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Abstract
Energy efficiency is one of the most important design con-

siderations in running modern datacenters. Datacenter oper-
ating systems rely on software techniques such as execution
migration to achieve energy efficiency across pools of ma-
chines. Execution migration is possible in datacenters today
because they consist mainly of homogeneous-ISA machines.
However, recent market trends indicate that alternate ISAs
such as ARM and PowerPC are pushing into the datacenter,
meaning current execution migration techniques are no longer
applicable. How can execution migration be applied in future
heterogeneous-ISA datacenters?

In this work we present a compiler, runtime, and an operat-
ing system extension for enabling execution migration between
heterogeneous-ISA servers. We present a new multi-ISA binary
architecture and heterogeneous-OS containers for facilitating
efficient migration of natively-compiled applications. We build
and evaluate a prototype of our design and demonstrate en-
ergy savings of up to 66% for a workload running on an ARM
and an x86 server interconnected by a high-speed network.

1. Introduction
The x86 instruction set architecture is the de-facto ISA of the
datacenter today [48, 57, 61, 37]. However, a new generation
of servers built with different ISAs are becoming increasingly
common. Multiple chip vendors, including AMD, Qualcomm,
APM, and Cavium, are already producing ARM processors
for the datacenter [4, 56, 6, 21, 33]. The PowerPC ISA is also
gaining traction, with IBM forming the OpenPower founda-
tion by partnering with companies such as Google, NVIDIA,
Mellanox and others [47]. These new servers promise to have
higher energy proportionality [13], reduce costs, boost per-
formance per dollar, and increase density per rack [64, 65].
Increasing interest in alternative server architectures is shown
by a number of works that analyze the advantages of these
new servers compared to x86 [8, 38, 3, 62, 47]. Interest is also
driven by the increasing availability of ARM and PowerPC
cloud offerings [49, 43, 58, 45] in addition to traditional x86
servers. It is therefore clear that the datacenter, now mostly
built with single-ISA heterogeneous [48, 67] machines, will
be increasingly populated by heterogeneous-ISA machines.

Cutting electricity costs has become one of the most im-
portant concerns for datacenter operators today [74]. Energy
proportionality [13] has become an important design criterion,
leading hardware and software architects to design more effi-
cient solutions [67, 74, 71, 69, 70]. There are several software-
based approaches that are effective for conserving energy,
including load balancing and consolidation. Load balancing

spreads the current workload evenly across nodes, while con-
solidation groups tasks on a minimal number of nodes and
puts the rest in a low-power state. Both solutions migrate
tasks between machines using techniques such as virtual ma-
chine migration [69, 46, 51], or more recently container migra-
tion [5]. Using these techniques allows datacenter operators
to conserve energy and adjust the datacenter’s computational
capacity in response to changing workloads.

Increasing instruction set architecture diversity in the data-
center raises questions about the continued use of execution
migration to achieve energy efficiency. Can applications be
migrated across machines of different ISAs, and is there any
energy advantage for migration?

In this work we introduce system software that prepares
native applications (i.e., applications written in non-managed
languages), to be deployable on multiple ISAs and to be mi-
gratable during execution. Execution migration is supported
by an operating system extension, called heterogeneous OS-
containers, that allows for a Linux container to migrate among
Linux instances seamlessly, despite differences in ISA. We
approach the problem as an application state transformation
problem [7] in user-space, and present techniques to minimize
the amount of state to be transformed to enable fast migra-
tion. Additionally, we leverage a replicated-kernel OS [12]
in which OS services are distributed, and thus their state can
be migrated between servers. We evaluate a prototype on
two heterogeneous-ISA servers, an ARM and an x86 server,
showing that there is up to a 30% energy savings on some
workload mixes, with different projected energy costs for sev-
eral scheduling policies. Due to these advantages, we predict
greater benefits can be obtained at the rack or datacenter scale.
Thus, in this work we present the following contributions:
• A formalization of software state for multi-threaded appli-

cations running on a process-model monolithic operating
system and an analysis of its dependence on the ISA.

• A new software architecture which stretches applications
and operating system sub-environments (containers) across
heterogeneous-ISA servers, allowing applications to run
natively and migrate between servers dynamically.

• A set of techniques and mechanisms at various levels of
the system software stack that implement the proposed ar-
chitecture, i.e., multi-ISA binaries and heterogeneous OS-
containers.

• A prototype built around the Linux ecosystem using Pop-
corn Linux [12], LLVM, and muslc, and evaluated on a
dual-server setup equipped with ARM and x86 processors.
Section 2 discusses the background and motivation for re-

designed system software, Section 3 introduces a formal model



of software for multi-threaded applications running on SMP
OS, and Section 4 uses the model to describe the proposed
software architecture. Section 5 describes our prototype’s im-
plementation details for both the OS and compiler/runtime. In
Section 6 and Section 7, we describe the experimental setup
and evaluate our implementation. Section 8 discusses related
work and Section 9 concludes.

2. Background and Motivation
Datacenter operators, including cloud providers, manage their
fleet of machines as pools of resources. Modern cluster man-
agement software, i.e., datacenter operating systems [73, 59],
extend the concept of single machine operating systems to
a pool of machines. This software abstracts away manage-
ment of individual machines and allows developers to manage
resource pools as a single entity, similarly to an operating
system managing processing, memory, and storage resources
in a single computer. Example datacenter OSs include Open-
Stack [20], Mesosphere/Mesos [50, 34], and Kubernetes [18].

One of the key characteristics of datacenter OSs is that mul-
tiple applications can be run on the same cluster. Concurrently
executing applications share resources, maximizing cluster
utilization and increasing energy efficiency. To achieve eco-
nomic utilization of cluster resources, datacenter OSs both
load balance across machines and consolidate jobs to fewer
nodes. Load balancing [55, 39] spreads the current workload
evenly across nodes, using equal resources on each machine
for reduced power consumption. Although this solution may
not maximize energy efficiency, it allows datacenter operators
to react quickly to load spikes. Alternatively, consolidating
workload onto fewer servers at runtime is one of the most
effective approaches for conserving energy. The machines
executing the workload are run at high capacity (expending
significant amounts of power), while the remaining machines
are either placed in a low-power state or are completely shut
down. This has been shown to increase energy proportionality
at the group-of-machines “ensemble” level [67], but reduces
the ability of the datacenter to react quickly to workload spikes.
Both techniques statically assign jobs to nodes. However, ad-
vanced versions of these techniques may also dynamically
migrate jobs between nodes, which are today assumed to be
homogeneous (or at least single-ISA heterogeneous [48]).

Heterogeneous-ISA Datacenters. As heterogeneous-ISA
servers are introduced into the datacenter, resource managers
are constrained to either splitting the datacenter into multiple
per-ISA partitions or statically allocating jobs to machines.
Splitting the datacenter into per-ISA partitions allows resource
managers to load balance and consolidate tasks across a subset
of servers. This is the current model, as ARM and x86 cloud
providers [43, 58] offer separate ARM and x86 partitions (e.g.,
OpenStack zones) to customers. Partitioning resources has
many disadvantages [34] – for example, one partition could be
idle while another is overloaded, leading to wasted processing
power and service disruption. The capability to move jobs
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Figure 1: Slowdown when emulating ARM applications on x86
versus running natively on ARM (top graph) and the reverse
for native x86 applications in the bottom graph.

across partitions is needed to cope with varying workloads.
Native applications can be compiled for heterogeneous-

ISA servers, but cannot migrate between them at runtime.
Applications written using retargetable or intermediate lan-
guages (e.g., Java, python, etc.) can run on heterogeneous-ISA
servers, but are usually statically assigned to servers. Although
there are tools that implement execution migration for these
languages [29, 30], migrating stateful applications is costly
due to the serialization/de-serialization process between ISA-
specific formats. Additionally, many applications are written
in lower-level languages like C for efficiency reasons (e.g.,
Redis). Moving jobs between machines increases energy pro-
portionality [71], meaning inter-ISA migration is key.

Execution Migration. Execution migration at the hy-
pervisor and application level is implemented by various
open-source and commercial products (e.g., VMware, Xen,
KVM/QEMU, Docker). Although it is not officially supported,
it is possible to migrate an application between ARM and x86
machines with KVM and QEMU. In order to understand the
costs of using KVM/QEMU to abstract the ISA, we measured
the slowdown when migrating an application (including the
operating system) between KVM on x86 and QEMU on ARM.
Figure 1 shows the slowdowns experienced when running ap-
plications from the NPB benchmark suite [9] in emulation
versus native execution. The top graph shows the slowdown
experienced by applications (compiled for ARM) when em-
ulated on x86 versus running natively on ARM. The bottom
graph shows the slowdown experienced by applications (com-
piled for x86) when emulated on ARM versus running natively
on x86. Additionally, the same experiment for Redis [2], a
typical datacenter application, incurs 2.6x slowdown for ARM
and a 34x for x86. Clearly, using emulation is not a suitable
technique for hiding heterogeneity, as several applications ex-
perience slowdowns of several orders of magnitude. The cost
of emulation, even when using Dynamic Binary Translation
(DBT), is unacceptably high.

Software State and Code Mobility. Execution migration
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in the traditional SMP programming model relies on the fact
that both applications and the OS share data in a common for-
mat, as all processors are of the same ISA. Similarly, VM and
container migration exploits the fact that the same software
state can be migrated unmodified between homogeneous-ISA
machines. In the latter case, the hypervisor (for VMs) or the
operating system (for containers) provides a layer of abstrac-
tion to mimic the same hardware and software resources on
different machines.

Today, when processors of different ISAs must communi-
cate or transfer application execution, mechanisms that make
the application distributed have been used to circumvent ISA
differences. However, these same mechanisms prevent exe-
cution migration. The Internet provides a common format
that stretches applications across multiple heterogeneous-ISA
nodes – messages are serialized from an ISA-specific format
into a pre-agreed format for all communication. Similarly,
code offloading and message passing require the developer to
manually partition and map the application to each processor
in the system, with explicit communication between the dif-
ferent parts. Application state must be manually split, copied,
and kept consistent amongst all pieces, and the boundaries
between application components are fixed. Additionally, se-
rialization and de-serialization is necessary to convert each
piece of data between formats for each ISA.

We propose minimizing runtime conversion of state by trans-
forming binaries compiled for different ISAs to use a common
state format – i.e., memory can be migrated without any trans-
formation. For state that must be transformed, the operating
system and the runtime work together to transform state and to
enable execution migration with minimal performance impact.

3. A Model of Software
We propose a formal model of software to describe execu-
tion migration. Software is composed of executable code and
data (e.g., constants, variables). We consider a model in which
executable code is compiled to native machine code (i.e., no in-
termediate representation) and does not mutate during program
execution (i.e., no self modifying code). During execution the
state of the software includes the state of the hardware – CPU
registers, configuration and peripherals registers, etc.

We define a model of the state of the software for multi-
threaded applications running on a multi-tasking process-
model monolithic operating system. We consider operating
system services to be atomic [27]. For application software
running on such an operating system, the hardware-related
state is minimal (essentially, CPU registers) due to the OS’s
role in managing and abstracting access to hardware resources.
Hence, the hardware-related state is attributed to the OS state.
In our model the OS completely mediates IO, such that an
application’s address space exclusively maps memory – this
model does not support mapping devices into virtual memory,
but can be easily extended to support it.

Application. The state of an application is a collection

of variables (data) and executable code. Each multithreaded
application includes a per-thread state for each thread i, Ti,
and a per-process state, P. If the application is multiprocess,
the model extends to sharing between multiple processes1.
The per-thread state for thread i contains thread local storage
data (Li), user-space stack (Si), and the user-space visible state
of the CPU (Ri). Li includes program- and library-declared
per-thread variables (e.g., variables declared with __thread

in GCC). Hence, Ti =< Li,Si,Ri >. The per-process state
includes all other user-visible state that makes up the applica-
tion’s address space, such as global data structures allocated
in the heap or in the program’s data sections. P also includes
the application’s executable code (i.e., the .text section).

Operating System. The operating system state can be also
defined in terms of thread-related data, however a formaliza-
tion centered around the application is required to migrate
an application container. From the point of view of an ap-
plication thread executing in kernel-space, T K

i includes the
kernel stack (SK

i ), the kernel CPU registers (RK
i ), and the ker-

nel per-thread local data (LK
i , e.g., the thread control block).

For a thread executing in user-space, T K
i only includes the

per-thread local data. Note that in message-passing kernels,
the thread’s receiver buffer state belongs to either T K

i or Ti if
the thread is executing in kernel- or user-space, respectively.
Thus, T K

i =< LK
i ,S

K
i ,R

K
i >. PK is composed of all T K , inter-

rupt state, and kernel thread state for the kernel services used
by a process. It also includes hardware-related state, e.g., the
CPU’s page table. Kernel state can be divided by operating
system service Ox, where x is a specific service. Because ker-
nel services are atomic from an application point of view, each
kernel service can be split into a per process state PK

j,x (for
each user-process j using that service), a kernel wide state Kx
and a hardware-related state Wx, if there is an hardware device
or peripheral associated with that operating system service.
Thus, each operating system service’s state can be defined
as Ox =< Kx,Wx,PK

0,x, ..,P
K
k,x >, where there are k processes

using O (the model can be extended to support per-task state).

4. Architecture
We propose a redesign of system software in order to create
native applications that can be deployed on and seamlessly
migrated between heterogeneous-ISA machines. The datacen-
ter OS already extends horizontally across multiple machines,
independently of the ISA. Currently, however, native applica-
tions can only be deployed on the ISA for which they were
compiled and cannot migrate among ISAs without paying a
huge emulation overhead.

We introduce multi-ISA binaries and a runtime that enables
an application, compiled with a new toolchain, to have a com-
mon address space layout on all ISAs for most application
state. State that is not laid out in a common format is con-
verted between per-ISA formats dynamically during migration,

1We do not consider this case in our formalization, although extending the
model to support multiprocess applications is trivial.
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with minimal overhead. We present a series of distributed ser-
vices at the kernel level to enable the seamless migration of
applications in an OS container between heterogeneous-ISAs
machines. Both the user-space and kernel-space state of appli-
cations is automatically transferred between machines. Thus,
heterogeneous OS-containers elastically span across ISAs dur-
ing execution migration.

Application. Seamlessly migrating a multithreaded appli-
cation between ISAs requires each application thread be able
to access its code and data on all ISAs. Rather than attempting
to dynamically transform and keep application state consistent
in a per-ISA format, we propose to have multi-ISA binaries in
which each ISA’s machine code conforms to a single address
space layout. The application’s data and text, P, is kept in
a common format across all ISAs. Additionally, per-thread
state Ti is kept in a common format except where the layout is
dictated by the underlying ISA (per-thread register state Ri) or
where changing the layout has significant performance cost (a
thread’s stack, Si). We advocate for a common format in order
to avoid transformation costs.

To enforce a common state for an application P that will run
on ISA A (IA) and ISA B (IB), all symbols in the application
must have the same virtual address. This allows the iden-
tity function to be used to map all state between ISA-specific
versions of the process, PIA = PIB (note that the application bi-
nary will contain a .text section compiled for IA and for IB,
but function symbols will be mapped to the same virtual ad-
dresses). For each application thread, the thread local data has
the same format on each ISA, LIA

i = LIB
i . However, to allow

the compiler to optimize stack frame layout for each ISA, the
stack is not kept in a common format and a separate mapping
function is used to convert each stack frame from one ISA to
the other, f AB() : SIA

i → SIB
i and f BA() : SIB

i → SIA
i . Moreover,

we define a state transformation function rAB() : RIA
i → RIB

i
and rBA() : RIB

i →RIA
i that maps the program counter, the stack

pointer and the frame pointer between ISA-specific versions of
the program. However, f AB(), f BA(), rAB(), and rBA() are only
valid at certain points in the application’s execution, known
as equivalence points. Equivalence points exist at function
boundaries, among other locations in the program.

Operating System. In the datacenter, each server runs a
natively compiled operating system kernel. The datacenter
operating system manages all servers somewhat similarly to
a multiple kernel OS [14, 11] but at a different scale. Our
architecture merges these two designs – our design introduces
distributed operating system services (similarly to a replicated-
kernel OS) that presents a (containerized) single working envi-
ronment to the application when migrating between servers.

The operating system is able to provide a single execution
environment due to the fact that applications interact with
the operating system via a narrow interface: the syscall, and
in *NIX operating systems, the filesystem. Because OS ser-
vices are distributed, kernels can reproduce the same OS inter-
face and resource availability regardless of the architecture on

which the application is executing, providing a single elastic
operating environment. This single operating environment is
maintained among kernels for the duration of the application.
Moreover, it supports applications running among servers.
After migration, the process’s data is kept on the source ker-
nel until there are residual dependencies, i.e., it has all been
migrated.

For each operating system service Ox, the service on ISA A
(IA) and on ISA B (IB), OIA

x and OIB
x , keeps the per-process

state consistent among kernels. Thus, an identity mapping
applies to pAB() : PK,IA

x, j → PK,IB
x, j or pBA() : PK,IB

x, j → PK,IA
x, j . Ev-

ery time the state of a service is updated on one kernel, it
must be updated on all other kernels (different services require
different consistency levels). This per-process state is the only
part of the state that must be kept consistent for kernel services
running among kernels.

4.1. System Software Redesign

In addition to a redesigned operating system and compiler
toolchain, a runtime must provide state transformation where
necessary. Thus, we advocate for a compiler toolchain that
produces multi-ISA binaries, a heterogeneous OS-container
that allows execution migration between heterogeneous-ISA
machines, and a runtime that provides state transformation for
application state not laid out in a common format.

Multi-ISA binaries and runtime. We propose a compiler
toolchain that creates a binary per ISA. In addition to creating
a common virtual address space, the compiler inserts call-outs
at equivalence points, called migration points, that allow the
application to migrate between architectures. The compiler
also generates metadata that describes the functions to trans-
form stack frames ( f AB() and f BA()) and register state (rAB()
and rBA()) between ABIs at the inserted call-outs.

Heterogeneous Containers. The proposed software infras-
tructure allows the developer to write an application targeting
an SMP machine, and migrate it amongst multiple diverse-ISA
machines at runtime. The proposed software architecture pro-
vides a single operating system sub-environment across mul-
tiple kernels – i.e., operating-system based virtual machines
(containers or namespaces [17]) on different ISA machines,
and migration amongst them. We call these virtual machines
heterogeneous OS-containers.

5. Implementation
We implemented a prototype of the proposed architecture on
two heterogeneous-ISA servers, with ARM and x86 processors
(both 64-bit), interconnected through a low-latency network
via the PCIe bus. This is representative of future datacenters
due to the current dominance of x86 and the push for ARM in
the cloud. The prototype is based on the Linux system software
ecosystem to take advantage of its support for many hardware
architectures and the vast availability of applications. How-
ever, we believe that the proposed architecture applies to other
software ecosystems, including any multiple-kernel operating
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system design (e.g., Barrelfish). The multiple-kernel operat-
ing system which provides the heterogeneous-OS container
functionality is based on the Linux kernel. The heterogeneous
compiler toolchain is built using clang/LLVM and GNU binu-
tils. The runtime library uses compiler-generated metadata
and DWARF debugging information for state transformation.
The prototype currently only targets applications written in C.

5.1. The Operating System

We extended the Popcorn Linux replicated-kernel OS [10, 12]
to support heterogeneous-ISA machines. Popcorn is based
on the Linux kernel and re-implements several of Linux’s op-
erating system services in a distributed fashion. We ported
the original code to support ARMv8 (APM X-Gene 1 plat-
form [6]) as well as x86, 64-bit. Moreover, we implemented
a new messaging layer to support communication between
the two servers. We both introduced new operating system
services and redesigned previous ones to support migratable
heterogeneous containers, including a heterogeneous-binary
loader, heterogeneous distributed shared memory (hDSM),
and heterogeneous continuations.

The replicated-kernel OS consists of different kernels, each
compiled for and running on a different-ISA processor. Ker-
nels do not share any data structures, but interact via messages
to provide applications with the illusion of a single operat-
ing environment amongst different processors. The OS state
is broken down into OS services, whose state is replicated
amongst kernels. The replicated state provides the illusion of
a single operating environment, thus enabling thread and pro-
cess migration and resource sharing among kernels. Popcorn
Linux introduces a thread migration operating system service
that provides the foundation for migrating a program between
kernels during execution. Heterogeneous-OS containers are
resource-constrained operating system environments that mi-
grate among kernels. Thus even if the kernel is running on
another ISA, the application accesses the same file system,
the same abstract hardware resources, the same syscalls, etc.
This is built using Linux’s namespaces and Popcorn Linux’s
distributed services.

Heterogeneous distributed shared memory (hDSM).
The memory state of each migrating application is replicated
and is kept consistent amongst kernels until all threads of the
same application migrate to the same kernel. DSM enables
on-demand migration of memory pages without forcing all
threads to migrate at once (i.e., no "stop-the-world").We ex-
tended the software DSM implemented in Popcorn Linux [12]
to support heterogeneous platforms (hDSM). We added mem-
ory region aliasing, specifically for .text sections and vDSO
sections. Moreover, we disabled vsyscalls in order to force
all syscalls to enter the OS. Even if the specific interconnect
we used between servers as well as recent network technolo-
gies (e.g., RDMA) offer a form of shared memory through
PCIe, due to the higher latencies for each single operation,
we opted for a full DSM protocol between ARM and x86

servers. In other words, the hDSM service migrates pages in
order to make subsequent memory accesses local rather than
repeatedly accessing remote memory.

Heterogeneous binary loader. We implemented heteroge-
neous binaries as one executable file per ISA (see Section 5.2).
Binaries contain an identical address space layout but each has
its own .text section natively compiled for that ISA. Thus,
the compiler provides a per-ISA version of an application’s
machine code. Each kernel loads the address space of the ap-
plication and executes that ISA’s native code. When execution
migrates between kernels, the machine code mappings are
switched to those of the destination ISA. This is implemented
in Linux’s ELF binary loader and integrated within the hDSM
kernel service, which aliases the .text section of each ISA
within the same virtual address range.

Thread migration and heterogeneous continuations.
This work extends a process model OS. Each application
thread has a user-space stack as well as a kernel-space stack.
The proposed software architecture manages each stack dif-
ferently. To facilitate user-level process and thread migration,
threads use the same user-space stack regardless of the ISA
on which they are running. This design requires transforming
the user-space stack during migration (see Section 5.2). Con-
versely, each thread has a per-ISA kernel-space stack. This
is handled similarly to a continuation [26]. An application
thread that is executing code in kernel space cannot migrate
during execution of a kernel service; otherwise, service atom-
icity is lost. Moreover, kernel threads do not migrate. When
a user thread migrates amongst different-ISA processors, the
kernel provides a service that maps the program counter, frame
pointer, and stack pointer registers from one ISA to the other.

5.2. The Compiler

The compiler is based on the LLVM framework and ensures
that data and executable code are placed in the appropriate
locations in virtual memory so that the OS’s services just pre-
sented can transparently migrate applications between ISAs.
The toolchain must also provide these guarantees with minimal
impact on performance. Hence, for application state which
cannot have common layout without a large impact on perfor-
mance (e.g., a thread’s runtime stack Si), state transformation
is provided by the runtime (Section 5.3).

There were two design goals for the compiler toolchain.
The first was to prepare applications to be migratable among
architectures without developer intervention. Hence, the com-
piler needed to support traditional SMP semantics and ap-
plication interfaces, such as the standard C library, POSIX
threads library, etc. The second was to limit changes to the
core compiler itself. This allowed compiled applications to
benefit from existing compiler analyzes and optimizations to
generate highly tuned machine code. Additionally, by limiting
changes to the generated code (e.g., no changes to stack frame
layout as required in [24, 68]), it makes the job of porting the
toolchain to new architectures simpler.
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Figure 2: The compilation process and resulting cross-binary
virtual memory layout.

Compiler Architecture. We modified clang/LLVM [40]
as the compiler for ARM64 and x86-64. We also modified
the GNU gold [66] linker to change the application layout to
enforce a common address space among ISAs. The compila-
tion process is shown in Figure 2. After an initial profiling
phase, the compiler inserts migration points into the applica-
tion source so that the application has the chance to migrate be-
tween architectures more frequently. Next, the toolchain runs
standard compiler optimizations and several custom passes
over LLVM’s intermediate representation (LLVM bitcode) to
enable symbol alignment. Then, the architecture-specific back-
ends generate binaries for each available architecture in the
system. Finally, all application symbols are aligned so that
global data are laid out in a common format and code memory
pages can be aliased by the OS heterogeneous binary loader.
We describe each component in the following sections.
5.2.1. Migration Points Because the kernel cannot interrupt
and migrate threads between architectures at arbitrary loca-
tions, application threads check if the scheduler has requested
a migration at known-good locations. These migration points
are implemented entirely in user-space. The kernel scheduler
interacts with the application through a shared memory page
between user- and kernel-space (vDSO). When the scheduler
wants threads to migrate, it sets a flag on the page requesting
the migration. At migration points threads check if the flag
has been set, and if so, they initiate the state transformation
and migration mechanisms detailed below.

Inserting Migration Points. Migration points can only be
inserted at equivalence points in the application source. Func-
tion boundaries are naturally occurring equivalence points, so
the compiler automatically inserts migration points at function
entry and exit. Additionally, the compiler can insert migra-
tion points into other locations in the source in order to adjust

the migration response time, i.e., the time between when the
scheduler requests a migration and when the thread reaches a
migration point. More migration points means a lower migra-
tion response time, but higher overhead due to more frequent
migration request checks.

Optimizing Migration Point Frequency. The number of
migration points inserted into the code dictates the frequency
at which an application can be migrated between different
architectures. We developed a tool based on Valgrind [52] to
analyze the number of instructions between migration points
during an application’s lifetime. This analysis gives insight
into where additional migration points should be inserted to
minimize overhead from checking for migration requests while
maximizing migration flexibility. We used this analysis to
place additional migration points to enable the application to
migrate approximately once per scheduling quantum (roughly
50 million instructions).
5.2.2. Symbol Alignment After migration points have been
inserted, the toolchain generates optimized LLVM bitcode
and compiles a binary for each target ISA. With the traditional
compilation process each binary has a different virtual memory
layout due to differences in symbol size, symbol padding,
etc. The binaries for each architecture must have aligned
symbols so that accesses to global data can be kept consistent
by the hDSM service, and calls to functions can be aliased
to the correct per-architecture version of the function by the
heterogeneous binary loader. A per-architecture linker script
places data and function symbols at the same virtual addresses
for each binaries.

Alignment Tool. We developed a Java tool that reads sym-
bol size and alignment information generated by the linker,
and generates a per-ISA linker script that aligns symbols at
identical virtual memory addresses. The tool aligns symbols in
loadable ELF sections (e.g., .text, .data, .rodata, .bss,
etc.) by progressively calculating their addresses in virtual
memory. Aligning data symbols is simple, as the primitive
data types have the same sizes and alignments for ARM64 and
x86-642. However, aligning function symbols requires adding
padding so that function sizes are equivalent across binaries
for all target architectures.

Thread-Local Storage (TLS). We also modified the gold
linker in order to ensure that TLS (and its associated reloca-
tions) was laid out according to a common format across all
binaries. Thus, the TLS layout for all binaries was changed to
map symbols identically to the x86-64 TLS symbol mapping.

5.3. The Runtime

Enabling migration between architectures requires additional
runtime support to transform per-thread state so that a migrat-
ing thread can resume execution on the destination architecture.
The runtime must transform all state that is not laid out in a
common format – in particular, the stack (Si) must be rewritten

2Architectures that have different primitive data sizes or alignments would
require more careful handling
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to conform to the destination architecture’s ABI, and the des-
tination architecture register state (Ri) must be initialized to
a known-good state. The runtime state transformation mech-
anisms are activated at migration points, before migration
occurs. Once the scheduler has requested a thread migration,
the runtime re-writes the stack and patches up architecture-
specific register state (e.g., the stack pointer, link register, etc.).
After state transformation is completed, the thread makes a sys-
tem call to the thread migration service to migrate execution
to the destination processor.

Stack Transformation. The stack transformation runtime
is responsible for converting each thread’s stack from the cur-
rent ABI to the destination ISA’s ABI. It does this without
restrictions on stack frame layout, meaning there are no limi-
tations preventing the compiler from doing aggressive register
allocation and optimizing the stack frame layout for each archi-
tecture. The runtime attaches to a thread’s stack at migration
points and rewrites the stack frame-by-frame in a single pass.

The runtime utilizes metadata generated by the compiler
for transformation. The compiler records the locations of live
variables at function call sites and generates DWARF frame
unwinding information so the runtime is able to traverse the
stack. Note that the runtime only needs live value information
at function call sites, as they are the only points at which
transformation can occur – the stack is by definition a series of
frames corresponding to live function invocations (a chain of
function calls), and the most recent function invocation makes
a call-out to a migration library, where special handling begins
the transformation process.

Stack transformation is performed in user-space, but is hid-
den inside of the migration runtime. The runtime divides a
thread’s stack into two halves. When preparing for migration,
the runtime rewrites from one half of the stack to the other,
and switches stacks right before invoking the thread migration
service. The stack transformation library begins by analyzing
the thread’s current stack to find live stack frames and to cal-
culate the size of the transformed stack. It then transforms a
frame at a time starting at the outer-most frame (i.e., the frame
of the most recently called function), from the source to the
destination stack until all frames have been re-written.

During compilation, an analysis pass is run over the LLVM
bitcode to collect live values at function call sites. Another
pass inserts an intrinsic into the IR, which informs the various
LLVM backends to generate variable location information af-
ter register allocation. This metadata serves two purposes – it
maps function call return addresses across architectures (allow-
ing the runtime to populate return addresses up the call chain)
and it tells the runtime how to locate all the live values needed
to resume the function invocation as the thread unwinds back
through the call chain on the destination architecture. The
compiler also generates DWARF frame unwinding metadata,
detailing the per-architecture, per-function register save proce-
dure for the runtime.

To transform an individual frame, the runtime reads the live

value location metadata and copies live values between stack
frames. Additionally, the runtime saves a return address and
previous frame pointer, i.e., the saved frame pointer from the
caller’s frame. The runtime must ensure the stack adheres
to the destination architecture’s ABI, meaning that it must
follow the register-save procedure for callee-saved registers
on the destination ISA. If the runtime finds a live value in a
callee-saved register, it walks down the function call chain
until it finds the frame where the register has been saved, and
places the value in the correct stack slot (some registers may
still be live in the outermost function invocation, however).

The runtime must also fix up pointers to data on the source
stack to point to the appropriate location on the destination
stack (pointers to global data and the heap are already valid due
to symbol alignment and the hDSM service). When the stack
transformation runtime finds a pointer in a frame that points
to an address within the source stack’s bounds, it makes a note
that a pointer on the destination stack needs to be resolved.
When the runtime finds the pointed-to data on the source stack
during transformation, it first copies the pointed-to data to the
destination stack (as part of normal frame re-writing) and fixes
up the pointer with the address of the newly copied to data on
the destination stack.

5.4. Limitations

The prototype is limited to 64-bit architectures, as migrating
applications between 32-bit and 64-bit address spaces would
require dynamically changing the address space layout and
may be impossible in the general case. Currently, the toolchain
does not support applications that use inline assembly, as live
variable analysis in the middle-end is not compatible with
assembly. Additionally, architecture-specific features such
as SIMD extensions and setjmp/longjmp are not supported,
although we plan to study these in future work. Finally, ap-
plications cannot migrate during library code execution (e.g.,
during calls to the standard C library).

6. Evaluation
We evaluated the mechanisms described for container migra-
tion among heterogeneous-ISA servers on our prototype. We
wanted to answer the following questions:
• Is it possible to migrate an application container between

server machines with different ISAs at runtime?
• What are the costs for this migration?
• Does migration enable effective load balancing and con-

solidation for obtaining energy proportionality among
heterogeneous-ISA servers in the datacenter?

• What types of scheduling policies can better exploit the
heterogeneity among machines in the datacenter?
Hardware. We built our prototype with an x86 machine

and an ARM development board. The x86 is a server-class
Intel Xeon E5-1650 v2 (6 cores, 2-way hyper-threaded at
3.5GHz, 12MB of cache), with 16GB of RAM. We disabled
hyperthreading in the experiments. The ARM development
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board is an Applied Micro (APM) X-Gene 1 Pro based on
the ARMv8 APM883208 processor (8 cores at 2.4GHz, 8MB
of cache), with 32GB of RAM. The two motherboards were
connected via a Dolphin ICS PXH810 [25], which was the
fastest interconnect on the market at the time we designed the
experiment (up to 64Gb/s). However, our prototype supports
any other network interface card.

Power measurements. We recorded power consumption
via both on-board sensors and external power measurement
equipment. On the x86 processor, we used Intel’s RAPL [32]
to measure power for the core and uncore, while on the ARM
board we queried the off-socket power-regulator chips via
I2C. Power was measured externally by inserting .1Ω shunt
resistors on each ATX power supply line. A data acquisition
system was built using a National Instruments 6251 PCIe DAQ
in a separate system. We acquired readings at 100Hz on both
systems in order to have readings at high resolution (which
would be low-pass filtered if recorded at the wall).

Software. Our prototype extends Popcorn Linux (based on
Linux version 3.2.14) to Linux version 3.12 (APM X-Gene 1
Pro baseline). Where not indicated, vanilla Linux version 3.12
was used in the evaluations. We leveraged LLVM 3.7.1 [40]
along with the clang front-end, Java 1.8.0-25, GNU Binutils
2.27, and gold 1.11 [66] to create multi-ISA binaries. We mod-
ified musl-libc, version 1.1.10, to create a common TLS layout
and to provide additional support needed for pthreads across
different ISAs. To run OpenMP applications, we exploited the
POMP library provided with Popcorn [12].

Benchmarks. We selected multiple applications in order
to create a mix of short- and long-running workloads as well
as memory-, compute-, and branch-intensive workloads, sim-
liarly to the analysis in [8, 38]. We used applications from the
NAS Parallel Benchmarks (NPB) [9] because they can be both
short and long running by varying the problem size (classes A,
B, and C). In addition, we ran the Verus Model Checking tool
version 0.9 [19] (which we ported to 64-bit) and bzip2smp
version 1.0 [1] (extended to support the same command line
arguments as GNU bzip). These add branch-intensive work-
loads with variable input sizes to the benchmarks. This mix of
benchmarks covers execution times ranging from milliseconds
to hundreds of seconds, which is what it is usually expected in
datacenters [57] (including low-latency jobs). We focus on a
worst case utilization scenario for the ARM machine which is
currently not as powerful as the x86 server [8, 38]. We scope
out network applications in order to highlight the network
costs of our architecture, including performance and power,
due to execution migration.

Job Scheduling. We evaluated how to take advantage of
heterogeneous migration via scheduling. Without heteroge-
neous migration, the scheduler must partition jobs between
different architectures and jobs cannot move between ma-
chines. There exists a large body of work on scheduling for
heterogeneous processors and servers; most of this work fo-
cuses on single-ISA heterogeneity (e.g., [48]). We developed

scheduling heuristics that assign and migrate jobs while using
a minimal amount of information from each machine (CPU
load), leaving the exploration of further policies on a larger
scale (heterogeneous-ISA clusters) as future work. One impor-
tant observation is that in heterogeneous multi-core processors,
unbalanced thread scheduling can provide significant energy
savings [23]. With that in mind, we designed two dynamic
policies which assign and dynamically migrate applications be-
tween servers. The first policy balances the number of threads
on the x86 and on the ARM machine; the second keeps the
number of threads unbalanced on the x86 and on the ARM ma-
chines, such that the x86 machine runs more threads than the
ARM machine. We compare these two dynamic policies to the
following static policies which cannot migrate applications,
and thus cannot change scheduling decisions after assigning
threads to servers: balancing the number of threads on two
identical x86 processors; balancing the number of threads on
an x86 and an ARM processor; and unbalancing the number
of threads on an x86 and an ARM processor, such that the x86
processor runs more threads than the ARM processor.

Migrating Competitors. There are few projects that support
heterogeneous-ISA migration and that have source code avail-
able [31, 30, 29]. At the time of writing we were able to use
PadMig [29] on our architecture. PadMig is based on Java and
is written in Java. It exploits Java reflection to serialize and
de-serialize an application’s objects during migration. Thus,
we compared migration using a managed language versus our
prototype which migrates at the native code level.
7. Results

We evaluated the individual migration mechanisms and
the energy advantages achieved using migration in our
heterogeneous-ISA prototype. Due to space limitations, only
a subset of results are presented.

Inserting Migration Points. We wanted to understand
whether we could insert enough migration points into appli-
cations to reach the granularity of a migration point every 50
million instructions. Figures 3, 4 and 5 show a distribution
of the number of instructions between migration points for
CG, IS, and FT (class A). We ran each benchmark using the
Valgrind tool (described in Section 5.2.1) to count the number
of instructions between function calls ("Pre"). Using this infor-
mation, we then inserted migration points to break up regions
containing larger numbers of instructions between migration
points ("Post"). As the graphs show, using the analysis we
were able to insert enough migration points to reach our goal.

Migration Point Overhead. Next, we wanted to evalu-
ate the cost of inserting migration points into the code. Fig-
ures 6, 7, 8 and 9 show the overhead for inserting migration
points for CG and IS versus uninstrumented versions of the
application with various class sizes and numbers of threads.
As shown in these graphs, the overheads for instrumentation
are small compared to total application execution time. Most
overheads are less than 5%, and in general decrease as class
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Figure 3: NPB CG number of instructions
between migration points.
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Figure 4: NPB IS number of instructions
between migration points.
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Figure 5: NPB FT number of instructions
between migration points.
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Figure 6: NPB CG ARM wrap-
per code overhead.
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Figure 7: NPB CG wrapper
x86 code overhead.
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Figure 8: NPB IS wrapper
ARM code overhead.
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Figure 9: NPB IS wrapper x86
code overhead.
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size and number of threads increase (several configurations
show speedups due to cache effects). These results indicate
that inserting migration points does not significantly impact
performance, as migration points consist only of a function
call and a memory read.

Unified Layout. We next evaluated the cost of the final
stage of the modified compiler – imposing a unified layout by
aligning symbols across multi-ISA binaries. Table 1 shows the
execution time and the L1 instruction cache miss ratios of IS
and CG (classes A, B and C) versus the unaligned version of
the binary. As shown in the table, execution time changes up
to 1% in these configurations, meaning that symbol alignment
has a negligible impact on performance for applications. L1
instruction cache miss ratios are strongly correlated with ap-
plication speedup/slowdown. We observed less than a 0.001%
difference in L1 data cache misses. This demonstrates that
data alignment has a small impact on performance.

IS A CG A IS B CG B IS C CG C

x86Exec 0.984 1.018 1.009 1.036 0.999 1.014
x86L1IMiss 0.843 1.005 1.000 1.091 0.942 1.040
ARMExec 0.994 1.0177 1.006 1.003 1.0074 1.004
ARML1IMiss 0.870 2.096 2.8254 1.005 1.175 1.129

Table 1: ARM and x86 execution time and L1 cache miss ratios
compiling w and w/o alignment. NPB IS and CG, class A, B,
and C compiled with -O3. Exec values higher than 1 indicate
a slowdown due to alignment, lower values a speedup.

Stack Transformation. After evaluating overheads im-
posed by the new compiler toolchain, we then evaluated the
runtime costs of migration. Figure 10 shows the stack trans-
formation latency, in microseconds, for the CG, EP, FT, and
IS benchmarks. The plots show the range, 1st and 3rd quar-
tiles and median latencies for transforming the stack at all
migration points in the binary. The x86 processor is able to
transform the stack in under 400µs for the majority of cases,
while the ARM processor requires 2x as much latency. Re-
gardless, transformation latencies are small enough that they

Figure 10: Stack transformation latencies. Each plot shows
the minimum, 1st quartile, median, 3rd quartile and maxi-
mum transformation latencies experienced across all migra-
tion points for each benchmark.

do not become a bottleneck for frequent thread migrations.
In general, stack transformation latencies rise proportionally

with the number of stack frames and variables in each stack
frame. This is due to both parsing the compiler-generated
metadata to analyze stack frames and for copying live values
from the source to destination stack. For example, the migra-
tion point for the function fftz2 in FT requires re-writing 7
frames and a total 31 live values, leading to heavier lookup
and re-writing costs. This migration point caused the longest
transformation latency for x86-64 and ARM.

Migration. We evaluated the instantaneous power (both
processor and external readings) and CPU load when migrat-
ing an application between x86 and ARM. We compared
against PadMig (Java) which serializes application objects
and sends them over the network. We migrated one function
of the NPB IS B serial benchmark (full_verify()) to ARM,
with the remainder of the application on x86. We used NPB
version 3.0 which includes IS in both Java and C. Results
are depicted in Figure 11, with PadMig on the left and our
prototype on the right. The first row shows ARM power and
load, while the second shows the same for x86. The total exe-
cution time is 23s for Java and 11s for native. The results show
how serializing data (from seconds 5 to 7 of the bottom left
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Figure 11: PadMig (Java) vs Multi-ISA binary migration (na-
tive). Power and load traces for NPB IS B serial execution.

graph) and de-serialization (from seconds 9 to 13) requires up
to 8s of execution time. Migration in our solution starts at sec-
ond 8, and the application resumes execution immediately on
ARM. Power and load of our solution spikes towards the end
of execution because the system is transfering lots of pages
(for a period of only 2s). This is because the hDSM service
is multithreaded, even though the application is serial. The
graphs also show how the external power consumption for this
benchmark (similarly to all our benchmarks) is proportional to
the internal power readings, and thus we only report internal
power readings for the rest of the section.

Job Arrivals and Scheduling. We evaluated how dynamic
scheduling using migration compares to static load balanc-
ing. For our comparison we generated sets of jobs from our
benchmarks using a uniform distribution, evaluating both a
sustained workload and periodic arrivals. Because the X-gene
1 is a first-generation development board with sub-optimal
power consumption, we used McPAT [42] to project that on
FinFET technology, future ARM processors will consume
1/10th of the measured power while running at the same clock
frequency. We first did compare static versus dynamic poli-
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Figure 12: Sustained workload. Energy consumption break-
down by machine for each scheduling policy and total
makespan ratio of the heterogeneous scheduling policies to
the static policy for different workload mixes.

cies among ARM and x86 but the results shown a net win of
dynamic scheduling (independently on the scheduling policy),
which is minimum consuming twice more energy and taking
double more time to execute (on multiple workloads). There-
fore, here we compare static policies on two (identical) x86
machines with dynamic load balancing on the ARM and x86.

Sustained workload. Figure 12 shows the total energy and
the makespan ratio between different policies on 10 sustained
workloads. Each workload consists of 40 jobs that arrive
sequentially without overloading any of the machines. Once a
job finishes, another job is immediately scheduled in its place.
As shown in Figure 12, job migration increases the flexibility
of the system and reduces energy consumption at the expense
of execution time (49% on average with the balance policy
as the slowest). Despite the slowdown, the unbalanced policy
achieves up to a 22.48% reduction in energy compared to the
static policy (unbalanced provides on average a 11.61% energy
reduction, while balanced is 7.88% more energy efficient).

Periodic workload. Figure 13 shows the total energy and
the Energy Delay Product (EDP) of the static and the dynamic
policies of 10 periodic workloads. Each workload consists
of 5 waves of arrivals of up to 14 jobs each (in order to not
overload the two machines). Each group of arrivals is spaced
in time between 60 and 240 seconds. We omitted the dynamic
unbalanced results because the results differ from the dynamic
balanced policy by less than 1%. As shown in Figure 13,
migration improves both energy and EDP. Our system provides
on average a 30% energy reduction and an 11% reduction
in EDP. The ARM and x86 setup with heterogeneous-ISA
migration provides an energy reduction for all sets (up to 66%
for set-3), although EDP reduction is variable between sets.

8. Related Work
Heterogeneous Migration, State Transformation. Semi-
nal work from Attardi et al. [7] advocated for user-space
process migration among heterogeneous-ISA servers, and
was implemented by Smith and Hutchinson in the TUI Sys-
tem [60]. TUI implements execution migration in distributed
systems with full state conversion when applications migrate
across heterogeneous-ISA servers. Yalamanchili and Hy-
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down by machine for each scheduling policy and Energy De-
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att [72] enumerated the differences between migrating among
homogeneous and heterogeneous machines and proposed a
transformation-based approach. Similarly, our work imple-
ments execution migration targeting native compiled applica-
tions. However instead of relying on state transformation, we
modify the compiler so that binaries conform to a common
address space format to the extent that is possible, i.e., when
performance is not affected.

More recently, DeVuyst et al. [24], Venkat and Tullsen [68],
and Barbalace et al. [16] introduce application migration
among heterogeneous-ISA processors that share memory, en-
forcing a (partially) common address space for threads on each
ISA. DeVuyst explores process migration by performing pro-
gram state transformation melded together with binary trans-
lation to migrate on a heterogeneous-ISA CMP. This paper
focuses instead on distributed systems that enable ensemble-
level energy advantages. Differently from these works, we
provide a formalization, a new (multi-ISA) binary architecture,
operating system extensions, and a real prototype.

Multiple works exist on migration among heterogeneous-
ISA machines with object-oriented languages. Heterogeneous
Emerald [63], implemented in the Emerald language compiler
and runtime (without OS support), passes objects between
machines using serialization/de-serialization. PadMig [29]
and JnJVM [30] use reflection in the Java language to also
serialize and de-serialize objects. More recent works such as
COMET [31] and CloneCloud [22] propose migrating Java
applications between portable devices running on ARM pro-
cessors and x86 servers in the cloud. Alternatively, our design
does not require object semantics or managed languages for
migrating applications between heterogeneous-ISA machines.

Heterogeneous DSM. Zhou et al. [75] introduced Mermaid,
a heterogeneous distributed shared memory system similar to
our hDSM service. Instead of taking an abstract approach,
however, we built a prototype in order to study its performance.
Our hDSM service was also inspired by IVY [41], although
hDSM was implemented in kernel space and not in user space.
IVY uses a modified malloc, and thus only provides DSM for
heap-allocated objects. During allocation, the developer must
specify a data type so that during memory page transfers each
element on the page can be converted between formats. Our
design does not require converting page content: it is in a com-
mon format across binaries. IVY also does not facilitate thread
migration, although it supports multithreaded applications. A
similar approach to Mermaid was implemented with a more
rigorous formalism in Mach [28]. Mach tags data objects in
memory (typed malloc, similarly to Lisp) so that at runtime a
converter can translate object contents. Differently from other
approaches, our design requires no code transformation and
minimal runtime conversion, reducing migration execution
overheads.

Operating System Heterogeneity Support. Operating sys-
tem designs to support heterogeneous-ISA processors have

been proposed in the context of a single platform [36, 15, 12,
44]. None of these designs have been shown to work for fully
heterogeneous-ISA processors. Moreover, they are similar to
distributed OSs and thus do not provide a generic OS extension
to migrate OS containers. Helios [53], implemented on top
of Singularity [36], provides primitives to migrate a managed
application between ARM and x86 in a single platform.

Sprite, a network OS proposed by Ousterhout et al. [54],
aimed to hide the distributed aspect of networked machines.
Popcorn Linux [12] mimics this, though for heterogeneous
CPUs instead. In this paper we extended the Popcorn Linux
OS to migrate Linux containers between heterogeneous-ISA
servers. Thus only interactions among processes in the con-
tainer must be propagated among machines creating the con-
tainerized environment.

Linux applications can be migrated among homogeneous
machines using checkpoint/restore functionality [5]. Other op-
erating system provide homogeneous-ISA migration capabili-
ties, e.g., Dragonfly BSD [35]. Our work contributes seamless
thread migration among heterogeneous-ISA machines without
the overheads of checkpoint/restore mechanisms.
9. Conclusion

Datacenters are already built with heterogeneous-ISA ma-
chines, but the fundamental software mechanisms that cur-
rently enable energy-efficiency among homogeneous ma-
chines are hindered by this heterogeneity.

In this work, we propose a redesign of the traditional soft-
ware stack in order to enable natively-compiled applications
to migrate between ISA-diverse machines in the datacenter.
Specifically, we introduce a compiler that builds multi-ISA
binaries, which conform to a single layout, and a runtime that
transforms application state that cannot be kept in a common
format (mostly due to performance reasons). Additionally,
we present an operating system that enables elastic containers
that can migrate between kernels, based on a multi-kernel de-
sign. We built a prototype based on Linux and demonstrated
that applications do migrate between ARM and x86 faster
than Java serialization/deserialization. Applications compiled
with our toolchain experienced no more than a 1% impact
on performance. Stack transformation, the only state trans-
formation needed in our approach during migration, took on
average less than one-half millisecond on x86 and less than a
millisecond on ARM. We show with different arrival patterns
that migration on heterogeneous-ISA machines can improve
energy efficiency up to 22% for sustained loads and up to 66%
for bursty arrivals, as compared to static assignment among
two homogeneous x86 machines; moreover, the EDP is on
average reduced by 11%.
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