
On Real-Time STM Concurrency Control for Embedded Software with Improved
Schedulability

Mohammed Elshambakey Binoy Ravindran
ECE Dept. ECE Dept.

Blacksburg, VA 24060, USA Blacksburg, VA 24060, USA
shambake@vt.edu binoy@vt.edu

Abstract— We consider software transactional memory (STM)
concurrency control for embedded multicore real-time software,
and present a novel contention manager for resolving transac-
tional conflicts, called PNF. We upper bound transactional retries
and task response times. Our implementation in RSTM/real-time
Linux reveals that PNF yields shorter or comparable retry costs
than competitors.

I. INTRODUCTION

Concurrency is intrinsic to embedded software, as they con-
trol concurrent physical processes. Often, such concurrent
computations need to read/write shared data objects. They
must also satisfy time constraints.

Lock-based concurrency control has significant programma-
bility, scalability, and composability challenges [9]. Software
transactional memory (STM) is an alternative synchronization
model for shared memory objects that promises to alleviate
these difficulties. With STM, code that read/write shared ob-
jects is organized as transactions, which execute speculatively,
while logging changes made to objects. Two transactions con-
flict if they access the same object and one access is a write.
When that happens, a contention manager (CM) [7] resolves
the conflict by aborting one and committing the other, yielding
(the illusion of) atomicity. Aborted transactions are re-started,
after rolling back the changes. Besides a simple programming
model, STM provides performance comparable to lock-free
synchronization, especially for read-dominated workloads, and
is composable [8].

Given STM’s programmability, scalability, and composabil-
ity advantages, it is a compelling concurrency control tech-
nique also for multicore embedded real-time software. How-
ever, this requires bounding transactional retries, as real-time
threads, which subsume transactions, must satisfy time con-
straints. STM retry bounds are dependent on the CM policy.

Past real-time CM research has proposed resolving transac-
tional contention using dynamic and fixed priorities of parent
threads, resulting in Earliest Deadline First CM (ECM) and
Rate Monotonic CM (RCM), respectively [6, 5, 4]. In par-
ticular, [5] shows that ECM and RCM achieve higher schedu-
lability – i.e., greater number of task sets meeting their time
constraints – than lock-free synchronization only under some
ranges for the maximum atomic section length. That range
is significantly expanded with the Length-based CM (LCM)
in [4], increasing the coverage of STM’s timeliness superiority.
However, these works restrict to one object access per transac-

tion, which is a major limitation (Section III). To allow multi-
ple objects per transaction, we design a novel contention man-
ager called PNF (Section IV), which can be used with global
EDF (G-EDF) and global RMA (G-RMA) multicore real-time
schedulers. We upper bound transactional retry costs and task
response times under PNF (Section V). Our implementation
reveals that PNF yields shorter or comparable retry costs than
competitors (Section VI).

PNF’s superior timeliness properties thus allow embedded
real-time programmers to reap STM’s significant programma-
bility and composability advantages for a broader range of mul-
ticore embedded real-time software than what was previously
possible – paper’s contribution.

II. PRELIMINARIES

We consider a multiprocessor system with m identical pro-
cessors and n sporadic tasks τ1, τ2, . . . , τn. The kth instance
(or job) of a task τi is denoted τki . Each task τi is specified
by its worst case execution time (WCET) ci, its minimum pe-
riod Ti between any two consecutive instances, and its relative
deadline Di, where Di = Ti. Job τ ji is released at time rji and
must finish no later than its absolute deadline dji = rji + Di.
Under a fixed priority scheduler such as G-RMA, pi determines
τi’s (fixed) priority and it is constant for all instances of τi. Un-
der a dynamic priority scheduler such as G-EDF, a job τ ji ’s pri-
ority, pji , differs from one instance to another. A task τj may
interfere with task τi for a number of times during an interval
L, and this number is denoted as Gij(L).

Shared objects. A task may need to read/write shared, in-
memory data objects while it is executing any of its atomic sec-
tions (transactions), which are synchronized using STM. The
set of atomic sections of task τi is denoted si. ski is the kth

atomic section of τi. p(ski) is the priority of transaction ski .
Each object, θ, can be accessed by multiple tasks. The set of
distinct objects accessed by τi is θi without repeating objects.
The set of atomic sections used by τi to access θ is si(θ), and
the sum of the lengths of those atomic sections is len(si(θ)).
ski (θ) is the kth atomic section of τi that accesses θ.
ski can access one or more objects in θi. So, ski refers to

the transaction itself, regardless of the objects accessed by the
transaction. We denote the set of all accessed objects by ski as
Θk

i . While ski (θ) implies that ski accesses an object θ ∈ Θk
i ,

ski (Θ) implies that ski accesses a set of objects Θ = {θ : θ ∈
Θk

i }. s̄ki = s̄ki (Θ) refers only once to ski , regardless of the
number of objects in Θ. So, |s̄ki (Θ)|∀θ∈Θ = 1.

ski (θ) executes for a duration len(ski (θ)). len(ski) =
len(ski (θ)) = len(ski (Θ)) = len(ski (Θ

k
i)). The set of tasks

sharing θ with τi is denoted γi(θ). Atomic sections are non-
nested (supporting nested STM is future work). The maximum-
length atomic section in τi that accesses θ is denoted simax(θ),
while the maximum one among all tasks is smax(θ), and the
maximum one among tasks with priorities lower than that of τi
is simax(θ).

STM retry cost. If two or more atomic sections conflict, the
CM will commit one section and abort and retry the others, in-
creasing the time to execute the aborted sections. The increased
time that an atomic section spi (θ) will take to execute due to a
conflict with another section skj (θ), is denoted W p

i (s
k
j (θ)). If

an atomic section, spi , is already executing, and another atomic
section skj tries to access a shared object with spi , then skj is
said to “interfere” or “conflict” with spi . The transaction skj is
the “interfering transaction”, and the transaction spi is the “in-
terfered transaction”.

Due to transitive retry (Definition 1) an atomic section
ski (Θ

k
i) may retry due to another atomic section slj(Θ

l
j), where

Θk
i ∩ Θl

j = ∅. θ∗i denotes the set of objects not accessed di-
rectly by atomic sections in τi, but can cause transactions in
τi to retry due to transitive retry. θexi (= θi + θ∗i) is the set
of all objects that can cause transactions in τi to retry directly
or through transitive retry. γ∗i is the set of tasks that accesses
objects in θ∗i . γexi (= γi + γ∗i) is the set of all tasks that can di-
rectly or indirectly (through transitive retry) cause transactions
in τi to retry.

The total time that a task τi’s atomic sections have to retry
over Ti is denoted RC(Ti). The additional amount of time
by which all interfering jobs of τj increases the response time
of any job of τi during L, without considering retries due to
atomic sections, is denoted Wij(L).

III. LIMITATIONS OF ECM, RCM, AND LCM

ECM and RCM [5] use dynamic and fixed priorities, respec-
tively, to resolve conflicts. ECM uses G-EDF, and allows the
transaction whose job has the earliest absolute deadline to com-
mit first [6]. RCM uses G-RMA, and commits the transaction
whose job has the shortest period. To use STM in real-time
systems, transactional retry cost must be bounded in order to
satisfy time constraints. ECM’s retry cost is bounded in [5] as
follows:

Claim 1 (from [5]): Under ECM, a task τi’s maximum retry
cost during Ti is upper bounded by:

RC (Ti) ≤
∑
θ∈θi

((∑
τj∈γi(θ)

(⌈Ti
Tj

⌉ ∑
∀slj(θ)

len
(
slj(θ)

+ smax(θ)
)))

− smax(θ) + simax(θ)

)
(1)

Retry cost under RCM is similar to ECM, except that, only
tasks with higher priority than τi can interfere with any job τxi
of τi. RCM’s retry cost is also bounded in [5].

G-EDF/LCM [4] and G-RMA/LCM default to ECM and
RCM, respectively, with some difference. Under LCM, a
higher priority transaction ski (θ) cannot abort a lower priority

transaction slj(θ) if slj(θ) has already consumed α percentage
of its execution length. G-EDF/LCM’s retry cost is bounded
in [4] as follows:

Claim 5 (from [4]): RC(Ti) for a task τi under G-EDF/LCM
is upper bounded by:

RC(Ti) =

(∑
∀τh∈γi

∑
∀θ∈θi∧θh

(⌈
Ti
Th

⌉ ∑
∀slh(θ)

len
(
slh(θ)

)

+ αhl
maxlen

(
shmax(θ)

)))
+

∑
∀syi (θ)

(
1− αiy

max

)
len
(
simax(θ)

)
(2)

αhl
max is the α value that corresponds to ψ due to the interfer-

ence of shmax(θ) by slh(θ). αiy
max is the α value that corre-

sponds to ψ due to interference of simax(θ) by syi (θ).
G-RMA/LCM’s retry cost is similar to G-EDF/LCM’s, ex-

cept that, only tasks with higher priority than τi can interfere
with any job τxi of τi. G-RMA/LCM’s retry cost is bounded
in [4].

As mentioned before, [5, 4] assumes that each transaction
accesses only one object. This assumption simplifies the retry
cost and response time analysis [5, 4]. Besides, it enables com-
parison with lock-free synchronization [3]. With multiple ob-
jects per transaction, ECM, RCM and LCM will face transitive
retry, which we illustrate with an example.

Example 1. Consider three atomic sections sx1 , sy2 , and sz3
belonging to jobs τx1 ,τy2 , and τz3 , with priorities pz3 > py2 > px1 ,
respectively. Assume that sx1 and sy2 share objects, sy2 and sz3
share objects. sx1 and sz3 do not share objects. sz3 can cause sy2
to retry, which in turn will cause sx1 to retry. This means that
sx1 may retry transitively because of sz3, which will increase the
retry cost of sx1 .

Assume another atomic section sf4 is introduced. Priority of
sf4 is higher than priority of sz3. sf4 shares objects only with sz3.
Thus, sf4 can make sz3 to retry, which in turn will make sy2 to
retry, and finally, sx1 to retry. Thus, transitive retry will move
from sf4 to sx1 , increasing the retry cost of sx1 . The situation gets
worse as more tasks of higher priorities are added, where each
task shares objects with its immediate lower priority task. τz3
may have atomic sections that share objects with τx1 , but this
will not prevent the effect of transitive retry due to sx1 .

Definition 1 Transitive retry. A transaction ski suffers from
transitive retry when ski retries due to a higher priority trans-
action shz , and Θh

z ∩Θk
i = ∅.

Claim 1 ECM, RCM and LCM suffer from transitive retry for
multi-object transactions.

Proof 1 Example 1 applies for any transaction under ECM,
RCM, and LCM. Claim follows.

Hence, the analysis in [5, 4] must extend the set of objects that
can cause an atomic section of a lower priority job to retry.
This can be done by initializing the set of conflicting objects,
γi, to all objects accessed by all transactions of τi. We then

cycle through all transactions belonging to all other higher pri-
ority tasks. Each transaction slj that accesses at least one of the
objects in γi adds all other objects accessed by slj to γi. The
loop over all higher priority tasks is repeated, each time with
the new γi, until there are no more transactions accessing any
object in γi1.

In addition to the transitive retry problem, retrying higher
priority transactions can prevent lower priority tasks from run-
ning. This happens when all processors are busy with higher
priority jobs. When a transaction retries, the processor time is
wasted. Thus, it would be better to give the processor to some
other task.

Essentially, what we present is a new contention manager
that avoids the effect of transitive retry. We call it, Priority
contention manager with Negative values and First access (or
PNF). PNF also tries to enhance processor utilization. This is
done by allocating processors to jobs with non-retrying trans-
actions if any exists.

IV. THE PNF CONTENTION MANAGER

Algorithm 1 describes PNF. It manages two sets. The first is
the m-set, which contains at most m non-conflicting transac-
tions, where m is the number of processors, as there cannot be
more than m executing transactions (or generally, m executing
jobs) at the same time. When a transaction is entered in the m-
set, it executes non-preemptively and no other transaction can
abort it. A transaction in the m-set is called an executing trans-
action. This means that, when a transaction is executing be-
fore the arrival of higher priority conflicting transactions, then
the one that started executing first will be committed (Step 8)
(hence the term “First access” in PNF).

The second set is the n-set, which holds the transactions that
are retrying because of a conflict with one or more of the ex-
ecuting transactions (Step 6), where n stands for the number
of tasks in the system. Transactions in the n-set are known
as retrying transaction. It also holds transactions that cannot
currently execute, because processors are busy, either due to
processing executing transactions and/or higher priority jobs.
Any transaction in the n-set is assigned a temporal priority of
-1 (Step 7) (hence the word “Negative” in PNF). A negative
priority is considered smaller than any normal priority, and a
transaction continues to hold this negative priority until it is
moved to the m-set, where it is restored its normal priority.

A job holding a transaction in the n-set can be preempted
by any other job with normal priority, even if that job does not
have transactions conflicting with the preempted job. Hence,
this set is of length n, as there can be at most n jobs. Trans-
actions in the n-set whose jobs have been preempted are called
preempted transactions. The n-set list keeps track of preempted
transactions, because as it will be shown, all preempted and
non-preempted transactions in the n-set are examined when
any of the executing transaction commits. Then, one or more
transactions are selected from the n-set to be executing trans-
actions. If a retrying transaction is selected as an executing

1However, this solution may over-extend the set of conflicting objects, and
may even contain all objects accessed by all tasks.

2An idle processor or at least one that runs a non-atomic section task with
priority lower than the task holding n(z).

Algorithm 1: PNF Algorithm
Data: Executing Transaction: is one that cannot be aborted by any other

transaction, nor preempted by a higher priority task;
m-set: m-length set that contains only non-conflicting executing
transactions;
n-set: n-length set that contains retrying transactions for n tasks in
non-increasing order of priority;
n(z): transaction at index z of the n-set;
ski : a newly released transaction;
slj : one of the executing transactions;
Result: atomic sections that will commit

1 if ski does not conflict with any executing transaction then
2 Assign ski as an executing transaction;
3 Add ski to the m-set;
4 Select ski to commit
5 else
6 Add ski to the n-set according to its priority;
7 Assign temporary priority -1 to the job that owns ski ;
8 Select transaction(s) conflicting with ski for commit;
9 end

10 if slj commits then
11 for z=1 to size of n-set do
12 if n(z) does not conflict with any executing transaction then
13 if processor available2 then
14 Restore priority of task owning n(z);
15 Assign n(z) as executing transaction;
16 Add n(z) to m-set and remove it from n-set;
17 Select n(z) for commit;
18 else
19 Wait until processor available
20 end
21 end
22 end
23 end

transaction, the task that owns the retrying transaction regains
its priority.

When a new transaction is released, and if it does not con-
flict with any of the executing transactions (Step 1), then it will
allocate a slot in the m-set and becomes an executing transac-
tion. When this transaction is released (i.e., its containing task
is already allocated to a processor), it will be able to access a
processor immediately. This transaction may have a conflict
with any of the transactions in the n-set. However, since trans-
actions in the n-set have priorities of -1, they cannot prevent
this new transaction from executing if it does not conflict with
any of the executing transactions.

When one of the executing transactions commits (Step 10),
it is time to select one of the n-set transactions to commit. The
n-set is traversed from the highest priority to the lowest priority
(priority here refers to the original priority of the transactions,
and not -1) (Step 11). If an examined transaction in the n-set,
sbh, does not conflict with any executing transaction (Step 12),
and there is an available processor for it (Step 13) (“available”
means either an idle processor, or one that is executing a job
of lower priority than sbh), then sbh is moved from the n-set to
the m-set as an executing transaction and its original priority is
restored. If sbh is added to them-set, the newm-set is compared
with other transactions in the n-set with lower priority than sbh.
Hence, if one of the transactions in the n-set, sgd, is of lower
priority than sbh and conflicts with sbh, it will remain in the n-
set.

The choice of the new transaction from the n-set depends on

the original priority of transactions (hence the term “Priority”
in the algorithm name). The algorithm avoids interrupting an
already executing transaction to reduce its retry cost. In the
meanwhile, it tries to avoid delaying the highest priority trans-
action in the n-set when it is time to select a new one to commit,
even if the highest priority transaction arrives after other lower
priority transactions in the n-set.

A. Properties

Claim 2 Transactions scheduled under PNF do not suffer from
transitive retry.

Proof 2 Proof is by contradiction. Assume three transactions
ski , slj , and shz . p(shz) > p(slj) > p(ski). Θk

i ∩ Θl
j ̸= ∅,

Θl
j ∩ Θh

z ̸= ∅, but Θk
i ∩ Θh

z = ∅. Assume ski is transitively
retrying because of shz . This means, ski , slj , and shz are execut-
ing concurrently. Θk

i ∩ Θl
j ̸= ∅, so ski and slj cannot be exe-

cuting transactions at the same time, by the definition of PNF.
Θl

j ∩Θh
z ̸= ∅, so slj and shz cannot be executing transactions at

the same time, by the definition of PNF. Only ski and shz can be
executing transactions at the same time, because Θk

i ∩Θh
z = ∅.

Hence, the three transactions cannot be running concurrently.
So, ski cannot be transitively retrying because of shz , which con-
tradicts the first assumption. Claim follows.

From Claim 2, PNF does not increase the retry cost of multi-
object transactions. However, this is not the case for ECM and
RCM as shown by Claim 1.

Claim 3 Under PNF, any job τxi is not affected by the retry
cost in any other job τ lj .

Proof 3 As explained in Section 1, PNF assigns a temporary
priority of -1 to any job that includes a retrying transaction. So,
retrying transactions have lower priority than any other normal
priority. When τxi is released and τ lj has a retrying transaction,
τxi will have a higher priority than τ lj . Thus, τxi can run on any
available processor while τ lj is retrying one of its transactions.
Claim follows.

V. RETRY COST UNDER PNF

We now derive an upper bound on the retry cost of any job
τxi under PNF during an interval L ≤ Ti. Since all tasks are
sporadic (i.e., each task τi has a minimum period Ti), Ti is the
maximum study interval for each task τi.

Claim 4 Under PNF, the maximum retry cost suffered by a
transaction ski due to a transaction slj is len(slj).

Proof 4 By PNF’s definition, ski cannot have started before slj .
Otherwise, ski would have been an executing transaction and slj
cannot abort it. So, the earliest release time for ski would have
been just after slj starts execution. Then, ski would have to wait
until slj commits. Claim follows.

Claim 5 The retry cost for any job τxi due to conflicts between
its transactions and transactions of other jobs under PNF dur-
ing an interval L ≤ Ti is upper bounded by:

RC(L) ≤
∑
τj∈γi

∑
θ∈θi

(⌈ L
Tj

⌉
+ 1

) ∑
¯∀slj(θ)

len
(

¯slj(θ)
)

(3)

Proof 5 Consider a transaction ski belonging to job τxi . By def-
inition of PNF, higher and lower priority transactions than ski
can become executing transaction before ski . The worst case
scenario for ski occurs when ski has to wait in the n-set, while
all other conflicting transactions with ski are chosen to be ex-
ecuting transactions. Executing transactions are not aborted.
This is why s̄lj is included only once in (3) for all shared ob-
jects with ski .

The maximum number of jobs of any task τj that can inter-

fere with τxi during interval L is
⌈

L
Tj

⌉
+ 1. From the previous

observations and Claim 4, Claim follows.

Claim 6 The blocking time for a job τxi due to lower priority
jobs during an interval L ≤ Ti is upper bounded by:

D(τxi) ≤

 1

m

∑
∀τ̄ l

j

(⌈ L
Tj

⌉
+ 1

)∑
∀s̈hj

len
(
s̈hj

)
 (4)

where D(τxi) is the blocking time suffered by τxi due to lower
priority jobs. τ̄ lj = {τ lj : plj < pxi } and s̈hj = {shj :(
Θh

j ∩Θk
i = ∅

)
∧
(
∀Θk

i ∈ θi
)
}. During this blocking time, all

processors are unavailable for τxi .

Proof 6 Under PNF, executing transactions are non preemp-
tive. So, a lower priority executing transaction can delay a
higher priority job τxi if no other processors are available.
Lower priority executing transactions can be conflicting or non-
conflicting with any transaction in τxi . If lower priority trans-
actions are conflicting with any transaction in τxi , then (3) al-
ready covers the increase in retry cost of transactions in τxi
due to lower priority transactions. Otherwise, lower priority
non-conflicting transactions can be executing transactions that
block τxi .

Lower priority non-conflicting transactions can block τxi
when τxi is newly released, or after that:

Lower priority non-conflicting transactions when τxi is
newly released. τxi is delayed if no processor is available. Oth-
erwise, τxi can run in parallel with these non-conflicting lower
priority transactions. Each lower priority non-conflicting trans-
action s̈hj will delay τxi for len(s̈hj).

Lower priority non-conflicting transactions after τxi is re-
leased. This situation can happen if τxi is retrying one of its
transactions ski . So, τxi is assigned a priority of -1. τxi can
be preempted by any other job. When ski is checked again to
be an executing transaction, all processors may be busy with
lower priority non-conflicting transactions and/or higher prior-
ity jobs. Otherwise, τxi can run in parallel with lower priority
non-conflicting transactions.

Each lower priority non-conflicting transaction s̈hj will delay

τxi for len(s̈hj). From the previous cases, lower priority non-
conflicting transactions act as if they were higher priority jobs
interfering with τxi . So, the blocking time can be calculated by
the interference workload given by Theorem 7 in [1].

Claim 7 A job τxi ’s response time, during an interval Rup
i ≤

Ti, under PNF/G-EDF is upper bounded by:

Rup
i = ci+RC(R

up
i)+Dedf (τ

x
i)+

 1

m

∑
∀j ̸=i

Wij(R
up
i)

 (5)

where RC(Rup
i) is calculated by (3). Dedf (τ

x
i) is the same

as D(τxi) defined in (4). However, for G-EDF, Dedf (τ
x
i) is

calculated as:

Dedf (τ
x
i) ≤

 1

m

∑
∀τ̄ l

j

{
0 , Rup

i ≤ Ti − Tj∑
∀s̈hj

len
(
s̈hj

)
, Rup

i > Ti − Tj


(6)

and Wij(R
up
i) is calculated by (3) in [5].

Proof 7 τxi ’s response time is calculated by (3) in [5] with the
addition of blocking time defined by Claim 6. G-EDF uses
absolute deadlines for scheduling. This defines which jobs of
the same task can be of lower priority than τxi , and which will
not. Any instance τhj , released between rxi − Tj and dxi − Tj ,
will be of higher priority than τxi . Before rxi − Tj , τhj would
have finished before τxi is released. After dxi − Tj , dhj would
be greater than dxi . Thus, τhj will be of lower priority than τxi .
So, during Ti, there can be only one instance τhj of τj with
lower priority than τxi . τhj is released between dxi − Tj and dxi .
Consequently, during Rup

i < Ti − Tj , no existing instance of
τj is of lower priority than τxi . Hence, 0 is used in the first case
of (6). But if Rup

i > Ti − Tj , there can be only one instance

τhj of τj with lower priority than τxi . Hence,
⌈
Rup

i

Ti

⌉
+ 1 in (4)

is replaced with 1 in the second case in (6). Claim follows.

Claim 8 A job τxi ’s response time, during an interval Rup
i ≤

Ti, under PNF/G-RMA is upper bounded by:

Rup
i = ci +RC(Rup

i) +D(τxi) +

 1

m

∑
∀j ̸=i,pj>pi

Wij(R
up
i)


(7)

where RC(L) is calculated by (3), D(τxi) is calculated by (4),
and Wij(R

up
i) is calculated by (2) in [5].

Proof 8 Proof is same as of Claim 7, except that G-RMA as-
signs fixed priorities. Hence, (4) can be used directly for cal-
culating D(τxi) without modifications. Claim follows.

VI. EXPERIMENTAL EVALUATION

To understand how PNF’s retry cost compares with competi-
tors in practice (i.e., on average), we implement PNF and the
competitors and conduct experiments.

We used the ChronOS real-time Linux kernel [2] and the
RSTM library [10] in our implementation. We implemented

G-EDF and G-RMA schedulers in ChronOS, and modified
RSTM to include implementations of ECM, RCM, LCM, and
PNF. For the retry-loop lock-free synchronization, we used a
loop that reads an object and attempts to write to it using a
CAS instruction. The task retries until the CAS succeeds. We
used an 8 core, 2GHz AMD Opteron platform. The average
time taken for one write operation by RSTM on any core is
0.0129653375µs, and the average time taken by one CAS-loop
operation on any core is 0.0292546250 µs.

We used four task sets consisting of 4, 5, 8, and 20 peri-
odic tasks. Each task runs in its own thread and has a set of
atomic sections. Atomic section properties are probabilistically
controlled using: 1) the maximum and 2) minimum lengths
of any atomic section within a task, and 3) the total length of
atomic sections within any task. Since lock-free synchroniza-
tion cannot handle more than one object per atomic section, we
first compare PNF’s retry cost with that of lock-free (and other
CMs) for one object per transaction. We then compare PNF’s
retry cost with that of other CMs for multiple objects per trans-
action.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

LF/EDF

LF/RMA

Fig. 1. Avg. retry cost (1 shared object, 5 tasks).

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

Fig. 2. Avg. retry cost (5 shared objects, 4 tasks).

-20

 0

 20

 40

 60

 80

 100

 120

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

Fig. 3. Avg. retry cost (20 shared objects, 8 tasks).

-50

 0

 50

 100

 150

 200

 250

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

Fig. 4. Avg. retry cost (20 shared objects, 20 tasks).

Figures 1, 2, 3, 4 and 5 show the average retry cost for the 5,
4, 8 and 20 tasks, under 1, 5, 20 and 40 shared objects, respec-
tively. On the x-axis of the figure, we record 3 parameters x, y,
and z. x is the ratio of the total length of all atomic sections of
a task to the task WCET. y is the ratio of the maximum length
of any atomic section of a task to the task WCET. z is the ratio
of the minimum length of any atomic section of a task to the
task WCET. Confidence level of all data points is 0.95.

Figure 1 compares ECM, RCM, LCM, PNF and lock-free
with one shared object per transaction. Lock-free has the
largest retry cost, as it provides no conflict resolution. PNF’s
retry cost closely approximates ECM’s and RCMs, as there is
no transitive retry because there is only one shared object. Fig-
ures 2, 3, 4 and 4 compare CMs under shared multiple objects
per transaction. We observe that PNF has shorter or compa-
rable retry cost than ECM, RCM, and LCM. Similar trends
were observed for the other task sets; those are omitted here
for brevity and due to space limitations.

-50

 0

 50

 100

 150

 200

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

Fig. 5. Avg. retry cost (40 shared objects, 20 tasks).

VII. CONCLUSIONS

Transitive retry increases transactional retry cost under
ECM, RCM, and LCM. PNF avoids transitive retry by avoiding
transactional preemptions, and reduces aborted transactions’
priority to enable other tasks to execute, increasing processor
usage. Executing transactions are not preempted due to the re-
lease of higher priority jobs. On PNF’s negative side, higher
priority jobs can be blocked by executing transactions of lower
priority jobs.

ACKNOWLEDGMENT

This work is supported in part by US National Science
Foundation under grants CNS 0915895, CNS 1116190, CNS
1130180, and CNS 1217385.

REFERENCES

[1] M. Bertogna and M. Cirinei. Response-time analysis for globally sched-
uled symmetric multiprocessor platforms. In RTSS, pages 149–160,
2007.

[2] M. Dellinger et al. ChronOS Linux: a best-effort real-time multiproces-
sor Linux kernel. In DAC, pages 474–479, 2011.

[3] U. Devi et al. Efficient synchronization under global EDF scheduling on
multiprocessors. In ECRTS, pages 10 pp. –84, 2006.

[4] M. El-Shambakey and B. Ravindran. STM concurrency control for em-
bedded real-time software with tighter time bounds. In DAC, pages 437–
446, 2012.

[5] M. El-Shambakey and B. Ravindran. STM concurrency control for mul-
ticore embedded real-time software: time bounds and tradeoffs. In SAC,
pages 1602–1609, 2012.

[6] S. Fahmy and B. Ravindran. On STM concurrency control for multicore
embedded real-time software. In SAMOS, pages 1 –8, 2011.

[7] R. Guerraoui et al. Toward a theory of transactional contention managers.
In PODC, pages 258–264, 2005.

[8] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable memory
transactions. Commun. ACM, 51:91–100, Aug 2008.

[9] M. Herlihy. The art of multiprocessor programming. In PODC, pages
1–2, 2006.

[10] V. J. Marathe et al. Lowering the overhead of nonblocking software trans-
actional memory. In TRANSACT, 2006.

