or offline.

The beacon message contains four fields:{indic,
node_id, layer, time_stamp}. The field of indic has two
types of value: indic=0 (indicating that the node is in
the offline mode), indic = 1 (online mode). node_id is
used to distinguish different nodes. The value of layer
indicates the depth information of nodes in the BFS
spanning tree. The field of time_stamp is used to iden-
tify whether two beacon messages are actually identical.
Only the sink node can set the value of time_stamp.

When a node receives beacon messages, it will com-
pare the “time_stamp” value to the previous received
beacon message if there is one. If the “time_stamp”
value is not changed, the node will not be switched to
online mode. This can avoid a local loop formed by
offline nodes.

7 Performance evaluation

We evaluated the performance of PPL through ex-
tensive simulations using the OMNET++ simulator.
We measured the energy consumption ratio which
is the ratio of awake time to total running time,

Mobile Netw Appl (2011) 16:460–474 471

Table 1 Network size and time slot

G1 G2 G3 G4

|V| 50 100 200 400
T1 T2 T3 T4

Tslot 50 100 150 200

time and message cost, and the recovery time after
node failure to validate the energy efficiency. The
configurations of our simulations were compatible with
typical configurations such as in [11]. We adopt the
wireless loss model used in [24] which considers the
oscillation of radio. The wireless communication range
was set to 10 meters. The node mobility model se-
lected in our simulation is based on Random Way-
point [25, 26] which was used by the community of mo-
bile networks. Each sensor node moved with a velocity
between 1 and 2 meters per second towards random
directions.

We generated 4 network size sets with varying net-
work sizes, G1, · · · , G4, which are listed in Table 1. For
each network size, we randomly generated 10 topolo-
gies. Each data point presented in this section is the
average of 10 topologies with 10 runs on each topology.
The length of time slots in our simulation was varied
from 50 to 200 ms as listed in Table 1.

7.1 Energy consumptions and neighbor
discovery latency

In this section, we first demonstrate the energy
efficiency of quorum-based wakeup scheduling and
then show the trade-off between energy efficiency and
average neighbor discovery latency in PPL. As the
processor consumes an extremely small amount of en-
ergy in comparison with the radio, we only evaluated
the awake time of radio in our simulation, rather than
measuring real energy consumption.

We set the size of beacon message as 160 bytes and
the transmission rate as 256 kb/s. The network size is
set by G2 in Table 1. The size of sliding window for
per beacon is set to 20 ms to book-keep the broadcast
schedule of parents for an online node. We defined the
energy consumption ratio as wakeup time to the whole
operation time in our simulation, and measured the
energy consumption ratio for nodes at online mode and
at offline mode separately. From Fig. 6, by changing
the cqs cycle length, it is shown that the cqs with
larger cycle length is more energy efficient. The energy
consumption ratio of offline mode with the cqs based
on (21, 5, 1)-difference set is about 23.8% comparing
43.8% for (7, 3, 1)-difference set. Accordingly, there is

7 13 21 31
0

10%

20%

30%

40%

50%

Cycle Length of cyclic quourm system (cqs)

E
ne

rg
y

C
on

su
m

 R
at

io

Offline Mode

Online Mode (supper frame=10 sec)

Online Mode (supper frame=5 sec)

Fig. 6 Impact of cycle length of cqs on energy consumption

similar trend for online mode since a cqs with larger
cycle length has a larger quorum size.

We also measured the average neighbor discovery
latency between a node at offline mode and a node
at transition mode, in order to show the performance
tradeoff of quorum-based wakeup scheduling. Time
slot length was varied from 50 to 200 ms. In Fig. 7, it
is shown that larger time slot length resulted in longer
neighbor discovery latency. Also the average neighbor
discovery latency increased with larger cycle length,
which is opposite to the changing trend of energy con-
sumption ratio.

7.2 Validation of collision minimization algorithms

We made comparisons between PPL for collision min-
imization with previous collision-free distance-2 color-
ing algorithms, such as DRAND [17] and D2color [22].
As the main purpose of PPL is to minimize the collision
given a number of colors, it needs less number of colors
for coloring all nodes in a network, but suffers coloring
collisions which do not exist in DRAND and D2color.

Color number Figure 8 shows the maximum color
number for the three algorithms under different d2-

7 13 21 31
0

500

1000

1500

2000

2500

3000

3500

Cycle length of cyclic quourm system (cqs)

N
ei

hb
or

 D
is

co
ve

ry
 L

at
en

cy
 (

se
c)

Time Slot Length = 50ms

Time Slot Length = 100ms

Time Slot Length = 150ms

Time Slot Length = 200ms

Fig. 7 Impact of time slot length on neighbor discovery latency

472 Mobile Netw Appl (2011) 16:460–474

Fig. 8 Comparison of number of colors and collision rate

neighborhood configurations. We varied the maximum
size of d2-neighborhood from 10 to 50 and fixed the
length of time slot as 100 ms. Since PPL uses constant
size of color palette, its color number does not change
very much. It was observed that the color number
needed by DRAND had the largest value since it uses
an asynchronous distributed algorithms.

Collision rate We also measured the collision rate of
PPL when the color palette is less than the maximum
size of d2-neighborhood. The collision rate in our sim-
ulation was defined as:

collisionrate = #nodesselectinganoccupiedcolor
#totalnodesinthenetwork

Since, DRAND and D2color are collision-free coloring
solutions, their collision rate is zero. From Fig. 8, it is
shown that the collision rate decreased with larger color
palette and smaller size of maximum d2-neighborhood.
When the color palette is small, the collision rate is
relatively high (i.e. ≥80%) for a large d2-neighborhood.

Time and message complexity We varied the network
size and observed the average time and message costs.
Since PPL does not pursue a collision free solution, it
has the lowest time complexity. DRAND can achieve
better performance than D2color with the price of more
color used to achieve collision free coloring when com-
pared with D2color. Regarding message complexities,
the DRAND can get better message count because
it uses asynchronous message passing mechanism. In
PPL, nodes have to wait for the broadcast messages
from the sink node before determining its final color.
Therefore the message complexity of PPL is lightly
higher than DRAND since more messages should be
broadcast as what is described in Section 5.4.

Figure 9 shows the comparison of time and mes-
sage cost between PPL, DRAND and D2color. We
measured the average time cost and the message costs
with varied network sizes. Since PPL does not pursue a
collision free solution, it can quickly find out a solution

Fig. 9 Comparison of time and message complexities

and has the lowest time cost. DRAND achieved better
performance in terms of time cost than D2color, with
the price of more color needed to achieve collision-
free coloring in all d2-neighborhoods. Regarding mes-
sage cost, the DRAND algorithm achieved the best
performance due to its asynchronous message passing
mechanism.

7.3 Stabilization to node failures

We tested the stabilization of PPL when there were
frequently node failures which resulted in neighbor
discovery failure and message lost. We set the failure
probability of each node from p = 0.1 to p = 0.4. The
length of super frame of an online node was set to 5 s.
We measured the average time for an online node from
node failure discovery to reaching a new online status.
The failure probability is a Poisson distribution in our
simulation for the whole network.

We chose node set G2 and set time slots as
100 ms. In Fig. 10, we observe that the re-stabilization
time increased with larger node failure probability.
In addition, with the network size increasing, the re-
stabilization time was slightly decreased since it was

50 100 150 200 500 1000 1500 2000
10

15

20

25

30

Network size

R
e-

st
ab

liz
at

io
n

tim
e

Failure Probability = 0.1

Failure Probability = 0.2

Failure Probability = 0.4

Fig. 10 Average time for re-stabilization of the online status for
each node after failure of neighbors

Mobile Netw Appl (2011) 16:460–474 473

Fig. 11 Delivery ratio in case of node failure

easier for a node to get online beacon broadcast from
neighbors which were not failed.

7.4 Data delivery ratio

We defined delivery ratio as the number of packets
received by the sink divided by the number of packets
sent out by all nodes. We adopt one-hop retransmission
mechanism and set the retry times as 3 when there
was failure. We varied the network size in different
set of experiments. The duration of time slot was set
to 100 ms. The traffic load is 1 packet/second for each
node. We then measured the average data delivery
ratio from nodes which were different hops away from
the sink node.

From Fig. 11, we observe that the delivery ratio was
decreasing with the increasing of node failure proba-
bility. With the same failure probability, the delivery
ratio was decreased with the increasing of end-to-end
hop count.

8 Conclusion

In this paper, we presented a presence protocol, PPL,
over mobile WSNs operated by low duty-cycle fashion.
PPL protocol is designed through a multihop and en-
ergy efficient approach given the nature of embedded
networks. In our design, there are three wakeup modes:
online mode, transition mode, and offline mode. The
wakeup scheduling of these modes are based on cqs-
pair [9] for the sake of energy efficiency and asyn-
chronous neighbor discovery. All nodes in online mode
broadcast beacon messages which conveys the online
status. Nodes not in online mode asynchronously wake
up and try to detect broadcasts from online nodes.
The collision of beacon messages from online node
was minimized by distributed coloring algorithm. To
control the beacon message flooding, we use a breadth-

first-search (BFS) spanning tree for schedule book-
keeping. All online nodes only book-keep the schedule
of their parents in the BFS tree and determine their
online or offline status by whether or not they receive
beacon broadcasting from their parents. PPL can be
implemented with a layered approach without depend-
ing on any specific routing protocol or MAC protocol.
Our simulation studies demonstrated that PPL is stable
and efficient for online status management over mobile
sensor networks.

There are several directions for future works. Ex-
amples include theoretical analysis of the performance,
hierarchical proxy selections for the presence protocol
and implementation-based experimental studies.

Acknowledgements This work was supported by the Ministry
of Knowledge Economy (MKE) of South Korea. [2008-F-052,
Scalable/Mobile/Reliable WSN Technology].

References

1. Song H, Kim D, Lee K, Sung J (2005) UPnP-based sensor
network management architecture and implementation. In:
Second international conference on mobile computing and
ubiquitous networking

2. Ruiz L, Nogueira J, Loureiro A (2003) Manna: a man-
agement architecture for wireless sensor networks. IEEE
Commun Mag 41(2):116–125

3. Tolle G, Culler D (2005) Design of an application-
cooperative management system for wireless sensor net-
works. In: EWSN, pp 121–132

4. Ramanathan N, Yarvis M, Chhabra J, Kushalnagar N,
Krishnamurthy L, Estrin D (2005) A stream-oriented power
management protocol for low duty cycle sensor network ap-
plications. In: EmNets, pp 53–61

5. Lamport L (1978) Time, clocks, and the ordering of events in
a distributed system. Commun ACM 21(7):558–565

6. Deng J, Han R, Mishra S (2006) Secure code distribution
in dynamically programmable wireless sensor networks. In:
IPSN, pp 292–300

7. Day M, Rosenberg J, Sugano H (2000) A model for presence
and instant messaging. IETF RFC 2778, February

8. He T et al (2006) Achieving real-time target tracking using-
wireless sensor networks. IEEE RTAS 0, 37–48

9. Lai S, Zhang B, Ravindran B, Cho H (2008) Cqs-pair: cyclic
quorum system pair for wakeup scheduling in wireless sensor
networks. In: International conference on principles of dis-
tributed systems (OPODIS), vol 5401. Springer, pp 295–310

10. Ye W, Heidemann J, Estrin D (2004) Medium access control
with coordinated adaptive sleeping for wireless sensor net-
works. IEEE/ACM Transactions on Networking 12:493–506

11. Polastre J, Hill J, Culler D (2004) Versatile low power media
access for wireless sensor networks. In: ACM Sensys, pp 95–
107

12. Shaila K, Yeri V, Arjun A, Venugopal K, Patnaik L (2010)
Adaptive mobility and availability of a mobile node for
efficient secret key distribution inwireless sensor networks.
In: Second international conference on machine learning and
computing (ICMLC), pp 137 –141

474 Mobile Netw Appl (2011) 16:460–474

13. Tseng Y, Hsu C, Hsieh T (2002) Power-saving protocols for
ieee 802.11-based multi-hop ad hoc networks. In: IEEE in-
ternational conference on computer communications (INFO-
COM), pp 200–209

14. Zheng R, Hou JC, Sha L (2003) Asynchronous wakeup for
ad hoc networks. In: MobiHoc, pp 35–45

15. Dutta P, Culler D (2008) Practical asynchronous neighbor
discovery and rendezvous for mobile sensing applications. In:
Sensys, pp 71–84

16. Niven I, Zuckerman HS, Mongomery HL (1991) Introduc-
tion to the theory of numbers. John Wiley & Sons

17. Rhee I, Warrier A, Min J, Xu L (2006) Drand: distributed
randomized tdma scheduling for wireless ad-hoc networks.
In: MobiHoc, pp 190–201

18. Krumke SO, Marathe MV, Ravi SS (2001) Models and ap-
proximation algorithms for channel assignment in radio net-
works. Wirel Netw 7(6):575–584

19. Kubale M, Kuszner L (2002) A better practical algorithm
for distributed graph coloring. In: International conference
on parallel computing in electrical engineering (PARELEC),
pp 72–75

20. Sommer P, Wattenhofer R (2009) Gradient clock synchro-
nization in wireless sensor networks. In: The international
conference on information processing in sensor networks
(IPSN), pp 37–48

21. Luk W, Huang T (1997) Two new quorum based algo-
rithms for distributed mutual exclusion. In: ICDCS, pp 100–
106

22. Parthasarathy S, Gandhi R (2004) Distributed algorithms for
coloring and domination in wireless ad hoc networks. In:
FSTTCS, pp 447–C459

23. Sur S, Srimani PK, Srimani PK (1992) A self-stabilizing dis-
tributed algorithm to construct BFS spanning trees of a sym-
metric graph. Comput Math Appl 30:171–179

24. Zuniga M, Krishnamachari B (2004) Analyzing the transi-
tional region in low power wireless links. In: IEEE SECON,
pp 517–526

25. Johnson DB, Maltz DA (1996) Dynamic source routing in ad
hoc wireless networks. Mobile Computing, Kluwer Academic
Publishers, pp 153–181

26. Yoon J, Liu M, Noble B (2003) Random waypoint considered
harmful. In: IEEE INFOCOM, vol 2, pp 1312–1321

	An Automatic Presence Service for Low Duty-Cycled Mobile Sensor NetworksQ1Please check article title if correct.
	Abstract
	Introduction
	Related work
	Assumptions and objectives
	Network model and assumptions
	Preliminaries and definitions
	Objectives and problems

	Neighbor discovery and energy efficiency
	Wakeup modes
	Neighbor discovery between online nodes
	Neighbor discovery between offline nodes and online nodes
	Neighbor discovery by nodes with transition mode

	Automatic network monitoring
	BFS tree for schedules book-keeping
	Determination of presence status
	Online status recovery from link failures
	Collision minimization for beacon messages

	Implementation
	Protocol stacks
	State machine
	Beacon formats

	Performance evaluation
	Energy consumptions and neighbor discovery latency
	Validation of collision minimization algorithms
	Stabilization to node failures
	Data delivery ratio

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

