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Abstract

In this paper, we consider timeliness and energy optimization in battery-powered, dynamic, embedded

real-time systems, which must remain functional during an operation/mission with a bounded energy budget.

We consider application activities that are subject to time/utility function time constraints, statistical

assurance requirements on timeliness behavior, and an energy budget, which cannot be exceeded at run-time.

To account for the inevitable variability in activity arrivals in dynamic systems, we describe arrival behaviors

using the unimodal arbitrary arrival model (or UAM) [15]. For such a model, we present a DVS (dynamic

voltage scaling)-based, CPU scheduling algorithm called Energy-Bounded Utility Accrual Algorithm (or

EBUA). Since the scheduling problem is intractable, EBUA allocates CPU cycles, scales clock frequency,

and heuristically computes schedules using statistical estimates of cycle demands, in polynomial-time. We

analytically establish EBUA’s properties including satisfaction of energy bounds, statistical assurances on

individual activity timeliness behavior, optimal timeliness during under-loads, and bounded time for mu-

tually exclusively accessing shared non-CPU resources. Our simulation experiments validate our analytical

results and illustrate the algorithm’s effectiveness and superiority over past algorithms.

Index Terms

Real-time systems, energy-efficient scheduling, time/utility functions, utility accrual scheduling

I. Introduction

With the proliferation of mobile and embedded devices that operate on limited battery power, power

and energy management of embedded systems has become critically important. Most of such devices
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have finite energy bounds, embodied by a battery that has a finite lifetime. An important technique

used for optimizing the energy consumption of real-time embedded systems is dynamic voltage scaling

(DVS). With DVS, an appropriate clock rate and voltage can be determined in response to dynamic

application behaviors. This can result in quadratic energy savings at the expense of roughly, linearly

increased application activity sojourn times [3], [11], [13], [14], [20], [21], [27], [30], [31], [33], [37], [45].

In this paper, we consider dynamic, embedded real-time systems in domains including robotics,

space, defense, and consumer electronics. A specific motivating example from the robotics/space

domain is NASA Jet Propulsion Laboratory’s robotic systems (e.g., Mars Rover), which are envisioned

for long-lived, scientific exploration missions on the Mars planet [9]. Such systems are fundamentally

time-critical, as they must sense external objects in a timely manner and produce timely control

responses (e.g., to avoid obstacles in the physical world).

Further, they are energy-critical, as they operate on batteries, and are often subject to a finite

energy budget for a mission’s duration. This is typically due to the non-availability of battery

recharging time and/or energy source. Hence, they must operate without violating their energy

budgets. Doing so, and prolonging the battery life requires bounding and minimizing the system’s

energy consumption, and not just that of the CPU’s consumption.

Such systems often operate in environments with dynamically uncertain properties, which include

transient and sustained resource overloads when application demands (e.g., for CPU cycles) exceed

availability. This happens due to context-dependent, activity execution times and arbitrary activity

arrival patterns. Nevertheless, they desire the strongest possible assurances on activity timeliness be-

havior. Consequently, their non-deterministic operating situations must be characterized with stochas-

tic or extensional (rule-based) models. Another important distinguishing feature of these systems is

their relatively long execution time magnitudes—e.g., in the order of milliseconds to seconds, or

seconds to minutes.

The most distinguishing property of such systems, however, is that they are subject to time

constraints that are “soft” (besides hard) in the sense that completing an activity at any time will

result in some (positive or negative) utility to the system, and that utility depends on the activity’s

completion time. These soft time constraints are subject to optimality criteria such as completing

all time-constrained activities as close as possible to their optimal completion times—so as to yield

maximal collective utility. The optimality of the soft time constraints is generally at least as mission-
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and safety-critical as that of the hard time constraints.

Jensen’s time/utility functions [18] (or TUFs) allow the semantics of soft time constraints to be

precisely specified. A TUF, which is a generalization of the deadline constraint, specifies the utility

to the system resulting from the completion of an activity as a function of its completion time. A

TUF’s utility values are derived from application-level quality of service metrics. Figures 1(a)–1(b)

show some time constraints of two real applications in the defense domain [7], [29] specified using

TUFs.1 The classical deadline is a binary-valued, downward “step” shaped TUF; Figure 1(c) shows

examples.
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Fig. 1: Example TUF Time Constraints. (a): AWACS association TUF [7]; (b): Air defense plot correlation and track maintenance

TUFs [29]; (c): Some Step TUFs.

When activity time constraints are expressed with TUFs, the timeliness optimality criteria are

typically based on accrued activity utility—e.g., maximizing sum of the activities’ attained utilities

or assuring satisfaction of lower bounds on activities’ maximal utilities. Such criteria are called

utility accrual (or UA) criteria, and sequencing (scheduling, dispatching) algorithms that consider

UA criteria are called UA sequencing algorithms.

Note that UA criteria directly facilitate adaptive behaviors during resource overloads, when (op-

timally or sub-optimally) completing activities that are more important than those which are more

urgent is often desirable. UA algorithms that maximize summed utility under downward step TUFs

(or deadlines), meet all activity deadlines during under-load situations [8], [26], [41]. When overloads

occur, they favor activities that are more important (since more utility can be attained from them)

than those which are more urgent. Thus, deadline scheduling’s optimal timeliness behavior [10] is a

special-case of UA scheduling.

Contributions. In this paper, we consider timeliness and energy optimization in dynamic real-

1More real-world TUFs exist, including those with more complex shapes, but they appear in classified US DoD systems and

hence are not in the public domain.
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time embedded systems with the previously mentioned characteristics. In particular, we focus on

their two important aspects: (1) variability in arrival behaviors of application activities; and (2) a

finite, hard budget for energy consumption for the duration of operational/mission life.

Most past efforts on energy-efficient, real-time scheduling consider activity arrival models that

are either periodic, or frame-based (where all periods are equal), or sporadic. These include past

works that consider deadline-based timeliness optimality criteria (e.g., meeting all or some percentage

of deadlines) [3], [21], [31], [45], and those that consider UA criteria (e.g., maximizing summed

utility) [33], [36], [42]–[44]. As far as we know, the only exception is [36], which allows aperiodic

arrivals. However, [36] provides no timeliness assurances. Thus, prior efforts are concentrated on

two extremes: (1) those that provide timeliness assurances, but under highly restrictive periodic,

frame-based, or sporadic arrivals; or (2) those that allow aperiodic arrivals, but provide no timeliness

assurances. Both these extremes are inappropriate for the applications/domains of interest to us2.

In this paper, we bridge these extremes by considering the unimodal arbitrary arrival model (or

UAM) [15]. UAM embodies a “stronger” adversary [22] than most traditional arrival models (e.g.,

periodic, frame-based, sporadic), and subsumes those models as special cases.

Most of the past efforts on energy-bounded real-time scheduling are restricted to deadlines, step

TUFs, and deadline-based timeliness optimality. Examples include [32] (which optimizes total “re-

ward” for step reward functions, where reward is equivalent to our utility notion), [19], and [2]. On

the other hand, some energy-efficient real-time scheduling works do not allow energy budgets. These

works include those that consider deadlines and deadline-based optimality criteria [3], [12], [31], and

those that consider non-step TUFs and UA optimality criteria [36], [39], [42]–[44]. Thus, from the

energy budget standpoint, past works are concentrated on two extremes: (1) those that satisfy energy

budgets, but for deadlines and deadline-based optimality; or (2) those that allow non step TUFs and

UA optimality, but do not satisfy energy budgets.

Again, we bridge these extremes by satisfying energy budgets under UA criteria. We consider

repeatedly occurring application activities, which are subject to TUF time constraints. To better

account for uncertainties in activity behaviors, we stochastically describe activity execution demands,

and describe activity arrivals using UAM. We consider Martin’s system-level energy consumption

2According to [6], an aperiodic task is a type of task that consists of a sequence of identical jobs (instances), activated at

irregular intervals. A sporadic task is an aperiodic task characterized by a minimum inter-arrival time between consecutive

instances.
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model [28], where each system component’s energy consumption is individually modeled and aggre-

gated to account for system’s energy consumption.

For such an activity model, we consider the UA objective of: (1) providing statistical assurances on

timeliness behavior including probabilistically-satisfied lower bounds on individual activity utility; and

(2) maximizing system-level energy efficiency; while ensuring that the system’s energy consumption

never exceeds a specified energy budget. When the energy budget does not (transiently or perma-

nently) allow the execution of all jobs—e.g., due to (transient or permanent) overloads, some jobs

should be deferred or rejected in a controlled fashion so as to enable maximal utility to be accrued

by the mission, without adversely affecting the system’s functionality.

This problem is NP-hard. We present an algorithm for this problem called Energy-Bounded Utility

Accrual Algorithm (or EBUA). EBUA allocates CPU cycles, scales clock frequency, and heuristically

computes schedules using statistical estimates of cycle demands, in polynomial-time. We prove that

EBUA never violates the energy budget, and probabilistically satisfies individual activity utility lower

bounds. Further, we establish that EBUA’s timeliness behavior subsumes EDF’s optimal timeliness

behavior [10] as a special case. We also upper bound the time needed for mutually exclusively accessing

shared non-CPU resources under EBUA. Finally, our simulation experiments validate our analytical

results and illustrate EBUA’s effectiveness and superiority over past algorithms including OFC [2]

and REW-Pack [32].

Thus, this paper’s contribution is the EBUA algorithm. We are not aware of any other efforts

that solve the energy-bounded, TUF/UA scheduling problem under the UAM model that is solved by

EBUA.

The rest of the paper is organized as follows: Section II describes models and assumptions. Sec-

tion III defines energy-bounded systems, states the scheduling objective, and presents EBUA. Sec-

tion IV establishes EBUA’s timeliness and non-timeliness properties; Section V discusses the simu-

lation studies. We conclude the paper in Section VI.

II. Models and Assumptions

A. Power and Energy Consumption Model

We consider Martin’s system-level energy consumption model to derive the energy consumption

per CPU cycle (detailed model descriptions can be found in [28], [36], [43], [44]). In this model, when
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operating at a frequency f , a component’s dynamic power consumption is denoted as Pd. Pd of CPU

is given by S3 × f 3, where S3 is constant.

Besides the CPU, other system components also consume energy. Pd of those that must operate

at a fixed voltage (e.g., main memory) is given by S1 × f , while Pd of those that consume constant

power with respect to the frequency (e.g., display devices) can be represented as a constant S0. In

practice, the quadratic term S2 × f 2 is also included to account for the appearance of variations in

DC-DC regulator efficiency across the range of output power, CMOS leakage currents, and other

second order effects [28].

Under a CPU frequency f (given in cycles per second), the execution time of one CPU cycle is 1/f .

Thus, summing the power consumption of all system components together, the system-level energy

consumption per CPU cycle, denoted as Ee(f), is obtained by 1
f
×(S3 × f 3 + S2 × f 2 + S1 × f + S0).

Therefore, we have the formula for Ee(f) as:

Ee(f) = S3 × f 2 + S2 × f + S1 +
S0

f
(1)

We consider a single processor system that relies on battery power. The target variable voltage

processor can be operated at m frequencies {f1, · · · , fm

∣∣f1 < · · · < fm}. Thus, the system has a

limited energy budget bound Ebnd. Further, we assume that the system must remain operational in

the mission time interval [0,MT ]. Therefore, the system is subject to a hard energy constraint, and

the total system-level energy consumption should not exceed Ebnd for MT time units. Re-charging

the battery is not possible or feasible during the mission.

For a system with DVS capability and m possible frequencies, we assume that, during any time in-

terval [t1, t2], total cycles executed with CPU speed fi are denoted by cyci, i ∈ {1, · · · ,m}. Thus, total

system-level energy consumption during the time interval [t1, t2] is given by Ee(t1, t2) =
∑m

i=1 Ee(fi)×
cyci, where Ee(fi) is derived from Equation 1.

B. Task and Resource Models

We consider a preemptive real-time system which consists of a set of tasks, denoted as T =

{T1, T2, · · · , Tn}. Each task Ti has a number of instances (jobs). With the UAM model, we associate

a tuple 〈ai, Pi〉 with a task Ti, meaning the maximal number of its instance arrivals during any sliding

time window of Pi is ai. Instances may arrive simultaneously. Note that the periodic model is a special

case of UAM model with 〈1, Pi〉, 1 being both the upper and lower bound.
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We refer to the jth job (or invocation) of task Ti as Ji,j. The basic scheduling entity that we consider

is the job abstraction. Thus, we use J to denote a job without being task specific, as seen by the

scheduler at any scheduling event. A job may be aborted for different reasons, which are described

in the later sections.

Jobs can access non-CPU resources, which in general, are serially reusable. Examples include

physical resources (e.g., disks) and logical resources (e.g., critical sections guarded by mutexes).

Similar to fixed-priority resource access protocols (e.g., priority inheritance, priority ceiling) [34] and

that for UA algorithms [8], [24], we consider a single-unit resource model. Thus, only a single instance

of a resource is present and a job must explicitly specify the resource that it wants to access.

Resources can be shared and are subject to mutual exclusion constraints. Thus, only a single job

can be accessing such resources at any given time. A job may request multiple shared resources during

its lifetime. The requested time intervals for holding resources may be nested, overlapped or disjoint.

We assume that a job explicitly releases all granted resources before the end of its execution. A job

that is requesting a resource must specify the worst-case time units (task cycles in this paper) that

it intends to hold the requested resource.

Jobs of different tasks can have precedence constraints. For example, a job Jk can become eligible

for execution only after a job Jl has completed, because Jk may require Jl’s results. We allow such

precedences to be programmed as resource dependencies; the detailed descriptions can be found in [8]

and [24].

C. Timeliness Model

A task’s time constraint is specified using a TUF. Following [17], a time constraint usually has a

“scope”—a segment of the job control flow that is associated with a time constraint. We call such a

scope a “scheduling segment.” Scheduling segments can be nested or disjoint [17], [24]. Thus, a thread

can execute inside multiple scheduling segments. When it does so, it is governed by the “tightest” of

the nested time constraints, which is often application-specific (e.g., earliest deadline for step TUFs).

We use Ui (·) to denote task Ti’s TUF. Ui (·) has the same shape as the TUF of each job of task Ti,

i.e., Ui,j (·). Without being task specific, UJk
means the TUF of a job Jk; completion of Jk at a time

t will yield a utility UJk
(t). In this paper, we restrict our focus to non-increasing, unimodal TUFs

i.e., those TUFs for which utility never increases as time advances. Figures 1(a), 1(b), and 1(c) show

examples.
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Each TUF Ui,j, i ∈ {1, · · · , n} has an initial time Ii,j and a termination time Xi,j. Initial and

termination times are the earliest and the latest times for which the TUF is defined, respectively. We

assume that Ii,j is equal to the arrival time of Ji,j, and Xi,j − Ii,j is equal to the sliding time window

Pi of the task Ti.

If a job’s termination time is reached and its execution has not been completed, an exception is

raised. Normally, this exception will cause the job’s abortion and execution of exception handlers [24].

D. Statistical Timeliness Requirement

Each task needs to accrue some percentage of its maximum possible utility. The statistical perfor-

mance requirement of a task Ti is denoted as {νi, ρi}, which implies that task Ti should accrue at least

νi percentage of its maximum possible utility with a probability of at least ρi. Thus, for example, if

{νi, ρi} = {0.7, 0.93}, then the task Ti needs to accrue at least 70% of the maximum possible utility

with a probability no less than 93%. For step TUFs, ν can only take the value 0 or 1.

During some situations, it is possible that such statistical assurances cannot be provided. When

that happens, the objective is to maximize the total utility per system-level energy consumption.

E. Activity Cycle Demands

Both UA scheduling and DVS depend on the prediction of task cycle demands. We estimate the

statistical properties (e.g., distribution, mean, variance) of the demand rather than the worst-case

demand for three reasons: (1) many embedded real-time applications exhibit a large variation in

their actual workload [7]; (2) worst-case workload is usually a very conservative prediction of the

actual workload [3], resulting in excessive resource capacity; and (3) allocating cycles based on the

statistical estimation of tasks’ demands can provide more realistic statistical performance assurances

and more cost-effective resource utilization. These reasons are appropriate for soft real-time activities

in dynamic systems, even when the activities are mission-critical.

Let Yi be the random variable representing Ti’s cycle demand i.e., the number of processor cycles

required by Ti. We assume that the mean and variance of Yi, denoted as E(Yi) and V ar(Yi) respec-

tively, are finite and determined through either online or off-line profiling. Under a frequency f (given

in cycles per second), the expected execution time of a task Ti is given by ei = E(Yi)
f

.
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III. The EBUA Algorithm

A. Definition and Scheduling Objective

For a real-time system with statistical performance requirements that must remain operational

during the mission time [0,MT ], there is minimum amount of energy needed to meet all the timeliness

requirements when the system is not overloaded, while sustaining the system’s operation until the

end of the mission. We refer to this required threshold energy as Erqd hereafter.

Definition 1: If Ebnd < Erqd, a real-time system is energy-bounded; energy-efficient UA schedul-

ing in such a system is called energy-bounded UA scheduling.

If Ebnd ≥ Erqd, we should try to satisfy the performance requirements. For an energy-bounded

system with Ebnd < Erqd, trying to execute all the jobs may result in a situation where the system

runs out of energy in the middle of the mission. Thus, our aim then is to provide maximum energy

efficiency while sustaining the system operation until the end of the mission.

With this problem definition, we consider a two-fold scheduling criterion: (1) assure that each task

Ti accrues the specified percentage νi of its maximum possible utility with at least probability ρi; and

(2) maximize the system-level “energy efficiency,” under the condition of assuring the feasibility of

the system with limited energy budget i.e., the consumed energy during an operation/mission never

exceeds the energy bound Ebnd. When it is not possible to satisfy {νi, ρi} for each task, our objective

goes to (2).

Equation 1 indicates that there is an optimal value (not necessarily the lowest one) for clock

frequency that minimizes system-level energy consumption. This adds to the difficulty to decide

whether a system is energy-bounded. Some simple cases can be derived. For example, the optimal

CPU speed for periodic tasks that always execute their worst-case cycles is constant and equal to the

worst-case aggregate CPU demand (see [3], [43], [44]). Thus, with this periodic task model, if Ebnd

is smaller than the energy needed to execute all tasks with the speed equal to the aggregate CPU

demand, which is just Erqd, then the system is energy-bounded. Otherwise, it is not.

Intuitively, for a system that is not energy-bounded, during overloads the scheduling objective

becomes utility maximization under energy constraints, since DVS tends to select the highest fre-

quency, making the system consume constant energy. On the other hand, during under-loads, the

algorithm delivers the timeliness assurances. Thus, to meet the scheduling objective, we need to solve

the dual criterion problem—minimizing energy while achieving the given utility within the given time



10

constraint. Such intuitions are slightly changed for energy-bounded systems. When Ebnd < Erqd, our

objective becomes utility maximization under fixed, limited energy consumption bound.

This problem is NP-hard because it subsumes the problem of scheduling dependent tasks with

step-shaped TUFs, which has been shown to be NP-hard in [8].

B. Task Critical Time and Demand

For non-increasing TUFs, satisfying a designated νi requires that task Ti’s sojourn time is upper

bounded by a “critical time” (Di). Di is calculated from νi = Ui(Di)
Umax

i
. If there are more than one points

on the time axis that correspond to νi × Umax
i , we choose the latest point. Note that Pi = Di for a

downward step TUF whose utility drops to a zero value at time Pi. Figure 2 illustrates the calculation

of Di with a simple decreasing TUF.
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Fig. 2: Task Ti’s Critical Time Di

Knowing the mean and variance of task Ti’s demand Yi, by a one-tailed version of the Chebyshev’s

inequality, we have Pr[Yi < ci] ≥ (ci−E(Yi))
2

V ar(Yi)+(ci−E(Yi))2
, when ci ≥ E(Yi). To satisfy the requirement ρi, we

let ρi equal the right half of the inequality, and obtain the minimal required ci = E(Yi)+
√

ρi×V ar(Yi)
1−ρi

.

Thus, the scheduler allocates ci cycles to each job Ji,j, so that the probability that job Ji,j requires

no more than the allocated ci cycles is at least ρi i.e., Pr[Yi < ci] ≥ ρi.

C. Energy-Bounded UA Scheduling

For an energy-bounded system, the jobs to be executed should be carefully selected in order to

make best use of available energy. Such selection process is guided by the performance metric Utility

and Energy Ratio (UER), which is defined to integrate timeliness and energy consumption.

A job’s UER measures the amount of utility that can be accrued per unit energy consumption by

executing the job and the job(s) that it depends upon (due to resource dependencies). A job also has

a Local UER (LoUER), which is defined as the UER that the job can potentially accrue by itself at

the current time, if it were to continue its execution. The LoUER of Ti under frequency f at time t
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is calculated as Ui(t+ci/f)
(ci×Ee(f))

, where Ee(f) is derived using Equation 1. Equation 1 indicates that there

is an optimal value for clock frequency to maximize Ti’s LoUER.

For the UAM model, we denote Ci as the total cycles of ai jobs in the time window Pi, i.e., Ci = aici.

With Ci, the aggregate CPU demand of the task set T is defined as CPUdmd =
∑n

i=1 Ci

/
Pi, and the

system load is defined as Load = 1
fm

∑n
i=1

Ci

Di
. Note that we do not denote CPUdmd as

∑n
i=1 Ci

/
Di,

and the reason is elaborated in Section III-G.

The scheduling events of EBUA include the arrival and completion of a job, a resource request, a

resource release, and the expiration of a time constraint such as the arrival of the termination time

of a TUF. To describe EBUA, we define the following variables and auxiliary functions:

• Erem ≤ Ebnd; it is the system’s remaining energy for execution.

• For task Ti, during a time window Pi, Da
i and cr

i are its earliest job’s absolute critical time and

remaining cycles, respectively. We define the task-level flag SELi to represent whether task Ti’s

instances are selected in the job selection phase. SELi = skipped indicates that the task is skipped,

and SELi = selected indicates that it is, or can be selected for execution.

• Jr = {J1, J2, · · · , Jn′} is the current unscheduled job set; σ is the ordered output schedule. Jk ∈ Jr

is a job; Jk.Dep is its dependency list.

• Jk.D is job Jk’s critical time; Jk.X is its termination time, and Jk.c is its remaining cycles. T (Jk)

returns the corresponding task of Jk. Thus, if Ti = T (Jk), then Jk.D = Da
i .

• Function owner(R) denotes the jobs that are currently holding resource R; reqRes(T) returns the

resource requested by T .

• headOf(σ) returns the first job in σ; sortByUER(σ) sorts σ by each job’s UER, in a non-increasing

order. selectFreq(x) returns the lowest frequency fi ∈ {f1 < · · · < fm}, such that x ≤ fi.

• offlineComputing() runs at t = 0. It computes ci and Di as described in Section III-B, and

determines its optimal frequency f o
Ti
∈ {f1, · · · , fm}, which maximizes Ti’s LoUER. Each task

initially runs at the speed f ini
Ti

= max(f o
Ti

, selectFreq(CPUdmd)).

• insert(T,σ,I) inserts T in the ordered list σ at the position indicated by index I; if there are

already entries in σ at the index I, T is inserted before them. After insertion, the index of T in σ

is I.

• remove(T,σ,I) removes T from ordered list σ at the position indicated by index I; if T is not

present at the position in σ, the function takes no action.



12

• lookup(T,σ) returns the index value associated with the first occurrence of T in the ordered list

σ.

• feasible(σ) returns a boolean value denoting schedule σ’s feasibility. For σ to be feasible, the

predicted completion time of each job in σ, calculated at the highest frequency fm, must not exceed

its termination time.

• eBounded(σ) checks whether the predicted energy consumption of σ is less than the allowed bound

of energy consumption before σ’s predicted completion time.

• updateSel(T) updates the flag SELi for the task set T.

Algorithm 1: EBUA: High Level Description
input : T = {T1, · · · , Tn}, Jr = {J1, · · · , Jn′}, Erem1:

output : selected job Jexe and frequency fexe2:

offlineComputing (T);3:

Initialization: t := tcur, σ := ∅, update Erem;4:

switch triggering event do5:

case task release(Ti) cr
i := ci;6:

case task completion(Ti) cr
i := 0;7:

otherwise Update cr
i ;8:

foreach Jk ∈ Jr do9:

if feasible( Jk)=false then10:

cr
T (Jk) := 0;11:

abort(Jk);12:

else13:

Jk.Dep := buildDep(Jk);14:

foreach Jk ∈ Jr do15:

Jk.UER:=calculateUER(Jk, t);16:

σtmp :=sortByUER(Jr);17:

foreach Jk ∈ σtmp from head to tail do18:

if Jk.UER > 0 then19:

σ := insertByECF(σ, Jk);20:

else21:

break;22:

updateSel(T);23:

Jexe:=headOf(σ);24:

fexe:=decideFreq(T, Jexe, t);25:

return Jexe and fexe;26:

A high level description of EBUA is shown in Algorithm 1. We include the procedure offlineCom-

puting() in line 3, but this sub-routine is only executed at t = 0. When EBUA is invoked at time

tcur, it first updates each task’s remaining cycle (line 5–8). The algorithm then checks the feasibility

of the jobs. If a job is infeasible, then it can be safely aborted (line 10–12). Otherwise, EBUA builds

the dependency list for the job (line 14).

The UER of each job is computed by calculateUER(), and the jobs are then sorted by their UERs
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(line 15-17). In each step of the for loop from line 18 to 22, the job with the largest UER and its

dependencies are inserted into σ, if it can produce a positive UER. The output schedule σ as the

output of procedure insertByECF() is a feasible and energy-bounded schedule, sorted by the jobs’

critical times, in an non-decreasing order.

At line 23, EBUA updates the flag SELi for each task. SELi is set to be skipped if and only if

Ti has instances in the ready job queue Jr of line 17, but none of them are selected in σ. Note that

even when Ti has no jobs in Jr, SELi is set to be selected.

Finally, from line 24 to 26, with algorithm decideFreq(), EBUA analyzes the demands of the task

set and applies DVS to decide the execution frequency fexe for the selected job Jexe at the head of

σ. DVS can reduce the energy consumption of the selected jobs whenever possible, which enables us

to further increase excess energy that can be later used for job selection.

D. Resource and Deadlock Handling

Before EBUA can compute job partial schedules, the dependency chain of each job must be

determined, as shown in Algorithm 2.

Algorithm 2 follows the chain of resource request/ownership. For convenience, the input job Jk

is also included in its own dependency list. Each job Jl other than Jk in the dependency list has a

successor job that needs a resource which is currently held by Jl. Algorithm 2 stops either because

a predecessor job does not need any resource or the requested resource is free. Note that “¦” denotes

an append operation. Thus, the dependency list starts with Jk ’s farthest predecessor and ends with

Jk.

Algorithm 2: buildDep(): Build Dependency List
input : Job Jk;1:

output : Jk.Dep;2:

Initialization : Jk.Dep := Jk; Prev := Jk;3:

while reqRes(Prev) 6= ∅V owner( reqRes(Prev) ) 6= ∅ do4:
/* add new owner at the head of the list */
Jk.Dep :=owner(reqRes(Prev) ) ·Jk.Dep;5:

Prev := owner(reqRes(Prev) );6:

To handle deadlocks, we consider a deadlock detection and resolution strategy, instead of a deadlock

prevention or avoidance strategy. Our rationale for this is that deadlock prevention or avoidance

strategies normally pose extra requirements; for example, resources must always be requested in

ascending order of their identifiers.
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Further, restricted resource access operations that can prevent or avoid deadlocks, as done in many

resource access protocols, are not appropriate for the class of embedded real-time systems on which

we focus. For example, the Priority Ceiling protocol [34] assumes that the highest priority of jobs

accessing a resource is known. Likewise, the Stack Resource policy [4] assumes preemptive “levels”

of threads a priori. Such assumptions are too restrictive for the class of systems on which we focus

(due to their dynamic nature).

Recall that we are assuming a single-unit resource request model. For such a model, the presence

of a cycle in the resource graph is the necessary and sufficient condition for a deadlock to occur.

Thus, the complexity of detecting a deadlock can be mitigated by a straightforward cycle-detection

algorithm.

Algorithm 3: Deadlock Detection and Resolution
input : Requesting job Jk, tcur;1:

/* deadlock detection */
Deadlock := false;2:

Jl := owner(reqRes( Jk) );3:

while Jl 6= ∅ do4:

Jl.LoUER := UJl(tcur + Jl.c
fm

)
�
(Jl.c× Ee(fm));5:

if Jl = Jk then6:

Deadlock := true;7:

break;8:

else9:

Jl := owner(reqRes( Jl) );10:

/* deadlock resolution if any */
if Deadlock = true then11:

abort(The job Jm with the minimal LoUER in the cycle);12:

The deadlock detection and resolution algorithm (Algorithm 3) is invoked by the scheduler when-

ever a job requests a resource. Initially, there is no deadlock in the system. By induction, it can be

shown that a deadlock can occur if and only if the edge that arises in the resource graph due to the

new resource request lies on a cycle. Thus, it is sufficient to check if the new edge resulting from the

job’s resource request produces a cycle in the resource graph.

To resolve the deadlock, some job needs to be aborted. If a job Jl were to be aborted, then its

timeliness utility is lost, but energy is still consumed. To minimize such loss, we compute the LoUER

of each job at tcur at the frequency fm. EBUA aborts the job with the minimal LoUER in the cycle

to resolve a deadlock.
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E. Manipulating Partial Schedules

The calculateUER() algorithm (Algorithm 4) accepts a job Jk (with its dependency list) and the

current time tcur. On completion, the algorithm determines UER for Jk, by assuming that jobs in

Jk.Dep are executed from the current position (at time tcur) in the schedule, while following the

dependencies.

Algorithm 4: calculateUER()
input : Jk, tcur;1:

output : Jk.UER;2:

Initialization : Cc := 0, E := 0, U := 0;3:

foreach Jl ∈ Jk.Dep, from head to tail do4:

Cc := Cc + Jl.c;5:

U := U + UJl(tcur + Cc
fm

);6:

E := E(fm)× Cc;7:

Jk.UER := U
�
E;8:

return Jk.UER;9:

To compute Jk’s UER at time tcur, EBUA considers each job Jl that is in Jk’s dependency chain,

which needs to be completed before executing Jk. The total computation cycles that will be executed

upon completing Jk is counted using the variable Cc of line 5. With the known expected computation

cycles of each task, we can derive the expected completion time and expected energy consumption

under fm for each task, and thus get their accrued utility to calculate UER for Jk.

Thus, the total execution time (under fm) of the job Jk and its dependents consists of two parts:

(1) the time needed to execute the jobs holding the resources that are needed to execute Jk; and (2)

the remaining execution time of Jk itself. According to the process of buildDep(), all the relative

jobs are included in Jk.Dep.

The details of insertByECF() in line 20 of Algorithm 1 are shown in Algorithm 5. insertByECF()

updates the tentative schedule σ by attempting to insert each job along with all of its dependencies

to σ. The updated σ is an ordered list of jobs, where each job is placed according to the critical time

it should meet.

Note that the time constraint that a job should meet is not necessarily the job critical time. In

fact, the index value of each job in σ is the actual time constraint that the job must meet.

A job may need to meet an earlier critical time in order to enable another job to meet its time

constraint. Whenever a job is considered for insertion in σ, it is scheduled to meet its own critical

time. However, all of the jobs in its dependency list must execute before it can execute, and therefore,
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Algorithm 5: insertByECF()
input : Jk and an ordered job list σ;1:

output : the updated list σ;2:

if Jk /∈ σ then3:

copy σ into σtent: σtent :=σ;4:

insert(Jk, σtent, Jk.D);5:

CuCT = Jk.D;6:

foreach Jl ∈ {Jk.Dep− Jk} from tail to head do7:

if Jl ∈ σtent then8:

CT=lookup(Jl, σtent);9:

if CT < CuCT then continue;10:

else remove(Jl, σtent, CT);11:

CuCT :=min(CuCT, Jl.D);12:

insert(Jl, σtent, CuCT);13:

if feasible(σtent) and eBounded(σtent) then14:

σ := σtent;15:

return σ;16:

must precede it in the schedule. The index values of the dependencies can be changed with insert()

in line 13 of Algorithm 5.

The variable CuCT is used to keep track of this information. Initially, it is set to be the critical

time of job Jk, which is tentatively added to the schedule (line 6, Algorithm 5). Thereafter, any job

in Jk.Dep with a later time constraint than CuCT is required to meet CuCT . If, however, a job has

a tighter critical time than CuCT , then it is scheduled to meet the tighter critical time, and CuCT is

advanced to that time since all jobs left in Jk.Dep must complete by then (lines 12–13, Algorithm 5).

Finally, if this insertion produces a feasible schedule and does not exceed the allowed energy budget,

the jobs are included in the schedule; otherwise, not (lines 14–15). We will explain how to monitor

the dynamic energy consumption in Section III-F.

It is worth noting that the procedure insertByECF() sorts jobs in the non-decreasing critical time

order if possible, but its sub-procedure feasible() checks the feasibility of σtent based on each job’s

termination time. This is because a job’s critical time is smaller or equal to its termination time

according to our calculation in Section III-B. So even if a job cannot complete before its critical time,

it may still accrue some utility, as long as it finishes before its termination time. Thus, we need to

prevent “over-killing” in feasible().

F. Monitoring Energy Consumption Online

Since our energy bound Ebnd is associated with the mission time [0,MT ], we need to dynamically

monitor the system-level energy consumption and adjust the selected jobs to execute. The online
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monitoring is conducted with the function eBounded(σtent) in line 14 of Algorithm 5.

offlineComputing(T) sets the initial speed f ini
Ti

for each task. We assume the last job in σtent has

the predicted completion time Dtent. Thus, for σtent where each job is executed at its initial speed,

its expected energy consumption Ee(tcur, Dtent) can be calculated by the mechanism described in the

last paragraph of Section II-A. When Ebnd − Erem + Ee(tcur, Dtent) ≤ Dtent

MT
× Ebnd, eBounded(σtent)

returns true; otherwise, it returns false.

The above equation means that, at a future time Dtent, the energy that has been depleted, Ebnd−
Erem, plus the predicted energy consumption of executing σtent i.e., Ee(tcur, Dtent), will not exceed the

prorated energy budget, Dtent

MT
×Ebnd. Therefore, EBUA monitors and controls the energy consumption

online through this equation.

G. DVS with the Energy Bound

We have CPU-time reclamation through DVS. When tasks complete early, we have some slack

time that can be used to further increase the excess energy by reducing the execution speeds of some

subsequent jobs (as long as this does not compromise the sojourn times of already selected jobs).

We consider the “processor demand approach” [5] to analyze the feasibility of tasks with stochastic

parameters and UAM arrival model.

Theorem 1: For a task Ti with a UAM pattern 〈ai, Pi〉 and critical time Di, all its jobs can meet

their Di, if Ti is executed at a frequency no lower than Ci

Di
, where Ci is the total cycles of ai jobs in

the time window Pi, i,e., Ci = aici.

Proof The necessary and sufficient condition for satisfying job critical times is fL ≥ Ci(0, L),∀L >

0, where f is the processor frequency allocated to Ti, and Ci(0, L) is the cycle demand of task Ti on the

time interval [0, L], i.e., Ci(0, L) =
(⌊

L−Di

Pi

⌋
+ 1

)
Ci. Thus, we need f ≥ 1

L

(⌊
L−Di

Pi

⌋
+ 1

)
Ci,∀L > 0.

Since
(⌊

L−Di

Pi

⌋
+ 1

)
≤

(
L−Di

Pi
+ 1

)
, it is sufficient to have f ≥ 1

L

(
L−Di

Pi
+ 1

)
Ci = Ci

Pi

(
1 + Pi−Di

L

)
,∀L >

0. As Pi ≥ Di, we have:

Case 1: Pi > Di

It is easy to see that Ci

Pi

(
1 + Pi−Di

L

)
monotonically decreases with the increase of L. Furthermore,

notice that if L ≤ Di, Ci(0, L) = 0 because in such an interval [0, L], no job has a critical time earlier

than Di. Thus, it is sufficient to consider the case where L has the smallest possible value—when

L = Di, f ≥ Ci

/
Di.

Case 2: Pi = Di
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When Pi = Di,
Ci

Pi

(
1 + Pi−Di

L

)
is independent of L. It can be seen that f ≥ Ci

Pi
= Ci

Di
.

Combining the above two cases, we have a sufficient condition f ≥ Ci

/
Di. ¤

From the above proof, for a task Ti, when Pi > Di, Ti’s CPU demand can be denoted as Ci

Di
[39].

But the task set’s aggregate CPU demand will be overestimated if we denote it as
∑n

i=1
Ci

Di
. This is

because, when Pi = Di, our calculation will safely assume that beyond Di, the next invocation of

task Ti starts immediately and consumes Ci
P i

processing resources. But when Pi > Di, substituting

the critical time Di for Pi will underestimate the future processing capacity that is available.

We elaborate such estimation also through the processor demand approach [5], [6]. The necessary

and sufficient condition for satisfying a task set’s critical times is fL ≥ ∑n
i=1

⌊
L+Pi−Di

Pi

⌋
Ci, ∀L > 0,

where f is the processor frequency allocated to the task set, and
⌊

L+Pi−Di

Pi

⌋
Ci is the cycle demand

of task Ti during the time interval [0, L]. Since
⌊

L+Pi−Di

Pi

⌋
≤

(
L
Pi

+ Pi−Di

Pi

)
, it is sufficient to have:

f ≥
n∑

i=1

Ci

L

(
L

Pi

+
Pi −Di

Pi

)
=

n∑
i=1

Ci

Pi

+
n∑

i=1

(
Pi −Di

L
× Ci

Pi

)
,∀L > 0. (2)

We study the part
∑n

i=1

(
Pi−Di

L
× Ci

Pi

)
in Equation 2. In addition to

∑n
i=1

Ci

Pi
, this part represents the

CPU demand resulting from the fact that Di < Pi. Note that for a task Ti, if L < Di,
⌊

L+Pi−Di

Pi

⌋
Ci =

0. This is because, in the interval [0, L], no job of Ti has a critical time earlier than Di, and thus

there are no cycle demand from task Ti.

If we assume from T1 to Tn, D1 < D2 < · · · < Dn, then only when L ≥ Dn, each task can contribute

to
∑n

i=1

(
Pi−Di

L
× Ci

Pi

)
. Further, it is easy to see that

(
Pi−Di

L
× Ci

Pi

)
monotonically decreases with the

increase of L. Therefore, in Equation 2,
∑n

i=1

(
Pi−Di

L
× Ci

Pi

)
has very limited contribution to the

required frequency f , and the majority of CPU demand is consumed by
∑n

i=1
Ci

Pi
. So we denote the

aggregate CPU demand of T as CPUdmd =
∑n

i=1
Ci

Pi
.

We validated the efficiency of the definition of CPUdmd through experimental comparison. We

observed in experiments that estimating CPUdmd as
∑n

i=1
Ci

Di
is safe but very conservative, resulting

in much less energy savings than the more aggressive estimation. Thus, we adopt the measurement

CPUdmd =
∑n

i=1
Ci

Pi
, and propose the aggressive energy-conserving DVS approach, decideFreq(), in

Algorithm 6.

In line 3–5 of Algorithm 6, if the task-level flag SELi is skipped, the skipped task can be considered

with zero actual execution cycles, enabling us to further reduce the speed. EBUA keeps track of the

remaining computation cycles Cr
i . For the current time window Pi with a′i instances, Cr

i is calculated
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Algorithm 6: decideFreq()
input: T, Jexe, tcur; output: fexe ;1:

CPUdmd := 0;2:

foreach Ti ∈ T do3:

if SELi = selected then4:

CPUdmd := CPUdmd + Ci/Pi;5:

s := 0;6:

for i ← 1 to n, Ti ∈ {T1, · · · , Tn

��Da
1 ≥ · · · ≥ Da

n} do7:

if SELi = skipped then8:

continue;9:

/* reverse EDF order of tasks */
CPUdmd := CPUdmd − Ci/Di;10:

x :=max(0, Cr
i − (fm − CPUdmd)× (Da

i −Da
n));11:

CPUdmd :=

(
fm, if Da

i −Da
n = 0

CPUdmd +
Cr

i −x

Da
i −Da

n
, otherwise

;
12:

s := s + x;13:

f :=min(fm, s/(Da
n − tcur));14:

fexe:=selectFreq (f);15:

fexe:=max(fexe, fo
T (Jexe));16:

as Cr
i = min((a′i − 1)ci + cr

i , (ai − 1)ci + cr
i ). Note that the actual number of jobs a′i can be larger

than the maximum job arrivals ai, because there may be unfinished jobs from the previous time

window Pi. But we only need to consider at most ai instances of them. cr
i is updated from line 5–8

of Algorithm 1.

In line 6–14, EBUA considers the interval until the next task critical time and attempts to “push”

as much work as possible beyond the critical time. Similar to LaEDF [31], the algorithm considers the

tasks in the latest-critical-time-first order in line 7. But since there may be more than one job of Ti in

Pi, Da
i is set to be the earliest invocation’s absolute critical time. LaEDF [31] updates each task’s Da

i

immediately when a task instance completes. In our DVS approach, we delay such an update until

the next task instance is released, which results in additional energy savings. s reflects the minimum

number of cycles that must be executed by Da
n in order for the selected tasks to meet their critical

times (line 13).

Thus, decideFreq() capitalizes on early task completion by deferring work for future tasks in

favor of scaling the current task’s frequency. Also, during overloads, the required frequency may be

higher than fm, and selectFreq() would fail to return a value. In line 14, we solve this by setting

the upper limit of the required frequency to be the highest frequency fm. Finally, fexe is compared

with f o
T (Jexe)

. The higher frequency is selected to preserve the timeliness assurances. Note that we

cannot decrease fexe, because it reflects the minimum frequency required for the selected tasks to

meet their critical times. But if fexe is less than f o
T (Jexe)

, at line 16, we heuristically increase it to
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f o
T (Jexe)

, so as to maximize the energy efficiency, since f o
T (Jexe)

maximizes LoUER of T (Jexe).

H. Computational Complexity

To analyze the complexity of EBUA (Algorithm 1), we assume that the available number of CPU

frequencies m is a constant with respect to the problem size (i.e., number of jobs, resources, etc.).

We consider n jobs in the ready queue and a maximum of r resources. In the worst case, buildDep()

may build a dependency list with a length n; so the for-loop from line 9 to 14 requires O(n2) time.

Also, the for-loop containing calculateUER() (line 15–16) can be repeated O (n2) times in the worst

case. The complexity of procedure sortByUER() is O(n log n).

Complexity of the for-loop body starting from line 18 is dominated by insertByECF() (Algo-

rithm 5). Its complexity is dominated by the for-loop (line 7–13, Algorithm 5), which requires

O(n log n) time since the loop will be executed no more than n times and each execution requires

O(log n) time to perform insert(), remove() and lookup() operations on the tentative schedule.

Therefore, the worst-case complexity of the EBUA algorithm is 2×O(n2)+O(n log n)+n×O(n log n) =

O(n2 log n).

Our implementation experience with EBUA [38]—this is not discussed here due to space limitations—

revealed that the algorithm’s overhead is typically in the magnitude of a few hundred microseconds.

As discussed in Section I, the real-time systems that we consider in this paper have a distinguishing

feature, which is their relatively long execution time magnitudes—e.g., in the order of milliseconds

to seconds, or seconds to minutes. Therefore, although EBUA has a higher scheduling overhead than

many traditional energy-efficient real-time scheduling algorithms such as LaEDF [31], which has a

complexity of O(n), the higher asymptotic cost of the algorithm and the consequent higher overhead

are justified for application systems with longer execution time magnitudes, such as those on which

we focus in this paper.

IV. Algorithm Properties

A. Non-Timeliness Properties

We now discuss EBUA’s non-timeliness properties including deadlock-freedom, correctness, and

mutual exclusion.

A cycle in the resource graph is the sufficient and necessary condition for a deadlock in the single-

unit resource request model. EBUA does not allow such a cycle by deadlock detection and resolution;
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so it is deadlock free, and we have Theorem 2.

Theorem 2: EBUA ensures deadlock-freedom.

EBUA respects resource dependencies by ensuring that the job selected for execution can execute

immediately. Thus, no job is ever selected for normal execution if it is resource-dependent on some

other job.

Lemma 1: In insertByECF()’s output, all the dependents of a job must execute before it can

execute, and therefore, must precede it in the schedule.

Proof Consider job Jk and its dependent Jl—Jl must be executed before Jk. If Jl.D is earlier than

Jk.D, then Jl will be inserted before Jk in the schedule. If Jl.D is later than Jk.D, Jl.D is advanced

to be Jk.D by the operation with CuCT . According to the definition of insert(), after advancing

the critical time, Jl will be inserted before Jk. Thus, insertByECF() seeks to maintain an output

queue ordered by jobs’ critical times, while respecting resource dependencies. ¤

From Lemma 1, we can derive another property of EBUA, as described in Theorem 3.

Theorem 3: When a job Jk that requests a resource R is selected for execution by EBUA, Jk’s

requested resource R will be free. We call this EBUA’s correctness property.

Thus, if a resource is not available for a job Jk’s request, jobs holding the resource will become

Jk’s predecessors. We present EBUA’s mutual exclusion property by a corollary.

Corollary 1: EBUA satisfies mutual exclusion constraints in resource operations.

B. Timeliness Properties

We first establish EBUA’s assurance on energy-bounded systems. As described in Section III-F,

EBUA’s dynamic monitoring of energy consumption assures that, at any scheduling event between

[0,MT ], the energy consumption of selected jobs never exceeds the allowed portion of Ebnd. Thus,

we have the following theorem.

Theorem 4: EBUA assures that the consumed energy during a mission interval [0,MT ] never

exceeds the energy bound Ebnd.

When Ebnd ≥ Erqd, with non-energy-bounded systems, EBUA has timeliness properties such as

upper bounded time on accessing shared resources, and optimality during under-loads.

With Corollary 1, when a job needs to hold a resource, it must wait until no other job is holding

the resource. A job waiting for an exclusive resource is said to be blocked on that resource. Otherwise,

it can hold the resource and enter the the piece of code executed under mutual exclusion constraints,
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which is called a critical section. We first derive the maximum blocking time that each job may

experience under EBUA.

Theorem 5: Under EBUA for a non-energy-bounded system, a job Jk can be blocked for at most

the duration of min(n,m) critical sections, where n is the number of jobs that could block Jk and

have longer critical times than Jk has, and m is the number of resources that can be used to block

Jk.

Proof The operation of the procedure insertByECF() conforms to the Priority Inheritance Protocol

(or PIP) [34]. In Algorithm 5, any job in Jk.Dep with a later time constraint than CuCT could block

Jk, and it is required to meet CuCT , which is initially set to be Jk.D (line 6). If, however, a dependent

job has a tighter cricital time than CuCT , then it is scheduled to meet the tighter critical time, and

CuCT is advanced to that time since all jobs left in Jk.Dep must complete by then. Note that in

line 13, after insertion, the index of Jl is changed to CuCT . This is exactly the priority inheritance

operation. Thus, the theorem immediately follows from properties of the PIP [34]. ¤

We also consider timeliness properties under no resource dependencies, where EBUA can be

compared with a number of well-known algorithms. Specifically, the periodic model is a special case

of UAM model. If Ebnd ≥ Erqd, with the conditions of (1) a non-energy-bounded system; (2) a set

of periodic tasks with 〈1, Pi〉 and step TUFs; and (3) absence of CPU overloads (under Liu and

Layland’s condition [25]), we can establish EBUA’s timeliness properties.

Theorem 6: Under conditions (1), (2), and (3), a schedule produced by EDF [16] is also produced

by EBUA, yielding equal total utilities. This is a critial time ordered schedule.

Proof We prove this by examining Algorithms 1 and 5. For a job J without dependencies, J.Dep

only contains J itself. For periodic tasks with step TUFs during non-overload situations, σ from line 20

of Algorithm 1 is critical time ordered. The step TUF critical time that we consider is analogous to

a deadline in [16]. As proved in [16], [25], a deadline-ordered schedule is optimal (with respect to

meeting all deadlines) when there are no overloads. Thus, σ yields the same total utility as EDF. ¤

Some important corollaries about EBUA’s timeliness behavior during under-loads can be deduced

from EDF’s optimality [16].

Corollary 2: Under conditions (1), (2), and (3), EBUA always completes the allocated cycles of

all tasks before their critical times, i.e., termination times.

Corollary 3: Under conditions (1), (2), and (3), EBUA minimizes the maximum lateness.
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Theorem 7: Under conditions (1), (2), and (3), EBUA meets the statistical performance require-

ments.

The proofs can be found in [44]. In Theorem 8, we also derive the above theorems’ counterparts

for non-step and non-increasing TUFs, with which critical times are less than termination times.

Theorem 8: In a non-energy-bounded system, for a set of independent periodic tasks, where each

task has a single computational thread with a non-increasing TUF, the task set is schedulable and can

meet all statistical performance requirements under the condition of Baruah, Rosier, and Howell [5].

Proof The proof is similar to validating a sufficient condition for EDF schedulability of a task set,

where task deadlines are less than task periods. The proof can be found in [5]. ¤

V. Experimental Results

A. Experimental Settings

To evaluate the energy efficiency of EBUA, we perform simulation experiments to compare EBUA

with other energy-bounded algorithms, i.e., OFC [2] and REW-Pack [32]. OFC statically (off-line)

calculates each task’s expected energy consumption during the mission time, and selects tasks with

the heuristic of Larger Reward Density (LRD), based only on the worst-case workload information.

REW-Pack works for frame-based or periodic tasks.

Our simulator is written with the simulation tool OMNET++ [35], which provides a discrete event

simulation environment. We simulate the AMD k6 processor with PowerNow! mechanism [1]. The

CPU can operate at seven different frequencies, {360, 550, 640, 730, 820, 910, 1000 MHz}.
We select task sets with 10 to 50 tasks in three applications for our study. Their parameters

are summarized in Table I. Within each range, the time window P is uniformly distributed. The

synthesized task sets simulate the varied mix of short and long time windows. For each task cycle

demand Yi, we keep V ar(Yi) ≈ E(Yi), and generate normally-distributed demands. Finally, according

to the calculation of ci in Section III-B, the cycle demands E(Yi)s are scaled by a constant k, and

V ar(Yi)s are scaled by k2; k is chosen such that the system load reaches a desired value. The Umax

of the TUFs in A1, A2, and A3 are uniformly generated in the range [50, 70], [300, 400], and [1, 10],

respectively.

This type of method to generate real-time tasks has been used previously in the development and

evaluation of the real-time embedded micro-kernel in [31] and the DVS approach in [20]. By means of
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TABLE I: Task Settings

Applications ] tasks UAM 〈a, P 〉 Umax

A1 4 〈5, 22–28〉 [50, 70]

A2 18 〈8, 50–70〉 [300, 400]

A3 8 〈3, 2.4–9.6〉 [1, 10]

TABLE II: Energy Settings

Energy Model S3 S2 S1 S0

E1 1.0 0 0 0

E2 0.75 0 0 0.25f3
m

E3 0.5 0 0 0.5f3
m

generating a large number of distinct task sets with different task set loads, the simulations provide

a relationship of energy consumption and accrued utility to the system load.

The energy consumption per cycle at a particular frequency is calculated using Equation 1. In

practice, the S3, S2, S1, and S0 terms depend on the power management state of the system and

its subsystems [28], [36], [43]. We test three energy settings similar to those in [43], as shown in

Table II. These experimental settings are similar to those in Martin’s PhD dissertation [28], but with

de-normalized terms. From the table, in energy settings E1, E2, and E3, the static term is 0%, 25%,

and 50% of the total power at full speed fm, respectively. Note that E1 is the same as the conventional

energy model, which only considers the CPU’s energy consumption.

B. Performance with Step TUFs

We first evaluate the performance with step TUFs, so that EBUA can be compared with the other

strategies. We set {νi = 1, ρi = 0.96}, and apply different schemes on independent periodic task sets

under different energy settings. We vary Eratio, which is defined as the ratio of Ebnd to Erqd, from 0.1

to 1.0, and show the accrued utility at Load = 0.7 and Load = 1.5, respectively. Note that REW-Pack

requires the hyper-period of periodic tasks, which can be very large due to our synthesized task sets,

so we approximate it to be MT in such cases.

When Eratio < 1, the system is energy-bounded; when Load > 1, the system is CPU overloaded.

Thus, by changing Eratio and Load, we can generate interesting scenarios to study the tradeoffs

between energy and utility.

Figure 3 shows the utilities normalized to those of OFC under energy settings E1 and E3. It shows

the performance of different strategies in the scenario of CPU under-loads (Load = 0.7) in an energy-

bounded system. From Figure 3(a) and Figure 3(b), we observe that when Ebnd is low, the system has

a strict energy bound and it is crucial to utilize excess energy due to early completions. Hence, under

such conditions the difference in performance is significant. As Ebnd increases, the system becomes

less energy-bounded. The schemes converge when Eratio = 100%, because the system has enough
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energy to meet all the critical times and accrue its maximum utility, due to EDF’s optimality [16] in

such cases.
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(b) Load = 0.7, E3

Fig. 3: Normalized Utility vs. Eratio during under-loads under E1 and E3

Figure 4(a) and Figure 4(b) show the scenarios of CPU overloads (Load = 1.5) in an energy-

bounded system, under energy settings E1 and E3, respectively. Plots in Figure 4 bear the same

trends as those in Figure 3. But when Eratio = 100%, the end points of plots in Figure 4 do not

coincide with each other. This is because, although the system is not energy-bounded, during CPU

overloads different schemes still show different abilities in utility accrual.
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Fig. 4: Normalized Utility vs. Eratio during overloads under E1 and E3

In Figure 3 and Figure 4, Ebnd is recalculated as a percentage of Erqd, which is also a function

of the system load. In our next set of experiments, Ebnd is set to a fixed value, namely the energy

required to meet all the critical times when Load = 0.7. We represent this value as Erqd (Load = 0.7).
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Figure 5 shows the normalized utilities of the three schemes with Ebnd = Erqd (Load = 0.7), when

Load varies from 0.2 to 1.8 under energy setting E1.

Figure 5 shows more complicated combinations of system energy requirement and CPU loads.

When Load ≤ 0.7, the system has enough energy to meet all critical times (i.e., Ebnd ≥ Erqd, and

system is under-loaded). Therefore, all schemes yield the same utility. As Load increases beyond 0.7

but below 1.0, the system becomes effectively more energy-bounded, but is still under-loaded. When

Load exceeds 1.0, the system is both energy-bounded and overloaded. The performance gap with the

increase of Load shown in Figure 5 demonstrates that EBUA accrues higher utility with fixed energy

bound.

C. Performance with Non-Increasing TUFs and UAM

We then consider non-step and non-increasing TUFs, and UAM tasks with EBUA and EUA∗ [39].

each task is allocated a linear TUF, and its slope is calculated as −Umax

P
, P being the time window.

We set {νi = 0.3, ρi = 0.9} to each task, and use the energy model E1 in the experiments of this

section.
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Fig. 5: Utility vs. Load with Fixed Ebnd
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Fig. 6: Operation Time vs. Load

In our experiments, we study the operation time of EBUA and EUA∗, within which the system

remains functional. We still set Ebnd = Erqd (Load = 0.7), and vary Load from 0.2 to 1.8 to study

how EBUA handles the energy-bound. Figure 6 shows operation times normalized to the results of

EBUA.

We observe that, the operation time of EBUA is always the whole mission time MT , since EBUA

dynamically monitors energy consumption and keeps system functional during [0,MT ]. When Load ≤
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0.7, EUA∗ can remain functional during [0,MT ], because the system is neither energy-bounded

nor overloaded. But when Load ≥ 0.7, the operation time of EUA∗ decreases to far below MT

until Load = 1.0, as it cannot deal with energy-bounded systems. Note that when Load ≥ 1.0, the

operation time of EUA∗ becomes constant. This is because during system overloads, DVS always

picks the highest frequency fm, and the system-level energy consumption, hence Erqd, also becomes

constant. This also means that Eratio = Ebnd

Erqd
is constant, when Load ≥ 1.0.

D. Comparison of Dynamic Energy Drain Rates

For a battery, its discharge rate decides its life. Usually we hope this discharge rate can be as

constant as possible, which is represented by small variances on the discharge curve. In this section,

we approximately measure and compare the dynamic energy drain rates of different mechanisms.

According to the relationship between energy, voltage, and current, a constant energy drain rate

implies a constant battery discharge rate in terms of discharge current, assuming that the battery

operates under a constant voltage.

For the same task sets as those in Section V-B, we uniformly take 20 sampling time points during

the interval [0,MT ], and measure the dynamic energy drain rate at each sampling point ti. This rate is

measured as Ee(0,ti)−Ee(0,ti−1)
ti−ti−1

, where Ee(0, ti) is the energy consumed from time 0 up to ti, and ti−ti−1

is the sampling interval. In our experiments, we set Load = 0.7 and Ebnd = 0.5× Erqd (Load = 0.7).

The measurements are normalized to the average energy drain rate, Ebnd

/
MT , and the normalized

results under energy settings E1 and E2 are shown in Figure 7. Note that these figures only represent

our qualitative study.
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Fig. 7: Normalized Energy Drain Rates with Ebnd = 0.5× Erqd (Load = 0.7) under E1 and E2
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We observe from the plots in both Figure 7(a) and Figure 7(b) that, all strategies have dynamic

energy drain rates less than the average rate. This is because the energy consumptions of all methods

during the interval [0,MT ] are no larger than Ebnd. From the figures, EBUA has a constant energy

drain rate. The initial drain rate of OFC is larger than the average rate, because before the mission

starts, OFC has off-line selected tasks to execute, and at the beginning those tasks may generate a

high energy drain rate. Also note that the drain rate of EBUA is higher than that of OFC and REW-

Pack. This implies that the amount of energy consumed by EBUA is closer to the energy budget

Ebnd. Thus, EBUA is more effective for energy-bounded systems, in the sense of exploiting as much

energy as is available for timeliness.

VI. Conclusions

Many emerging battery-powered, dynamic, embedded real-time systems are subject to energy

bounds, embodied by a battery that has a finite lifetime. Further, they operate in environments with

dynamically uncertain properties, including resource overloads that occur due to context-dependent,

activity execution times and arbitrary activity arrival patterns. In this paper, we consider optimization

of timeliness performance and energy consumption in such systems, which must remain functional

during an operation/mission with a bounded energy budget. We present a UA real-time scheduling

algorithm called EBUA that considers activities subject to TUF time constraints, UAM arrival model,

statistical timeliness requirements, and bounds on system-level energy consumption.

EBUA considers utility maximization under energy bounds, and dynamically skips less important

jobs for execution to achieve the performance objectives of timeliness and energy, while assuring that

the system remains functional until the end of the mission. EBUA applies DVS to reduce system-level

energy consumption to obtain additional excess energy for selecting new jobs in a dynamic fashion. We

analytically establish several properties of the algorithm including satisfaction of energy consumption

bounds and timeliness bounds. Our simulation experiments confirm EBUA’s (analytical) assurances

on energy consumption and timeliness performance, and improvement and superiority in timeliness

and system-level energy efficiency over past algorithms.

EBUA has a higher overhead than many traditional energy-efficient real-time scheduling algorithms.

This high cost is justified for application systems with longer execution time magnitudes such as those

on which we focus in this paper. For systems with smaller execution time magnitudes, optimization

of the algorithm for reduced overhead such as using strategies described in [23] would be necessary.
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Several aspects of the work are directions for further research. Examples include considering more

general task arrival models (than UAM), and reward functions for tasks (besides TUFs), where tasks

accrue reward as a function of their execution cycles.
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