
On Exploiting Locality for Generalized Consensus

Sebastiano Peluso
Virginia Tech
peluso@vt.edu

Alexandru Turcu
Virginia Tech
talex@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract—Single leader-based Consensus protocols are known
to stop scaling once the leader reaches its saturation point.
On the other hand, establishing Consensus of commands by
taking into account only their dependencies (as specified by
Generalized Consensus) is appealing because of the potentially
higher parallelism and lower latency. However, current solutions
have well-known pitfalls due to the higher quorum size, which
is required to exploit low-latency fast decisions, and the need for
tracking dependency relations. In this paper we briefly introduce
M2PAXOS, a new implementation of Generalized Consensus that
provides a fast decision of commands by leveraging a classic
quorum size, which matches just the majority of nodes deployed.
M2PAXOS does not establish command dependencies based on
conflicts; rather it associates accessed objects with nodes, so that
the delivery decision of commands operating on the same objects
is made by a common node. The evaluation study of M2PAXOS
confirms its effectiveness by showing an improvement up to 7×
over state-of-the-art (Generalized) Consensus protocols.

Keywords—Generalized Consensus; Locality; Scalability.

I. OVERVIEW OF THE ACHIEVED RESULTS

Paxos [1] is a very popular protocol for implementing Con-
sensus [2] among participants interconnected by asynchronous
networks, even in presence of faults, and it is generally
leveraged for building strongly consistent transactional systems
(e.g., [3], [4], [5]). Despite its widespread use, Paxos suffers
from performance bottlenecks when deployed on networks
with a large amount of nodes. As an example, the version of
Paxos mostly deployed due to its desirable progress guarantees
is Multi-Paxos, where a single designated node (i.e., the elected
leader) is responsible for deciding the order of all proposed
commands (i.e., client requests). The performance of Multi-
Paxos is great until the leader saturates its resources; then the
whole system slows down due to the overloaded leader.

To overcome this limitation, a number of proposals aimed
at eliminating the need for a single leader by allowing multiple
nodes to operate as a leader at-a-time [6], [7], [8]. However,
since multiple leaders now compete for the decision of their
concurrent commands, those protocols relax the requirement
of providing a unique agreement on all proposed commands,
and instead they build a set of partial orders where only
conflicting commands are totally ordered. Such solutions pro-
vide implementations of Generalized Consensus [9], [10],
and they leverage the fact that defining a total order only
among non-commutative (conflicting) commands is enough to
provide strong consistency on top of replicated storage and
transactional systems. However, they come with additional
limitations: to avoid a designated leader and to guarantee a fast
decision in two communication delays for every uncontended
command, the size of the adopted quorums is bigger than the
one required by Paxos, i.e.,

⌊
N
2

⌋
+ 1, where N is the total

number of nodes. For instance, during some steps in the exe-
cution of those protocols, a node might have to wait for replies
from

⌈
3
4N

⌉
other nodes [9], or

⌈
3
4N − 1

⌉
other nodes [6], [8].

Also, unlike (Multi-)Paxos, they need to exchange commands’
dependencies during the interactions among nodes, because
the knowledge of commands’ relations is mandatory for the
generation of partial orders in Generalized Consensus.

Nevertheless we still agree that avoiding a designated
leader with the possibility of reaching consensus in the mini-
mum number of communication delays is fundamental for pro-
viding scalability and high performance in current implementa-
tions of replicated storage, services, and transactional systems.
But we truly believe that current solutions for Generalized
Consensus still pay some large but generally unnecessary costs,
e.g., bigger quorums, processing of dependencies.

In this paper we answer the following question: can we
sometimes allow a more expensive agreement process, even
in case of no conflicts, in order to guarantee a generally
faster agreement? Therefore we present M2PAXOS, an im-
plementation of Generalized Consensus that generally decides
commands in only two communication delays (i.e., with a fast
decision), without exchanging dependencies among conflicting
commands and relying on the same quorum size as that used
by Paxos, i.e.,

⌊
N
2

⌋
+ 1. We achieve this goal by exploiting

the locality of application accesses. One of the widely used
techniques for allowing the performance of a system to scale
in presence of massive amount of requests is optimizing
the placement of the accessed data and the synchronization
mechanisms adopted according to the application access pat-
terns [11], [12].

M2PAXOS does not assume well partitioned accesses but
it finds its sweet spot in this scenario. The intuition is the
following: when a command is submitted, M2PAXOS inspects
the data to be accessed by the command and determines
the owner node responsible for ordering the command. This
way, all commands accessing the same data will be implicitly
ordered by the same node. Clearly, commands accessing dif-
ferent data may have different owner nodes, thus enabling high
concurrency. Given this relation between data and owners, and
assuming that all data to be accessed by a proposed command
is already associated with a unique owner, the decision on
that command is a step executed locally at the owner and
entails making that decision stable in the system. The latter
task is accomplished by paying an optimal latency of two
communication delays, namely one delay for sending the
message to all nodes and another one for receiving a number
of acknowledgments equal to a majority of nodes, thus the
same quorum size required by Paxos.

The establishment of the ownership relation between nodes



3 5 7 11 19 29 39 49
Replicas

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t 

(x
 1

0
0

k 
m

sg
/s

)

(a) Throughput

3 5 7 11 19 29 39 49
Replicas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

n
cy

 (
m

s)

M2 Paxos

EPaxos

Gen. Paxos

Multi-Paxos

(b) Latency

Fig. 1. Scalability plot where command locality is 100%. (a) Maximum attainable throughput. (b) Median latency when the system is underloaded.

and data is part of M2PAXOS, and it is based on the idea of
asynchronous leases previously introduced and explored for
transactional systems, e.g., in [13]. Therefore, when a node
has to become the owner of a subset of data, it executes a
distributed coordination to acquire a lease, i.e., the ownership
of that data. Object ownership is asynchronous, meaning that
it is released by a node only if it is requested by another node.

II. EVALUATION

We implemented M2PAXOS and all competitors within
a unified framework1, written in the Go programming lan-
guage, version 1.4rc1. We evaluated M2PAXOS by comparing
it against two Generalized Consensus implementations, i.e.,
Generalized Paxos [9] and EPaxos [6], and one Consensus
implementation, i.e., Multi-Paxos [1]. We used up to 49 nodes
on Amazon EC2 infrastructure. Each node is a c3.4xlarge
instance (Intel Xeon 2.8GHz, 16 cores, 30GB RAM) running
Amazon Linux 2014.09.1, and all nodes were deployed under
a single placement group, where the network bandwidth was
measured in excess of 7900 Mbps.

To load the system, we injected commands in an open-
loop using up to 64 client threads at each node. Commands
are accompanied by a 16-byte payload. After issuing each
command, a client thread goes to sleep for a configurable
amount of time, i.e., think time. To prevent overloading the
system, we limited the number of commands still in-flight.
The limit is configured for best performance under each
deployment, and when it is reached, a node skips issuing
new commands. Each data-point represents the average of
10 measurements. We report on M2PAXOS evaluation under
its most favorable conditions: all commands touch a single
object, and a command proposed by a node can only conflict
with commands proposed by the same node. This scenario is
representative for strongly partitioned data, where replication
is only employed for fault-tolerance.

We assessed the scalability of all protocols as we scaled
the system up from 3 to 49 nodes. For each deployment we
gradually increased the workload until the saturation point
is reached, and we report these results in Figure 1. From a
throughput perspective (see Figure 1(a)), M2PAXOS observes
a 3-7× improvement when compared to the nearest competitor.

1The code is publicly available at https://bitbucket.org/talex/hyflow-go.

It exhibits almost linear scalability up until 11 replicas, and
its throughput keeps increasing past 11 nodes, albeit at a
slower rate. Multi-Paxos is a distant runner-up at 11 nodes
and below. After that, Multi-Paxos’ performance degrades,
leaving way for EPaxos, which almost manages to maintain
its throughput up to the full 49 nodes. Figure 1(b) shows the
median command latency with an underloaded system and
aggressive batching disabled. With a low number of nodes,
the M2PAXOS narrowly wins over Multi-Paxos, having its
latency lower by 23%. As the number of nodes is increased,
M2PAXOS remains the fastest to deliver, with up to 41%
better latency than EPaxos.

ACKNOWLEDGMENT

This work is supported in part by US National Science
Foundation under grant CNS-1217385.

REFERENCES

[1] L. Lamport, “Paxos made simple,” ACM Sigact News, 2001.
[2] B. Charron-Bost and A. Schiper, “Uniform Consensus is Harder Than

Consensus,” J. Algorithms, vol. 51, no. 1, pp. 15–37, Apr. 2004.
[3] J. C. Corbett et al., “Spanner: Google’s Globally Distributed Database,”

ACM TOCS, 2013.
[4] S. Hirve, R. Palmieri, and B. Ravindran, “Archie: A Speculative

Replicated Transactional System,” in Middleware 2014.
[5] H. Mahmoud et al., “Low-latency Multi-datacenter Databases Using

Replicated Commit,” Proc. VLDB Endow., 2013.
[6] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is More Consen-

sus in Egalitarian Parliaments,” in SOSP 2013.
[7] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building Efficient

Replicated State Machines for WANs,” in OSDI 2008.
[8] A. Turcu, S. Peluso, R. Palmieri, and B. Ravindran, “Be General and

Don’t Give Up Consistency in Geo-Replicated Transactional Systems,”
in OPODIS 2014.

[9] L. Lamport, “Generalized Consensus and Paxos,” Microsoft Research,
Tech. Rep. MSR-TR-2005-33, March 2005.

[10] P. Sutra and M. Shapiro, “Fast genuine generalized consensus,” in SRDS
2011.

[11] D. Sciascia, F. Pedone, and F. Junqueira, “Scalable Deferred Update
Replication,” in DSN 2012.

[12] S. Peluso, P. Romano, and F. Quaglia, “SCORe: A Scalable One-copy
Serializable Partial Replication Protocol,” in Middleware 2012.

[13] D. Hendler, A. Naiman, S. Peluso, F. Quaglia, P. Romano, and
A. Suissa, “Exploiting Locality in Lease-Based Replicated Transactional
Memory via Task Migration,” in DISC 2013.


