
Virginia Tech ❖ Bradley Department of Electrical and Computer Engineering

ECE 4984 and 5984: Certified Programming
Spring 2017

Course Syllabus

Instructor

Dr. Giuliano Losa
Research Assistant Professor
ECE Dept., Virginia Tech
Office: 450 Durham Hall
Blacksburg, VA 24061
giuliano.losa@vt.edu
Course website: www.ssrg.ece.vt.edu/cert.

1 Overview

We say that a piece of software is certified when its behavior has been mathematically modeled and
proven to comply with a specification of the software’s requirements. With software defects costing the
US economy billions of dollars annually, producing certified software is today of high importance.

Writing pen and paper proofs about software is too tedious and error-prone (it’s easy to miss a case)
to be practical, and fully automated analysis tools are not generally applicable due to the undecidability
of most software analysis tasks. To achieve trustworthiness and wide applicability, one can develop
certified programs using an interactive theorem prover (ITP). The Isabelle/HOL ITP combines automatic
proof methods with interactive construction of proofs by the user, as well as automatic code generation
from specifications, rapid prototyping tools, and an advanced IDE.

While developing software using an ITP is an expensive process, the situation is rapidly improving,
as exemplified in recent breakthroughs in ITP technology and applications, such as the certification of the
seL4 operating system, the CompCert compiler, and the IronFleet suite of distributed systems.

The objective of this course is to teach students the basic techniques for developing certified software
with an ITP like Isabelle/HOL. After an initial tutorial on Isabelle/HOL, the course will cover top-down
certified development of software from specifications to efficient functional programs, with application
to building certified distributed systems, and bottom up proof of systems software written in the C lan-
guage. The course will also cover the use of lightweight prototyping and testing tools that speed up
the certified development process. Students will apply their knowledge to new application domains by
completing a course project over a period of 8 weeks.

Upon completion of the course, the student will be able to:

• Use Isabelle/HOL as a functional-programming environment: write high-level specification and
refine them to efficient purely functional programs.

• Use Isabelle/HOL’s Nitpick tool, Quickcheck tools, and code generation to rapidly prototype and
check the correctness of software designs, functional programs, distributed system designs, and C
code.

• Develop certified distributed systems in Isabelle/HOL and deploy them.
• Develop certified systems software written in the C programming language.

1

Fall 2017

TBA.



2 Prerequisites

• 5984: Graduate standing.

• 5984 and 4984: Good programming skills in at least one programming language. Basic notions in
set theory and propositional logic, and finite automata theory.

It is preferable but not mandatory to know the basics of some functional programming language
(e.g. OCaml, Haskell, Lisp, Scala, F#, etc.), roughly corresponding to the material covered in chapters 1 to
6 of the book Introduction to Objective Caml.

3 Course meeting time and location

Mondays and Wednesdays 2:30pm to 3:45pm. Location to be announced.

4 Required and Recommended Texts

The only required book is Concrete Semantics with Isabelle/HOL (freely available), by Tobias Nipkow
and Gerwin Klein. The following two books are recommended but not necessary to follow and complete
the course:

• John Harrison. Handbook of practical logic and automated reasoning.
• P.B. Andrews. An Introduction to Mathematical Logic and Type Theory.

5 Grading (tentative, to be confirmed)

The grade will be split in 50% for programming and proving exercises and 50% for a course project.
The course project will allow students to put their knowledge to practice by developing certified

software for an application of their choice. This may consist in using the techniques seen in the class to
certify a more complex piece of software (undergraduate projects), or in developing new infrastructure
for producing certified software in a particular application domain and demonstrating the infrastructure
on a realistic example (graduate projects).

There will be three kinds of projects to choose from: custom projects, graduate projects, and un-
dergraduate projects. Custom projects are proposed by the students and refined with the help of the
instructor, who must approve them before students are allowed to use them as course project. Graduate
and undergraduate projects are proposed by the instructor. Graduate projects will require independent
study of research material, whereas undergraduate projects will come with a predetermined set of steps
to accomplish to complete the project. Undergraduate students can choose to complete any of the three
types of projects, while graduate students can only choose a custom or graduate project, and a graduate
student’s custom project must include independent study of research material.

Students will have 8 weeks to complete the course project. Programming and proving exercises will
be handed out weekly, and must be completed by the time indicated on each handout.

2

TBA.



Course Topic Outline (tentative, to be confirmed)

Topic “Concrete Semantics” Chapters
Basic programming and proving in Isabelle/HOL: functional pro-
gramming, inductive definitions, induction proofs, simplification,
automatic proof methods, deduction in Isabelle/Pure, the Isar proof
language, locales.

Part 1.

Semantics of imperative programs and Hoare Logic; application to
proving C code correct.

Chapters 7 and 12.

Proving C programs with Autocorres. Not covered
Code generation from Isabelle/HOL theories through higher-order
rewriting.

Not covered

Type definitions, lifting and transfer, code generation with data-type
refinement.

Not covered

Prototyping specifications and programs using Nitpick and
Quickcheck.

Not covered

Modeling and developing certified distributed systems in Is-
abelle/HOL; I/O-automata, ghost variables and simulation proofs.

Not covered

3


